1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Ma Y, Wang Z, Jiang L, Zhang J, Ren C, Kou X, Liu S, Li Z. Bulky Phosphazenium Salt Controlling Chemoselective Terpolymerization of Epoxide, Anhydride and CO 2: From Well-Defined Block to Truly Random Copolymers. Angew Chem Int Ed Engl 2024:e202416104. [PMID: 39353854 DOI: 10.1002/anie.202416104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Copolymers with precise compositions and controlled sequences are great appealing for high-performance polymeric materials, but their synthesis is very challenging. In this study, tetrakis[tris(dimethylamino)phosphoranylidenamino] phosphonium chloride (P5Cl) and triethylboron (TEB) were chosen as the binary catalyst to synthesize both well-defined block and truly random poly(ester-carbonate) copolymers via the one-pot/one-step terpolymerization of epoxide/anhydride/CO2 under metal-free conditions. The bulky nature of phosphazenium cation not only led to loose cation-anion pairs and enhanced the reactivity, but also provided the chain-end an appropriate protection and improved the controllability. In particular, P5Cl/TEB with a molar ratio of 1/0.5 showed an extraordinary chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CHO/CO2. Thus, well-defined block polyester-polycarbonate copolymers were synthesized by CHO/PA/CO2 terpolymerization. The chemoselectivity was easily tuned and the ROAC of CHO/PA and ROAC of CHO/CO2 occurred simultaneously with P5Cl/TEB=1/2, producing truly random poly(ester-carbonate) copolymers from CHO/PA/CO2. In addition, this P5Cl/TEB catalyst and the strategy to regulate its chemoselectivity are versatile for various anhydrides, epoxides and initiators. Thus, poly(ester-carbonate) copolymers with varying sequences, compositions, and topologies are successfully synthesized, making it possible to compare their properties and to expand their applications.
Collapse
Affiliation(s)
- Yukun Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zehao Wang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lihang Jiang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanli Ren
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Ye T, Chai M, Wang Z, Shao T, Liu J, Shi X. 3D-Printed Hydrogels with Engineered Nanocrystalline Domains as Functional Vascular Constructs. ACS NANO 2024; 18:25765-25777. [PMID: 39231281 DOI: 10.1021/acsnano.4c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Three-dimensionally printed (3DP) hydrogel-based vascular constructs have been investigated in response to the impaired function of blood vessels or organs by replicating exactly the 3D structural geometry to approach their function. However, they are still challenged by their intrinsic brittleness, which could not sustain the suture piercing and enable the long-term structural and functional stability during the direct contact with blood. Here, we reported the high-fidelity digital light processing (DLP) 3D printing of hydrogel-based vascular constructs from poly(vinyl alcohol)-based inks, followed by mechanical strengthening through engineering the nanocrystalline domains and subsequent surface modification. The as-prepared high-precision hydrogel vascular constructs were imparted with highly desirable mechanical robustness, suture tolerance, swelling resistance, antithrombosis, and long-term patency. Notably, the hydrogel-based bionic vein grafts, with precise valve structures, exhibited excellent control over the unidirectional flow and successfully fulfilled the biological functionalities and patency during a 4-week implantation within the deep veins of beagles, thus corroborating the promising potential for treating chronic venous insufficiency.
Collapse
Affiliation(s)
- Tan Ye
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Muyuan Chai
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523000, P. R. China
| | - Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingru Shao
- Department of Oral & Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Adhami M, Picco CJ, Detamornrat U, Anjani QK, Cornelius VA, Robles-Martinez P, Margariti A, Donnelly RF, Domínguez-Robles J, Larrañeta E. Clopidogrel-loaded vascular grafts prepared using digital light processing 3D printing. Drug Deliv Transl Res 2024; 14:1693-1707. [PMID: 38051475 PMCID: PMC11052781 DOI: 10.1007/s13346-023-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.
Collapse
Affiliation(s)
- Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
5
|
Wu L, Huang R, Tang L, Ning X, Zhu J, Ma X. A novel in-situ dynamic mechanical analysis for human plantar soft tissue: The device design, definition of characteristics, test protocol, and preliminary results. Heliyon 2024; 10:e29986. [PMID: 38707476 PMCID: PMC11068617 DOI: 10.1016/j.heliyon.2024.e29986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
The in-situ mechanical characterization of elastomers is not highly regarded due to the existence of a well-established set of sample-based standard tests for research and industry. However, there are certain situations or materials, like biological soft tissue, where an in-situ approach is necessary due to the impossibility of sampling from a living body. We have developed a dynamic mechanical analysis (DMA)-like device to approach in-vivo and in-situ multidimensional stress-strain properties of human plantar soft tissues. This work elucidates the operational mechanism of the novel measurement, with the definition of a new set of moduli, test standardization and protocol. Exploratory results of a volunteer's living plantar, silica rubber samples are presented with well preciseness and consistence as expected.
Collapse
Affiliation(s)
- Longyan Wu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Ran Huang
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, Zhejiang, 318000, China
| | - Lisheng Tang
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, Zhejiang, 318000, China
| | - Xinyi Ning
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jun Zhu
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
| | - Xin Ma
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
6
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomed Mater Res A 2024; 112:574-585. [PMID: 37345954 DOI: 10.1002/jbm.a.37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
9
|
Zhao Y, Zhong W. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics. Molecules 2023; 28:8025. [PMID: 38138515 PMCID: PMC10745526 DOI: 10.3390/molecules28248025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Polyester elastomers are highly flexible and elastic materials that have demonstrated considerable potential in various biomedical applications including cardiac, vascular, neural, and bone tissue engineering and bioelectronics. Polyesters are desirable candidates for future commercial implants due to their biocompatibility, biodegradability, tunable mechanical properties, and facile synthesis and fabrication methods. The incorporation of bioactive components further improves the therapeutic effects of polyester elastomers in biomedical applications. In this review, novel structural modification methods that contribute to outstanding mechanical behaviors of polyester elastomers are discussed. Recent advances in the application of polyester elastomers in tissue engineering and bioelectronics are outlined and analyzed. A prospective of the future research and development on polyester elastomers is also provided.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
11
|
Wu J, Yao H, Yu L, Li H, Zuo Y, Liu W, Zhang C, Fu C, Liu M. A novel 3D printed type II silk fibroin/polycaprolactone mesh for the treatment of pelvic organ prolapse. Biomater Sci 2023; 11:7203-7215. [PMID: 37750690 DOI: 10.1039/d3bm01158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Pelvic organ prolapse (POP) is one of the common diseases in middle-aged and elderly women, caused by weakened pelvic floor muscle ligament tissue support. Pelvic floor reconstruction with mesh implantation has been proven to be an effective treatment for POP. However, traditional non-degradable and inflexible pelvic floor implantation meshes have been associated with pain, vaginal infections, and the need for additional surgeries. In this study, novel meshes with pre-designed structures were fabricated with solution-based electrohydrodynamic printing (EHDP) technology, using a series of polycaprolactone/silk fibroin composites as bioinks. The PCL/SF mesh mechanical performances were particularly enhanced with the addition of silk II, leading it to obtain higher adaptability with soft tissue repair. The mesh containing SF showed more robust degradation performance in the in vitro degradation assay. Furthermore, biocompatibility tests conducted on mouse embryonic fibroblasts (NIH/3T3) revealed enhanced cell affinity. Finally, the biocompatibility and tissue repair properties of PCL/SF mesh were verified through the implantation of meshes in the muscle defect site of mice. The results demonstrated that the 3D printed PCL/SF mesh prepared by EHDP exhibits superior mechanical properties, biocompatibility, biodegradability, as well as ligament and muscle fiber repair ability. The novel implantable meshes are promising for curing POP.
Collapse
Affiliation(s)
- Jingya Wu
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| | - Hai Yao
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Lili Yu
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Huawen Li
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| | - Yan Zuo
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, China
| | - Chunye Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Caili Fu
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Mubiao Liu
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| |
Collapse
|
12
|
Wang Z, Zhang W, Bai G, Lu Q, Li X, Zhou Y, Yang C, Xiao Y, Lang M. Highly resilient and fatigue-resistant poly(4-methyl- ε-caprolactone) porous scaffold fabricated via thiol-yne photo-crosslinking/salt-templating for soft tissue regeneration. Bioact Mater 2023; 28:311-325. [PMID: 37334070 PMCID: PMC10275743 DOI: 10.1016/j.bioactmat.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mechanical properties and exceptional biological properties have been reported to provide mechanical support and structural integrity for tissue repair. Herein, poly(4-methyl-ε-caprolactone) (PMCL) was first double-terminated by alkynylation (PMCL-DY) as a liquid precursor at room temperature. Subsequently, three-dimensional porous scaffolds with custom shapes were fabricated from PMCL-DY via thiol-yne photocrosslinking using a practical salt template method. By manipulating the Mn of the precursor, the modulus of compression of the scaffold was easily adjusted. As evidenced by the complete recovery from 90% compression, the rapid recovery rate of >500 mm min-1, the extremely low energy loss coefficient of <0.1, and the superior fatigue resistance, the PMCL20-DY porous scaffold was confirmed to harbor excellent elastic properties. In addition, the high resilience of the scaffold was confirmed to endow it with a minimally invasive application potential. In vitro testing revealed that the 3D porous scaffold was biocompatible with rat bone marrow stromal cells (BMSCs), inducing BMSCs to differentiate into chondrogenic cells. In addition, the elastic porous scaffold demonstrated good regenerative efficiency in a 12-week rabbit cartilage defect model. Thus, the novel polyester scaffold with adaptable mechanical properties may have extensive applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Zhaochuang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenhao Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guo Bai
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyu Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chi Yang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
13
|
Wang W, Luan Z, Shu Z, Xu K, Wang T, Liu S, Wu X, Liu H, Ye S, Dan R, Zhao X, Yang S, Xing M, Fan C. Biosynthetic Plastics as Tunable Elastic and Visible Stent with Shape-Memory to Treat Biliary Stricture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303779. [PMID: 37552006 PMCID: PMC10582434 DOI: 10.1002/advs.202303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/09/2023]
Abstract
Common biliary tract is ≈4 mm in diameter to deliver bile from liver to small intestine to help digestion. The abnormal narrowing leads to severe symptoms such as pain and nausea. Stents are an effective treatment. Compared with non-degradable stents which require repeated removal, biodegradable stents have the advantage of reducing secondary injury related to endoscopic operation and patient burden. However, current biodegradable materials may cause tissue hyperplasia and the treatment method does not target etiology of stricture. So recurrence rates after biodegradable stent implantation are still high. Here, a biodegradable helical stent fabricated from biosynthetic P(3HB-co-4HB) is reported. Tunable properties can be acquired through altering culture substrates. Stent shows shape memory in various solvents. The stent has an optimized design with helical structure and outer track. The self-expanding of helical structure and double drainage realized by outer track greatly improve drainage of bile. Importantly, stent-loading triamcinolone acetonide can inhibit proliferation of fibroblasts and reduce incidence of restricture. Therapeutic effect is also demonstrated in minipigs with biliary stricture. The results of minipig experiments show that biliary duct in treatment group is unobstructed and tissue hyperplasia is effectively inhibited.
Collapse
Affiliation(s)
- Wei Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhaohui Luan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhenzhen Shu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Tongchuan Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shuang Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaozhuo Wu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Hangzong Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shaosong Ye
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Ruijue Dan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaoyan Zhao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay LaboratoryChongqing400064China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Chaoqiang Fan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
| |
Collapse
|
14
|
Qin Y, Coleman RM. Ligand Composition and Coating Density Co-Modulate the Chondrocyte Function on Poly(glycerol-dodecanedioate). J Funct Biomater 2023; 14:468. [PMID: 37754882 PMCID: PMC10531919 DOI: 10.3390/jfb14090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Inducing chondrocyte redifferentiation and promoting cartilaginous matrix accumulation are key challenges in the application of biomaterials in articular cartilage repair. Poly(glycerol-dodecanedioate) (PGD) is a viable candidate for scaffold design in cartilage tissue engineering (CTE). However, the surface properties of PGD are not ideal for cell attachment and growth due to its relative hydrophobicity compared with natural extracellular matrix (ECM). In this study, PGD was coated with various masses of collagen type I or hyaluronic acid, individually or in combination, to generate a cell-material interface with biological cues. The effects of ligand composition and density on the PGD surface properties and shape, metabolic activity, cell phenotype, and ECM production of human articular chondrocytes (hACs) were evaluated. Introducing ECM ligands on PGD significantly improved its hydrophilicity and promoted the chondrocyte's anabolic activity. The morphology and anabolic activity of hACs on PGD were co-modulated by ligand composition and density, suggesting a combinatorial effect of both coating parameters on chondrocyte function during monolayer culture. Hyaluronic acid and its combination with collagen maintained a round cell shape and redifferentiated phenotype. This study demonstrated the complex mechanism of ligand-guided interactions between cell and biomaterial substrate and the potential of PGD as a scaffold material in the field of CTE.
Collapse
Affiliation(s)
- Yue Qin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Rhima M. Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Bertsch C, Maréchal H, Gribova V, Lévy B, Debry C, Lavalle P, Fath L. Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications. Adv Healthc Mater 2023; 12:e2203115. [PMID: 36807830 PMCID: PMC11469754 DOI: 10.1002/adhm.202203115] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Tissue damage due to cancer, congenital anomalies, and injuries needs new efficient treatments that allow tissue regeneration. In this context, tissue engineering shows a great potential to restore the native architecture and function of damaged tissues, by combining cells with specific scaffolds. Scaffolds made of natural and/or synthetic polymers and sometimes ceramics play a key role in guiding cell growth and formation of the new tissues. Monolayered scaffolds, which consist of uniform material structure, are reported as not being sufficient to mimic complex biological environment of the tissues. Osteochondral, cutaneous, vascular, and many other tissues all have multilayered structures, therefore multilayered scaffolds seem more advantageous to regenerate these tissues. In this review, recent advances in bilayered scaffolds design applied to regeneration of vascular, bone, cartilage, skin, periodontal, urinary bladder, and tracheal tissues are focused on. After a short introduction on tissue anatomy, composition and fabrication techniques of bilayered scaffolds are explained. Then, experimental results obtained in vitro and in vivo are described, and their limitations are given. Finally, difficulties in scaling up production of bilayer scaffolds and reaching the stage of clinical studies are discussed when multiple scaffold components are used.
Collapse
Affiliation(s)
- Christelle Bertsch
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Hélène Maréchal
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Benjamin Lévy
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Christian Debry
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Léa Fath
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| |
Collapse
|
16
|
Wasyłeczko M, Remiszewska E, Sikorska W, Dulnik J, Chwojnowski A. Scaffolds for Cartilage Tissue Engineering from a Blend of Polyethersulfone and Polyurethane Polymers. Molecules 2023; 28:molecules28073195. [PMID: 37049957 PMCID: PMC10095814 DOI: 10.3390/molecules28073195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In recent years, one of the main goals of cartilage tissue engineering has been to find appropriate scaffolds for hyaline cartilage regeneration, which could serve as a matrix for chondrocytes or stem cell cultures. The study presents three types of scaffolds obtained from a blend of polyethersulfone (PES) and polyurethane (PUR) by a combination of wet-phase inversion and salt-leaching methods. The nonwovens made of gelatin and sodium chloride (NaCl) were used as precursors of macropores. Thus, obtained membranes were characterized by a suitable structure. The top layers were perforated, with pores over 20 µm, which allows cells to enter the membrane. The use of a nonwoven made it possible to develop a three-dimensional network of interconnected macropores that is required for cell activity and mobility. Examination of wettability (contact angle, swelling ratio) showed a hydrophilic nature of scaffolds. The mechanical test showed that the scaffolds were suitable for knee joint applications (stress above 10 MPa). Next, the scaffolds underwent a degradation study in simulated body fluid (SBF). Weight loss after four weeks and changes in structure were assessed using scanning electron microscopy (SEM) and MeMoExplorer Software, a program that estimates the size of pores. The porosity measurements after degradation confirmed an increase in pore size, as expected. Hydrolysis was confirmed by Fourier-transform infrared spectroscopy (FT-IR) analysis, where the disappearance of ester bonds at about 1730 cm−1 wavelength is noticeable after degradation. The obtained results showed that the scaffolds meet the requirements for cartilage tissue engineering membranes and should undergo further testing on an animal model.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Remiszewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Wioleta Sikorska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Judyta Dulnik
- Institute of Fundamental Technological Research Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Andrzej Chwojnowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
17
|
Badaraev AD, Lerner MI, Bakina OV, Sidelev DV, Tran TH, Krinitcyn MG, Malashicheva AB, Cherempey EG, Slepchenko GB, Kozelskaya AI, Rutkowski S, Tverdokhlebov SI. Antibacterial Activity and Cytocompatibility of Electrospun PLGA Scaffolds Surface-Modified by Pulsed DC Magnetron Co-Sputtering of Copper and Titanium. Pharmaceutics 2023; 15:pharmaceutics15030939. [PMID: 36986800 PMCID: PMC10058054 DOI: 10.3390/pharmaceutics15030939] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties’ improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures.
Collapse
Affiliation(s)
- Arsalan D. Badaraev
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Marat I. Lerner
- Institute of Strength Physics and Materials Sciences of Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii Avenue, 634055 Tomsk, Russia
| | - Olga V. Bakina
- Institute of Strength Physics and Materials Sciences of Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii Avenue, 634055 Tomsk, Russia
| | - Dmitrii V. Sidelev
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Tuan-Hoang Tran
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Maksim G. Krinitcyn
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
- Institute of Strength Physics and Materials Sciences of Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii Avenue, 634055 Tomsk, Russia
| | - Anna B. Malashicheva
- Institute of Cytology RAS, 4 Tikhoretsky Avenue, 194064 Saint Petersburg, Russia
| | - Elena G. Cherempey
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Galina B. Slepchenko
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Anna I. Kozelskaya
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
- Correspondence: (S.R.); (S.I.T.)
| | - Sergei I. Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
- Correspondence: (S.R.); (S.I.T.)
| |
Collapse
|
18
|
Meng Y, Zhai H, Zhou Z, Wang X, Han J, Feng W, Huang Y, Wang Y, Bai Y, Zhou J, Quan D. Three dimensional
printable multi‐arms poly(
CL‐
co
‐TOSUO
) for resilient biodegradable elastomer. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Yue Meng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Hong Zhai
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Ziting Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Xiaoying Wang
- School of Biomedical Engineering Jinan University Guangzhou China
| | - Jiandong Han
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - WenJuan Feng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuxin Huang
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuan Wang
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Ying Bai
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Jing Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Daping Quan
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| |
Collapse
|
19
|
Grosjean M, Gangolphe L, Déjean S, Hunger S, Bethry A, Bossard F, Garric X, Nottelet B. Dual-Crosslinked Degradable Elastomeric Networks With Self-Healing Properties: Bringing Multi(catechol) Star-Block Copolymers into Play. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2077-2091. [PMID: 36565284 DOI: 10.1021/acsami.2c17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the biomedical field, degradable chemically crosslinked elastomers are interesting materials for tissue engineering applications, since they present rubber-like mechanical properties matching those of soft tissues and are able to preserve their three-dimensional (3D) structure over degradation. Their use in biomedical applications requires surgical handling and implantation that can be a source of accidental damages responsible for the loss of properties. Therefore, their inability to be healed after damage or breaking can be a major drawback. In this work, biodegradable dual-crosslinked networks that exhibit fast and efficient self-healing properties at 37 °C are designed. Self-healable dual-crosslinked (chemically and physically) elastomeric networks are prepared by two methods. The first approach is based on the mix of hydrophobic poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) star-shaped copolymers functionalized with either catechol or methacrylate moieties. In the second approach, hydrophobic bifunctional PEG-PLA star-shaped copolymers with both catechol and methacrylate on their structure are used. In the two systems, the supramolecular network is responsible for the self-healing properties, thanks to the dynamic dissociation/reassociation of the numerous hydrogen bonds between the catechol groups, whereas the covalent network ensures mechanical properties similar to pure methacrylate networks. The self-healable materials display mechanical properties that are compatible with soft tissues and exhibit linear degradation because of the chemical cross-links. The performances of networks from mixed copolymers versus bifunctional copolymers are compared and demonstrate the superiority of the latter. The biocompatibility of the materials is also demonstrated, confirming the potential of these degradable and self-healable elastomeric networks to be used for the design of temporary medical devices.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Louis Gangolphe
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
- LRP, Univ Grenoble Alpes, CNRS, Grenoble INP, 38000Grenoble, France
| | - Stéphane Déjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Sylvie Hunger
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Frédéric Bossard
- LRP, Univ Grenoble Alpes, CNRS, Grenoble INP, 38000Grenoble, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| |
Collapse
|
20
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications. Multifunctional bioactive citrate-based biomaterials have broad applications in regenerative medicine. Recent advances in multifunctional design and biomedical applications of citate-based polymers are summarized. Future challenge of citrate-based polymers in various biomedical applications are discussed.
Collapse
|
21
|
You H, Zhuo C, Yan S, Wang E, Cao H, Liu S, Wang X. CO 2 Deprotection-Mediated Switchable Polymerization for Precise Construction of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shuo Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
22
|
Immobilization of chalcone chemosensor into plasma-pretreated recycled polyester fibers toward multi-stimuli responsive textiles for detection of ammonia. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Liu Z, Ramakrishna S, Ahmed I, Rudd C, Liu X. Rheological, Surface Tension and Conductivity Insights on the Electrospinnability of Poly(lactic-co-glycolic acid)-hyaluronic Acid Solutions and Their Correlations with the Nanofiber Morphological Characteristics. Polymers (Basel) 2022; 14:polym14204411. [PMID: 36297989 PMCID: PMC9611082 DOI: 10.3390/polym14204411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, solutions were prepared with fixed concentrations of hyaluronic acid (HA) but varied concentrations of poly (lactic-co-glycolic acid) (PLGA) to emphasize the effects of PLGA concentration and HA addition on solution properties and to further evaluate their electrospinning performance. The dependence of specific viscosity on PLGA concentration was studied to determine the concentration regimes and evaluate the critical concentration (Ce) for successful fiber generation. The Ce of PLGA solutions is 12.07% compared to 10.09% for PLGA-HA solutions. Blending with HA results in a lower concentration dependence and better consistency to the theoretical scaling mechanisms due to the additional topological constrains, which thus result in more chain entanglements. Solutions in semi-dilute entangled regimes show the crossover of complex moduli, verifying the stable and reliable entanglement network. Higher concentrations and HA addition both led to lower crossover frequencies and, thus, a longer relaxation time. The effects of a higher PLGA concentration and HA addition on the surface tension were not evident. However, the HA addition significantly improved the solution conductivity up to three times in the pure PLGA solutions due to its polyelectrolyte nature. Defect-free and uniform nanofibers were generated from 35% to 40% of the PLGA-HA solutions, yet fibers with bead-on-string structures were produced from all studied pure PLGA solutions. Such solution characteristics and parametric correlations can provide predictive insights on tailoring the morphological characteristics of nanofibers for specific applications.
Collapse
Affiliation(s)
- Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Ifty Ahmed
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Rudd
- James Cook University Singapore, Singapore 387380, Singapore
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- Correspondence:
| |
Collapse
|
24
|
Wan L, Lu L, Zhu T, Liu Z, Du R, Luo Q, Xu Q, Zhang Q, Jia X. Bulk Erosion Degradation Mechanism for Poly(1,8-octanediol- co-citrate) Elastomer: An In Vivo and In Vitro Investigation. Biomacromolecules 2022; 23:4268-4281. [PMID: 36094894 DOI: 10.1021/acs.biomac.2c00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a biodegradable elastomer, poly(1,8-octanediol-co-citrate) (POC) has been widely applied in tissue engineering and implantable electronics. However, the unclear degradation mechanism has posed a great challenge for the better application and development of POC. To reveal the degradation mechanism, here, we present a systematic investigation into in vivo and in vitro degradation behaviors of POC. Initially, critical factors, including chemical structures, hydrophilic and water-absorbency characteristics, and degradation reaction of POC, are investigated. Then, various degradation-induced changes during in vitro degradation of POC-x (POC with different cross-linking densities) are monitored and discussed. The results show that (1) cross-linking densities exponentially drop with degradation time; (2) mass loss and PBS-absorption ratio grow nonlinearly; (3) the morphology on the cross-section changes from flat to rough at a microscopic level; (4) the cubic samples keep swelling until they collapse into fragments from a macro view; and (5) the mechanical properties experience a sharp drop at the beginning of degradation. Finally, the in vivo degradation behaviors of POC-x are investigated, and the results are similar to those in vitro. The comprehensive assessment suggests that the in vitro and in vivo degradation of POC occurs primarily through bulk erosion. Inflammation responses triggered by the degradation of POC-x are comparable to poly(lactic acid), or even less obvious. In addition, the mechanical evaluation of POC in the simulated application environment is first proposed and conducted in this work for a more appropriate application. The degradation mechanism of POC revealed will greatly promote the further development and application of POC-based materials in the biomedical field.
Collapse
Affiliation(s)
- Lu Wan
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhichang Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Su H, Li Q, Li D, Li H, Feng Q, Cao X, Dong H. A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels. MATERIALS HORIZONS 2022; 9:2393-2407. [PMID: 35789239 DOI: 10.1039/d2mh00314g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mimicking complex structures of natural blood vessels and constructing vascular networks in tissue engineering scaffolds are still challenging now. Herein we demonstrate a new and versatile strategy to fabricate free-standing multi-furcated vessels and complicated vascular networks in heterogeneous porous scaffolds by integrating stimuli-responsive hydrogels and 3D printing technology. Through the sol-gel transition of temperature-responsive gelatin and conversion between two physical crosslinking networks of pH-responsive chitosan (i.e., electrostatic network between protonated chitosan and sulfate ion, crystalline network of neutral chitosan), physiologically-stable gelatin/chitosan hydrogel tubes can be constructed. While stimuli-responsive hydrogels confer the formation mechanism of the hydrogel tube, 3D printing confers the feasibility to create a multi-furcated structure and interconnected network in various heterogeneous porous scaffolds. As a consequence, biomimetic multi-furcated vessels (MFVs) and heterogeneous porous scaffolds containing multi-furcated vessels (HPS-MFVs) can be constructed precisely. Our data further confirm that the artificial blood vessel (gelatin/chitosan hydrogel tube) shows good physiological stability, mechanical strength, semi-permeability, hemocompatibility, cytocompatibility and low in vivo inflammatory response. Co-culture of hepatocyte (L02 cells) and human umbilical vein endothelial cells (HUVECs) in HPS-MFVs indicates the successful construction of a liver model. We believe that our method offers a simple and easy-going way to achieve robust fabrication of free-standing multi-furcated blood vessels and prevascularization of porous scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hongxian Su
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dingguo Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
26
|
Yousefi Talouki P, Tamimi R, Zamanlui Benisi S, Goodarzi V, Shojaei S, Hesami tackalou S, Samadikhah HR. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | | | | |
Collapse
|
27
|
Vaillard VA, Trentino AI, Navarro L, Vaillard SE.
Fumarate‐
co
‐PEG
‐
co
‐sebacate photopolymer and its evaluation as a drug release system. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Alesandro I. Trentino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Lucila Navarro
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| |
Collapse
|
28
|
Pineda JR, Polo Y, Pardo-Rodríguez B, Luzuriaga J, Uribe-Etxebarria V, García-Gallastegui P, Sarasua JR, Larrañaga A, Ibarretxe G. In vitro preparation of human Dental Pulp Stem Cell grafts with biodegradable polymer scaffolds for nerve tissue engineering. Methods Cell Biol 2022; 170:147-167. [PMID: 35811097 DOI: 10.1016/bs.mcb.2022.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human Dental Pulp Stem Cells (hDPSCs) are one of the most promising stem cell sources for tissue engineering and regeneration, due to their extraordinary multi-lineage differentiation ability, ease of extraction from biological waste in dental clinics, safe non-tumorigenic phenotype, immune-tolerance upon in vivo transplantation, and great possibilities of application in autologous tissue reconstruction. The in vitro manipulation of hDPSCs paves the way for drug screening and tailor-made regeneration of damaged tissues, in the context of personalized medicine. The neural crest phenotype of these stem cells gives them the capacity to differentiate to a large variety of cell types, including neural-lineage cells. In this chapter, we describe various culture methods to generate different cellular phenotypes from hDPSCs, which can not only grow as mesenchymal-like plastic adherent cells, but also as non-adherent neurogenic dentospheres in serum-free medium. Floating dentospheres can be used to generate large populations of mature neuronal and glial marker expressing cells, which may be cultured over a substrate of nanopatterned scaffold based on biodegradable poly(lactide-co-caprolactone) (PLCL) to induce a controlled alignment of neurites and cell migration, to generate in vivo biocompatible constructs for nerve tissue bioengineering.
Collapse
Affiliation(s)
- Jose Ramon Pineda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain.
| | - Yurena Polo
- Polimerbio SL, Donostia-San Sebastián, Spain; Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Beatriz Pardo-Rodríguez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Luzuriaga
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Verónica Uribe-Etxebarria
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Patricia García-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Ramón Sarasua
- Polimerbio SL, Donostia-San Sebastián, Spain; Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
29
|
Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, KR A, Corrie L, Kumar R, Kumar A, Kaushik M, Jha NK, Gupta PK, Chellappan DK, Gupta G, Dua K, Gupta S, Gundamaraju R, Rao PV, Singh SK. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1659338. [PMID: 35832856 PMCID: PMC9273440 DOI: 10.1155/2022/1659338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 KSA, Saudi Arabia
| | - Arya KR
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia 7248
| | - Pasupuleti Visweswara Rao
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064, , Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
30
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
31
|
Huang Y, Zhao H, Wang X, Liu X, Gao Z, Bai H, Lv F, Gu Q, Wang S. Polyurethane-gelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks. Chem Commun (Camb) 2022; 58:6894-6897. [PMID: 35638877 DOI: 10.1039/d2cc02176e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A polyurethane-gelatin methacryloyl (PU-GelMA) hybrid ink was developed as a photo-crosslinkable elastic hydrogel. With the additional acrylic monomer, the ink can be tuned to accommodate elasticity and printability. Attributed to the shear-thinning properties of GelMA, PU-GelMA was preferable for extrusion printing. 3D-constructs were printed by direct extrusion or by using a sacrificial scaffold to resemble the vascular networks. The proliferation of endothelial cells on the PU-GelMA hydrogel indicated decent biocompatibility and potential utilization in artificial vessels.
Collapse
Affiliation(s)
- Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xinhuan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
32
|
Regeneration of Articular Cartilage Using Membranes of Polyester Scaffolds in a Rabbit Model. Pharmaceutics 2022; 14:pharmaceutics14051016. [PMID: 35631602 PMCID: PMC9143412 DOI: 10.3390/pharmaceutics14051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
One promising method for cartilage regeneration involves combining known methods, such as the microfracture technique with biomaterials, e.g., scaffolds (membranes). The most important feature of such implants is their appropriate rate of biodegradation, without the production of toxic metabolites. This study presents work on two different membranes made of polyester (L-lactide-co-ε-caprolactone-PLCA) named “PVP and “Z”. The difference between them was the use of different pore precursors—polyvinylpyrrolidone in the “PVP” scaffold and gelatin in the “Z” scaffold. These were implemented in the articular cartilage defects of rabbit knee joints (defects were created for the purpose of the study). After 8, 16, and 24 weeks of observation, and the subsequent termination of the animals, histopathology and gel permeation chromatography (GPC) examinations were performed. Statistical analysis proved that the membranes support the regeneration process. GPC testing proved that the biodegradation process is progressing exponentially, causing the membranes to degrade at the appropriate time. The surgical technique we used meets all the requirements without causing the membrane to migrate after implantation. The “PVP” membrane is better due to the fact that after 24 weeks of observation there was a statistical trend for higher histological ratings. It is also better because it is easier to implant due to its lower fragility then membrane “Z”. We conclude that the selected membranes seem to support the regeneration of articular cartilage in the rabbit model.
Collapse
|
33
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
34
|
Golbaten-Mofrad H, Salehi MH, Jafari SH, Goodarzi V, Entezari M, Hashemi M. Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomed Mater Res B Appl Biomater 2022; 110:2241-2257. [PMID: 35467798 DOI: 10.1002/jbm.b.35073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Abstract
This study has attempted to systematically investigate the influence of nanoclay and graphene oxide (GO) on thermal, mechanical, hydrophobic, and, most importantly, biological properties of poly(glycerol sebacate)/gelatin (PGS/gel) nanocomposites. The PGS/gel copolymer nanocomposites were successfully synthesized via in situ polymerization, approved by rudimentary characterization methods. The nanofillers were appropriately dispersed within the elastomeric matrix according to morphological studies. Also, the fillers posed as a hydrophobic entity that slightly decreased the hydrophilic properties of PGS/gel. This could be sensed clearly in hybrid composite due to the robust network of GO and clay. Water contact angle values for gelatin-contained nanocomposites were reported in the range of 38.42° to 66.7°, indicating the hydrophilic nature of the prepared samples. Thermal and mechanical studies of nanocomposites displayed rather contradicting results as the former improved while a slight decrease in the latter was noticed compared to the pristine specimens. In dry conditions, their storage modulus was in the range of 0.94-6.4 MPa, making them suitable for mimicking some soft tissues. The swelling ratio for nanocomposites containing nanoparticles was associated with an ascending trend so that GO improved the swelling rate by up to 45%. Biological analyses, such as Ames and in vitro cell viability tests, exhibited promising outcomes. As for the mutagenesis effect, the PGS and hybrid samples showed negative results. The presence of functional groups on the nanofillers' surface positively influenced the cells' metabolic activity as well as its attachment to the matrix. After 7 days, the cell proliferation rate resulted in an 82% improvement for the GO-containing nanocomposite, significantly higher than its neat counterpart (65%). This study has shown the feasibility of the prepared bio-elastomer nanocomposites for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Hadi Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Wang Y, Wang M, Shi Y, Chen X, Song D, Li Y, Wang B. Switchable Copolymerization of Maleic Anhydride/Epoxides/Lactide Mixtures: A Straightforward Approach to Block Copolymers with Unsaturated Polyester Sequences. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu‐Bo Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Ming‐Qian Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Yi‐Bo Shi
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Xiao‐Lu Chen
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Dong‐Po Song
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Yue‐Sheng Li
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| |
Collapse
|
36
|
Dong C, Yang C, Younis MR, Zhang J, He G, Qiu X, Fu L, Zhang D, Wang H, Hong W, Lin J, Wu X, Huang P. Bioactive NIR-II Light-Responsive Shape Memory Composite Based on Cuprorivaite Nanosheets for Endometrial Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102220. [PMID: 35218328 PMCID: PMC9036008 DOI: 10.1002/advs.202102220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/08/2022] [Indexed: 05/07/2023]
Abstract
Intrauterine adhesions (IUAs) caused by mechanical damage or infection increase the risk of infertility in women. Although numerous physical barriers such as balloon or hydrogel are developed for the prevention of IUAs, the therapeutic efficacy is barely satisfactory due to limited endometrial healing, which may lead to recurrence. Herein, a second near-infrared (NIR-II) light-responsive shape memory composite based on the combination of cuprorivaite (CaCuSi4 O10 ) nanosheets (CUP NSs) as photothermal conversion agents and polymer poly(d,l-lactide-co-trimethylene carbonate) (PT) as shape memory building blocks is developed. The as-prepared CUP/PT composite possesses excellent shape memory performance under NIR-II light, and the improved operational feasibility as an antiadhesion barrier for the treatment of IUAs. Moreover, the released ions (Cu, Si) can stimulate the endometrial regeneration due to the angiogenic bioactivity. This study provides a new strategy to prevent IUA and restore the injured endometrium relied on shape memory composite with enhanced tissues reconstruction ability.
Collapse
Affiliation(s)
- Chenle Dong
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Chen Yang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Oujiang LaboratoryWenzhouZhejiang325000China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Jing Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Gang He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xingdi Qiu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Lian‐Hua Fu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Dong‐Yang Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Hao Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Wenli Hong
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xueqing Wu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Peng Huang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| |
Collapse
|
37
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Three-dimensional scaffolds for tissue bioengineering cartilages. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Li M, Wu H, Yuan Y, Hu B, Gu N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 2022. [DOI: 10.1002/viw.20200153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mei Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- The Laboratory Center for Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Hao Wu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Ning Gu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
40
|
Zhu X, Yang G, Xie R, Wu G. One‐Pot Construction of Sulfur‐Rich Thermoplastic Elastomers Enabled by Metal‐Free Self‐Switchable Catalysis and Air‐Assisted Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guang‐Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
41
|
Pisani S, Genta I, Dorati R, Modena T, Chiesa E, Bruni G, Benazzo M, Conti B. A Design of Experiment (DOE) approach to correlate PLA-PCL electrospun fibers diameter and mechanical properties for soft tissue regeneration purposes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Chang P, Li S, Sun Q, Guo K, Wang H, Li S, Zhang L, Xie Y, Zheng X, Liu Y. Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin. J Tissue Eng 2022; 13:20417314211063022. [PMID: 35024135 PMCID: PMC8744076 DOI: 10.1177/20417314211063022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional tissue engineering skin are composed of living cells and natural or synthetic scaffold. Besize the time delay and the risk of contamination involved with cell culture, the lack of autologous cell source and the persistence of allogeneic cells in heterologous grafts have limited its application. This study shows a novel tissue engineering functional skin by carrying minimal functional unit of skin (MFUS) in 3D-printed polylactide-co-caprolactone (PLCL) scaffold and collagen gel (PLCL + Col + MFUS). MFUS is full-layer micro skin harvested from rat autologous tail skin. 3D-printed PLCL elastic scaffold has the similar mechanical properties with rat skin which provides a suitable environment for MFUS growing and enhances the skin wound healing. Four large full-thickness skin defects with 30 mm diameter of each wound are created in rat dorsal skin, and treated either with tissue engineering functional skin (PLCL + Col + MFUS), or with 3D-printed PLCL scaffold and collagen gel (PLCL + Col), or with micro skin islands only (Micro skin), or without treatment (Normal healing). The wound treated with PLCL + Col + MFUS heales much faster than the other three groups as evidenced by the fibroblasts migration from fascia to the gap between the MFUS dermis layer, and functional skin with hair follicles and sebaceous gland has been regenerated. The PLCL + Col treated wound heals faster than normal healing wound, but no skin appendages formed in PLCL + Col-treated wound. The wound treated with micro skin islands heals slower than the wounds treated either with tissue engineering skin (PLCL + Col + MFUS) or with PLCL + Col gel. Our results provide a new strategy to use autologous MFUS instead "seed cells" as the bio-resource of engineering skin for large full-thickness skin wound healing.
Collapse
Affiliation(s)
- Peng Chang
- Department of Neurosurgery and Plastic and Reconstructive Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Qian Sun
- Experimental Animal Center, General Hospital of Northern Center Command, Shenyang, China
| | - Kai Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Song Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Liming Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Yongbao Xie
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery and Plastic and Reconstructive Surgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Medical Surgery and Rehabilitation Robot Engineering Research Center, Shenyang, China
| |
Collapse
|
43
|
Li J, Zhang X, Udduttula A, Fan ZS, Chen JH, Sun AR, Zhang P. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Front Bioeng Biotechnol 2022; 9:763031. [PMID: 34993185 PMCID: PMC8724543 DOI: 10.3389/fbioe.2021.763031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a class of structurally diverse natural biopolyesters, synthesized by various microbes under unbalanced culture conditions. PHAs as biomedical materials have been fabricated in various forms to apply to tissue engineering for the past years due to their excellent biodegradability, inherent biocompatibility, modifiable mechanical properties, and thermo-processability. However, there remain some bottlenecks in terms of PHA production on a large scale, the purification process, mechanical properties, and biodegradability of PHA, which need to be further resolved. Therefore, scientists are making great efforts via synthetic biology and metabolic engineering tools to improve the properties and the product yields of PHA at a lower cost for the development of various PHA-based scaffold fabrication technologies to widen biomedical applications, especially in bone tissue engineering. This review aims to outline the biosynthesis, structures, properties, and the bone tissue engineering applications of PHA scaffolds with different manufacturing technologies. The latest advances will provide an insight into future outlooks in PHA-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jian Li
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Anjaneyulu Udduttula
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhi Shan Fan
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Hai Chen
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antonia RuJia Sun
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Zhang
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
44
|
Lynch RI, Lavelle EC. Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochem Pharmacol 2022; 197:114890. [PMID: 34990595 DOI: 10.1016/j.bcp.2021.114890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Biocompatible and biodegradable biomaterials are used extensively in regenerative medicine and serve as a tool for tissue replacement, as a platform for regeneration of injured tissue, and as a vehicle for delivery of drugs. One of the key factors that must be addressed in developing successful biomaterial-based therapeutics is inflammation. Whilst inflammation is initially essential for wound healing; bringing about clearance of debris and infection, prolonged inflammation can result in delayed wound healing, rejection of the biomaterial, further tissue damage and increased scarring and fibrosis. In this context, the choice of biomaterial must be considered carefully to minimise further induction of inflammation. Here we address the ability of the biomaterials themselves to modulate inflammatory responses and outline how the physico-chemical properties of the materials impact on their pro and anti-inflammatory properties (Fig. 1).
Collapse
Affiliation(s)
- Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland.
| |
Collapse
|
45
|
Cao Y, Jiang J, Jiang Y, Li Z, Hou J, Li Q. Biodegradable highly porous interconnected poly(ε‐caprolactone)/poly(L‐lactide‐co‐ε‐caprolactone) scaffolds by supercritical foaming for small‐diameter vascular tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongjun Cao
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Jing Jiang
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
- School of Mechanical & Power Engineering Zhengzhou University Zhengzhou China
| | - Yufan Jiang
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Zihui Li
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Jianhua Hou
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Qian Li
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
46
|
Cichoń K, Kost B, Basko M. Synthesis and properties of ABA-triblock copolymers from polyester A-blocks and easily degradable polyacetal B-blocks. Polym Chem 2022. [DOI: 10.1039/d2py00620k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel, degradable amphiphilic ABA triblock copolymers with a polyacetal chain as the hydrophilic internal block and polyesters as external hydrophobic segments were designed and prepared for the first time in a controlled manner.
Collapse
Affiliation(s)
- Karolina Cichoń
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
47
|
Gao Y, Xue J, Zhang L, Wang Z. Synthesis of bio-based polyester elastomers and evaluation of the in vivo biocompatibility and biodegradability as biomedical materials. Biomater Sci 2022; 10:3924-3934. [DOI: 10.1039/d2bm00436d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable polyester elastomers have found wide applications in the tissue engineering field. In this study, all bio-based polyester elastomer (BPE) is synthesized from five bio-based monomers; and the in vivo...
Collapse
|
48
|
Bakkali-Hassani C, Hooker JP, Voorter PJ, Rubens M, Cameron NR, Junkers T. One-Pot Multifunctional Polyesters by Continuous Flow Organocatalysed Ring-Opening Polymerisation for Targeted and Tunable Materials Design. Polym Chem 2022. [DOI: 10.1039/d2py00088a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted and tunable access to biodegradable polymers will be vital for their continued adoption and use in modern materials applications. Herein we report a platform for the synthesis of well-defined,...
Collapse
|
49
|
Wang D, Tang Z, Wang Z, Zhang L, Guo B. A bio-based, robust and recyclable thermoset polyester elastomer by using an inverse vulcanised polysulfide as a crosslinker. Polym Chem 2022. [DOI: 10.1039/d1py01287h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the synthesis of a bio-based, robust and recyclable thermoset polyester elastomer by using an inverse vulcanised sulfur-polymer (SP) as a crosslinker for the bio-based polyester elastomer (BPE).
Collapse
Affiliation(s)
- Dong Wang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhao Wang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
50
|
Becerril-Rodriguez IC, Claeyssens F. Low methacrylated poly (glycerol sebacate) for soft tissue engineering. Polym Chem 2022. [DOI: 10.1039/d2py00212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue engineering for soft tissue has made great advances in recent years, though there are still challenges to overcome. The main problem is that autologous tissue implants have not given...
Collapse
|