1
|
Wang L, Gao T, Wang D, Liu Q, Zhang M, Li L, Wang M, Yang Y, Zou Y, Li Z, Zeng J, Wu J, Gao D. Fluorescent hydrogen-bonded organic framework act as a multifunctional platform for Fe 3+ and F - sensing, and for information encryption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124970. [PMID: 39153349 DOI: 10.1016/j.saa.2024.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Due to their exceptional optical properties and adjustable functional characteristics, hydrogen-bonded organic frameworks (HOFs) demonstrate significant potential in applications such as sensing, information encryption. However, studies on the synthesis of HOFs designed to construct multifunctional platforms are scant. In this work, we report the synthesis of a new fluorescent HOF by assembling melem and isophthalic acid (IPA), designated as HOF-IPA. HOF-IPA exhibited good selectivity and sensitivity towards Fe3+, making it suitable as a fluorescent sensor for Fe3+ detection. The sensor achieved satisfactory recoveries ranging from 97.79 % to106.42 % for Fe3+ sensing, with a low relative standard deviation (RSD) of less than 3.33 %, indicating significant application potential for HOF-IPA. Due to the ability of F- to mask the electrostatic action on the surface of Fe3+ and inhibit the photoelectron transfer (PET) of HOF-IPA, the HOF-IPA - Fe3+ system can be utilized as a fluorescent "off-on" sensor for F- detection. Additionally, owing to the colorless, transparent property of HOF-IPA in aqueous solution under sunlight and its blue fluorescence property under UV light (color) or microplate reader (fluorescence intensity), HOF-IPA based ink can be used for various types of information encryption, and all yielding favorable outcomes.
Collapse
Affiliation(s)
- Luchun Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Dandan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyi Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingyue Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulian Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuemeng Zou
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhou Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China.
| | - Die Gao
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Rahmatpour A, Hesarsorkh AHA. XG and CS-based self-assembled nanocomposite hydrogel embedding fluorescent NCQDs capable of detection and adsorptive removal of the polar MO and Cr(VI) pollutants. Carbohydr Polym 2024; 346:122588. [PMID: 39245483 DOI: 10.1016/j.carbpol.2024.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Aiming at dealing with organic and inorganic pollutants dissolved in aquatic environments, we introduce self-assembled fluorescent nanocomposite hydrogel based on a binary polysaccharide network (xanthan gum/chitosan) embedding nitrogen-doped carbon quantum dots not only as a hybrid solid optical sensor for detecting Cr(VI) ions but also to remove anionically charged contaminants Cr(VI) and methyl orange (MO) by acting as an adsorbent. This fluorescent nanocomposite achieved a detection limit of 0.29 μM when used to detect Cr(VI) and demonstrated a fluorescence quantum yield of 59.7 %. Several factors contributed to the effectiveness of the adsorption of Cr(VI) and MO in batch studies, including the solution pH, dosage of the adsorbent, temperature, initial contamination level, and contact time. Experimental results showed 456 mg/g maximum adsorption capacity at pH 4 for MO compared to 291 mg/g at pH 2 for Cr(VI) at 25 °C. In addition to conforming to Langmuir's model, Cr(VI) and MO's adsorption kinetics closely matched pseudo-second-order. Using thermodynamic parameters, the results indicate that Cr(VI) and MO adsorb spontaneously and exothermically. Recycling spent adsorbent for Cr(VI) and MO using NaOH at 0.1 M was possible; the respective adsorption efficiency remained at approximately 82.2 % and 83 % after the fifth regeneration cycle.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh Hesarsorkh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
3
|
Ding W, Mo Z, Qi J, Wang M, Zou J, Wang K, Gong D, Zhao Y, Miao H, Zhao Z. Luminescent iron phthalocyanine organic polymer nanosheets with space-separated dual-active sites for the detection and photocatalytic reduction of Cr(Ⅵ) from wastewater. ENVIRONMENTAL RESEARCH 2024; 264:120282. [PMID: 39505132 DOI: 10.1016/j.envres.2024.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cr(Ⅵ) residues in livestock and poultry wastewater are a rising concern for human health and biotic environments. For the removal of Cr(Ⅵ), its simultaneous reduction and adsorption represents a sustainable and efficient strategy. Herein, iron nodes on covalently bonded two-dimensional phthalocyanine organic polymer (PcOP-Fe) nanosheets with space-separated dual-active sites are developed for the simultaneous detection and removal of Cr(VI) from wastewater. In the FeN4 structure of PcOP-Fe nanosheets, Fe acts as an electron capture center, effectively facilitating the accumulation of photogenerated electrons and transferring them to Cr(VI), thereby achieving its photocatalytic reduction. Meanwhile, pyrrolic nitrogen provides excellent adsorption sites, enabling the adsorption of Cr(III) or Cr(0). Fe accumulates the photogenerated electrons from pyrrole N and transfer them to Cr(Ⅵ). The formation of N-Cr(Ⅲ) bonds causes a space-separation between Cr(Ⅵ) and Cr(III). In addition, PcOP-Fe can be used for a Cr(Ⅵ) detection agent. The photoluminescence intensity decreases linearly with increasing Cr(Ⅵ) concentration from 80 μM to 2 mM, with a limit of detection of 0.18 μM. The PcOP-Fe nanosheets exhibit good Cr(Ⅵ) detection and reduction performance in livestock and poultry wastewater, suggesting their suitability for practical sensing applications. Thus, the PcOP-Fe nanosheets with space-separated dual-active sites are promising for the simultaneous detection and removal of Cr(Ⅵ) in water treatment processes.
Collapse
Affiliation(s)
- Wenfei Ding
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jia Qi
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Mengying Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Junyu Zou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kuo Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Daxiang Gong
- Chongqing Tengda Animal Husbandry Co., Ltd., Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hong Miao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Wang Z, Chen J, Song J, Pan Z, Cong Y, Du C, Li Q, Li X. Insight into the Efficient Selective Reduction of Cr(VI) in Sulfite/UV Process under Near-Neutral Conditions: The Critical Role of In Situ-Generated Sulfite Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19893-19901. [PMID: 39437004 DOI: 10.1021/acs.est.4c07010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Efficient removal of contaminants in complex water matrices under mild conditions is highly desirable but still challenging. In this study, we unraveled the overlooked but crucial role of sulfite radical (SO3·-) in the efficient selective reduction of toxic Cr(VI) under near-neutral conditions. Fast removal of Cr(VI) at around pH 7 in sulfite/UV was found to be attributable to high reactivity of SO3·- toward HCrO4- (∼5.3 × 106 M-1 s-1). Furthermore, SO3·- was fast generated in situ via one-electron oxidation of S(IV) by transient reactive protonated Cr(V) and Cr(IV) intermediates. Therefore, the specific reactivity of SO3·- and its in situ generation together resulted in the surprisingly positive effect of nitrate and the efficient reduction of Cr(VI) in authentic surface water and industrial wastewater. A mathematical model was developed to simulate Cr(VI) removal in the process, and thus quantitatively demonstrated the roles of reactive species, i.e., SO3·- contributed to ∼93% of Cr(VI) reduction in surface water. Overall, this study provides an insight into the pivotal role of SO3·- in Cr(VI) reduction, and underscores its significance in selective reduction and detoxification of contaminants.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiangyan Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianyu Song
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zixuan Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chunhui Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiangbiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Zhang GH, Wang HL, Cheng L, Li YL, Zhu ZH, Zou HH. Hourglass-shaped europium cluster-based secondary building unit in metal-organic framework for photocatalytic wastewater purification and sterilization via enhanced reactive oxygen species production. J Colloid Interface Sci 2024; 679:578-587. [PMID: 39471586 DOI: 10.1016/j.jcis.2024.10.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
A large number of diseases caused by water pollution have become a global public health issue, and the development and construction of innovative and efficient photocatalytic systems for water remediation is vital to improve water quality and prevent bacteria-induced diseases. Herein, a europium-based metal-organic framework (Eu-MOF) was self-assembled with complex hourglass-shaped Eu9 clusters as secondary building units (SBUs), achieving excellent photoinduced reactive oxygen species (ROS) generation ability. Moreover, Eu-MOF can quickly and efficiently degrade organic dyes and kill a variety of bacteria under low-power light irradiation conditions. Time-dependent scanning electron microscopy (SEM) and infrared absorption spectroscopy (IR) were used for the first time to track the formation process of complex clusters into cluster-based MOFs, and the gradual transformation of amorphous intermediates into crystalline Eu-MOF was clearly tracked. Electrochemical impedance spectroscopy (EIS) results showed that Eu-MOF has a smaller semicircle than the organic ligands, demonstrating its excellent charge separation ability. The excellent ROS generation capacity of Eu-MOF was jointly demonstrated by electron paramagnetic resonance (EPR) spectroscopy and the results obtained using the 2',7'-dichlorodihydrofluorescein (DCFH) indicator. More importantly, using low-power (60 mW/cm2) Xe lamp irradiation, Eu-MOF can almost completely degrade 10 mg/L aqueous solutions of rhodamine B (RhB), methylene blue (MB), and crystal violet (CV) within 30, 90, and 120 min, respectively. In addition, the excellent light-induced ROS production ability of Eu-MOF contributes to its significant cell killing and antibacterial effects. Under light irradiation conditions, Eu-MOF can effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with average inhibition zone sizes of 2.54 ± 0.17 and 2.56 ± 0.08 cm, respectively. This work opens up new horizons for the build of efficient photocatalytic systems based on lanthanide porous materials and promotes the progress of lanthanide MOFs (Ln-MOFs) crystal engineering.
Collapse
Affiliation(s)
- Guan-Huang Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, PR China
| | - Lei Cheng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, PR China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
6
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA, Alturaifi HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024; 282:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
7
|
Liu X, Jia W, Fang Y, Cao Y. Exogenous Amyloid Fibrils Can Cause Significant Upregulation of Neurodegenerative Disease Proteins. ACS Chem Neurosci 2024. [PMID: 39424294 DOI: 10.1021/acschemneuro.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are associated with the formation of amyloid fibrils. In familial cases, the mutant causative genes accentuate disease progression through overexpression or misfolding of amyloidogenic proteins. Besides, considerable amyloidosis cases arise from external factors, but their origin and mechanisms are not yet fully understood. Herein, we found that amyloid fibrils generated from egg and milk proteins, in addition to their nutritional effects to intestinal cells, can selectively reduce the viability of nervous cells as well as pancreatic islet cells. In contrast, soy protein amyloid fibrils lacked cytotoxicity to the aforementioned cells. This protein source and cell type-dependent cytotoxicity are demonstrated to be associated with the significant upregulation of amyloidogenic proteins. The finding was also confirmed by the vein injection of beta-lactoglobulin fibrils to mice, exhibiting the pronounced upregulations of amyloid beta1-42 (Aβ1-42) and islet amyloid polypeptide in vivo. The study therefore provides insight into the health implications of exogenous amyloid fibrils.
Collapse
Affiliation(s)
- Xihua Liu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenzhe Jia
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiping Cao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Hussain E, Buzdar AK, Abid MZ, Rauf A, Rafiq K. A cutting-edge approach to remove arsenic contents from ground water via sulfur doped copper ferrites (S-CuFe 2O 4) †. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122759. [PMID: 39396487 DOI: 10.1016/j.jenvman.2024.122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
Pure water is necessary for healthy life; however natural ground water has many toxic metals. Before drinking, it must be free from toxic metals that commonly causes cancer. For example, arsenic is hazardous element but unfortunately it is naturally present in ground water. Due to its high solubility, removal of arsenic from water is not easy. In recent decades, presence of arsenic in ground water has been reported in many areas of Pakistan. Purpose of current project is to estimate and eliminate arsenic contents from the ground drinking water of Tribal Belt of DG Khan. For the comprehensive survey, 200 water samples were collected from the areas where large proportion of ground water is being consumed for drinking. In this work, relatively cheaper and effective adsorbent namely S‒CuFe2O4 have been synthesized for the quick removal of arsenic. Arsenic contents were converted to the arsenomolybdate complex (AMC) and this complex was then adsorbed on S‒CuFe2O4. Morphology and chemical characteristics have been evaluated via XRD, SEM, FT-IR, Raman, TGA, EDX, AFM and XPS techniques. Additionally, various kinetic models were employed to confirm and validate the adsorption phenomena. Based on the results and assessment, it has been concluded that 1.5 g of aforementioned adsorbent is adequate to deliver 432 gal of arsenic free water.
Collapse
Affiliation(s)
- Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Aqsa Khan Buzdar
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
9
|
Sun X, Yin S, Zhao L, Yang W, You Y. Adsorption properties of methylene blue and Cu(II) on magnetically oxidized tannic acid cross-linked carboxymethyl chitosan gels. Int J Biol Macromol 2024; 278:134709. [PMID: 39159797 DOI: 10.1016/j.ijbiomac.2024.134709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In this work, tannic acid was selected as a green cross-linking agent to cross-link carboxymethyl chitosan to prepare a magnetic adsorbent (CC-OTA@Fe3O4), which was used to remove methylene blue (MB) and Cu2+. CC-OTA@Fe3O4 was characterized by FTIR, 13C NMR, XRD, VSM, TGA, BET and SEM. The adsorption behavior was studied using various parameters such as pH value, contact time, initial concentration of MB and Cu2+, and temperature. The results showed that adsorption of MB and Cu2+ followed the pseudo-second-order model and the Sips model. The maximum adsorption capacities were determined to be 560.92 and 104.25 mg/g MB and Cu2+ at 298 K, respectively. Thermodynamic analysis showed that the adsorption is spontaneous and endothermic in nature. According to the results of FTIR and XPS analyses, the electrostatic interaction was accompanied by π-π interaction and hydrogen bonding for MB adsorption, while complexation and electrostatic interaction were the predominant mechanism for Cu2+ adsorption. Furthermore, CC-OTA@Fe3O4 displayed remarkable stability in 0.1 M HNO3, exhibited promising recyclability, and could be easily separated from aqueous solutions in the magnetic field. This study demonstrates the potential of CC-OTA@Fe3O4 as an adsorbent for the removal of cationic dyes and heavy metals from wastewater.
Collapse
Affiliation(s)
- Xubing Sun
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China; Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China; Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Provincial Higher Learning Institutes, Neijiang 641100, China.
| | - Shiyu Yin
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| | - Li Zhao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China; Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China; Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Provincial Higher Learning Institutes, Neijiang 641100, China
| | - Wenhua Yang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China; Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China; Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Provincial Higher Learning Institutes, Neijiang 641100, China
| | - Yaohui You
- Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China
| |
Collapse
|
10
|
Escamilla P, Monteleone M, Percoco RM, Mastropietro TF, Longo M, Esposito E, Fuoco A, Jansen JC, Elliani R, Tagarelli A, Ferrando-Soria J, Amendola V, Pardo E, Armentano D. BioMOF@PAN Mixed Matrix Membranes as Fast and Efficient Adsorbing Materials for Multiple Heavy Metals' Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51182-51194. [PMID: 39269435 DOI: 10.1021/acsami.4c12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Heavy metal ions are a common source of water pollution. In this study, two novel membranes with biobased metal-organic frameworks (BioMOFs) embedded in a polyacrylonitrile matrix with tailored porosity were prepared via nonsolvent induced phase separation methods and designed to efficiently adsorb heavy metal ions from oligomineral water. Under optimized preparation conditions, stable membranes with high MOF loading up to 50 wt % and a cocontinuous sponge-like morphology and a high water permeability of 50-60 L m-2 h-1 bar-1 were obtained. The tortuous flow path in combination with a low water flow rate guarantees maximum contact time between the fluid and the MOFs, and thus a high heavy metal capture efficiency in a single pass. The performances of these BioMOF@PAN membranes were investigated in the dynamic regime for the simultaneous removal of Pb2+, Cd2+, and Hg2+ heavy metals from aqueous environments in the presence of common interfering ions. The new composite adsorbing membranes are capable of reducing the concentration of heavy metal pollutants in a single pass and at much higher efficiency than previously reported membranes. The enhanced performance of the mixed matrix membranes is attributed to the presence of multiple recognition sites which densely decorate the BioMOF channels: (i) the thioether groups, deriving from the S-methyl-l-cysteine and (S)-methionine amino acid residues, able to recognize and capture Pb2+ and Hg2+ ions and (ii) the oxygen atoms of the oxamate moieties, which preferentially interact with Cd2+ ions, as revealed by single crystal X-ray diffraction. The flexibility of the pore environments allows these sites to work synergically for the simultaneous capture of different metal ions. The stability of the membranes for a potential regeneration process, a key-factor for the effective feasibility of the process in real life applications, was also evaluated and confirmed less than 1% capacity loss in each cycle.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Marcello Monteleone
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Teresa F Mastropietro
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Elisa Esposito
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Johannes C Jansen
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Valeria Amendola
- Dipartimento di Chimica Generale, Università di Pavia, via T. Taramelli, 12, Pavia 27100, Italy
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| |
Collapse
|
11
|
Geng J, Fang W, Liu M, Yang J, Ma Z, Bi J. Advances and future directions of environmental risk research: A bibliometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176246. [PMID: 39293305 DOI: 10.1016/j.scitotenv.2024.176246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Environmental risk is one of the world's most significant threats, projected to be the leading risk over the next decade. It has garnered global attention due to increasingly severe environmental issues, such as climate change and ecosystem degradation. Research and technology on environmental risks are gradually developing, and the scope of environmental risk study is also expanding. Here, we developed a tailored bibliometric method, incorporating co-occurrence network analysis, cluster analysis, trend factor analysis, patent primary path analysis, and patent map methods, to explore the status, hotspots, and trends of environment risk research over the past three decades. According to the bibliometric results, the publications and patents related to environmental risk have reached explosive growth since 2018. The primary topics in environmental risk research mainly involve (a) ecotoxicology risk of emerging contaminants (ECs), (b) environmental risk induced by climate change, (c) air pollution and health risk assessment, (d) soil contamination and risk prevention, and (e) environmental risk of heavy metal. Recently, the hotspots of this field have shifted into artificial intelligence (AI) based techniques and environmental risk of climate change and ECs. More research is needed to assess ecological and health risk of ECs, to formulize mitigation and adaptation strategies for climate change risks, and to develop AI-based environmental risk assessment and control technology. This study provides the first comprehensive overview of recent advances in environmental risk research, suggesting future research directions based on current understanding and limitations.
Collapse
Affiliation(s)
- Jinghua Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China.
| | - Miaomiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Jianxun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| |
Collapse
|
12
|
Garland N, Gordon R, McElroy CR, Parkin A, MacQuarrie D. Optimising Low Temperature Pyrolysis of Mesoporous Alginate-Derived Starbon® for Selective Heavy Metal Adsorption. CHEMSUSCHEM 2024; 17:e202400015. [PMID: 38546163 DOI: 10.1002/cssc.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Indexed: 09/12/2024]
Abstract
In response to the ever increasing need to develop more efficient and sustainable methods for removing heavy metal contaminants from aqueous systems, the following article reports on the design of highly mesoporous alginate-derived materials (Starbon®) and their application to the adsorption of heavy metals. Using the Starbon® process to expand, dry and pyrolyse an inherently porous polysaccharide precursor, it was possible to produce mesoporous materials (BJH mesopore volumes 0.81-0.94 cm3 g-1) with large surface areas (157-297 m2 g-1) across a range of low pyrolysis temperatures (200-300 °C). The mechanisms of thermal decomposition were explored in terms of chemical and structural changes using N2-sorption porosimetry, thermogravimetric analysis, titration, FT-IR spectroscopy and 13C NMR spectroscopy. It was found that, as a result of intermolecular dehydration and crosslinking, sufficient chemical stability is obtained by the intermediate temperature of 250 °C, with limited improvement seen at higher temperatures. In addition, the materials retained large metal adsorption capacities (0.70-1.72 mmol g-1) as well as strong selectivity for Cu2+ ions (over Co2+ and Ni2+), as compared to commercial petrochemical-derived cation exchange resin Amberlite™ Mac 3H. Thus, highlighting the potential of Starbon® materials as a sustainable answer to the widespread problem of heavy metal-contaminated wastewaters.
Collapse
Affiliation(s)
- Nicholas Garland
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ross Gordon
- Jonson Matthey Technology Centre, Sonning Common, Reading, RG4 9NH, UK
| | | | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Duncan MacQuarrie
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
13
|
Ge H, Chen C, Li S, Guo X, Zhang J, Yang P, Xu H, Zhang J, Wu Z. Photo-induced protonation assisted nano primary battery for highly efficient immobilization of diverse heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135066. [PMID: 38943880 DOI: 10.1016/j.jhazmat.2024.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Highly-stable heavy metal ions (HMIs) appear long-term damage, while the existing remediation strategies struggle to effectively remove a variety of oppositely charged HMIs without releasing toxic substances. Here we construct an iron-copper primary battery-based nanocomposite, with photo-induced protonation effect, for effectively consolidating broad-spectrum HMIs. In FCPBN, Fe/Cu cell acts as the reaction impetus, and functional graphene oxide modified by carboxyl and UV-induced protonated 2-nitrobenzaldehyde serves as an auxiliary platform. Due to the groups and built-in electric fields under UV stimuli, FCPBN exhibits excellent affinity for ions, with a maximum adsorption rate constant of 974.26 g∙mg-1∙min-1 and facilitated electrons transfer, assisting to reduce 9 HMIs including Cr2O72-, AsO2-, Cd2+ in water from 0.03 to 3.89 ppb. The cost-efficiency, stability and collectability of the FCPBN during remediation, and the beneficial effects on polluted soil and the beings further demonstrate the splendid remediation performance without secondary pollution. This work is expected to remove multi-HMIs thoroughly and sustainably, which tackles an environmental application challenge.
Collapse
Affiliation(s)
- Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chaowen Chen
- University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Sijia Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xinyue Guo
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jing Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
| | - Pengqi Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
| | - Huan Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031.
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031.
| |
Collapse
|
14
|
Ko YG. Hybrid method integrating adsorption and chemical precipitation of heavy metal ions on polymeric fiber surfaces for highly efficient water purification. CHEMOSPHERE 2024; 363:142909. [PMID: 39033862 DOI: 10.1016/j.chemosphere.2024.142909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
A lot of research has been focused on increasing the specific surface area of adsorbents over a long period of time to remove heavy metal ions from wastewater using the adsorbent. However, porous adsorbents with high specific surface area have demonstrated drawbacks in water purification processes, such as high pressure drop and limitations in the adsorption capacity of heavy metal ions. In recent years, a mechanism-based convergence method involving adsorption/chemical precipitation has emerged as a promising strategy to surmount the constraints associated with porous adsorbents. The mechanism involves amine groups on chelating fibers dissociating OH- ions from water molecules, thereby raising the pH near the fibers. This elevated pH promotes the crystallization of heavy metal ions on the fiber surfaces. The removal of heavy metal ions proceeds through a sequence of adsorption and chemical precipitation processes. An adsorbent based on chelating fibers, integrating adsorption technology with chemical precipitation, demonstrates superior performance in removing significant quantities of heavy metal ions (ca. 1000-2000 mg/g for Cd2+, Cu2+ and Pb2+) when compared to developed porous adsorbents (ca. 50-760 mg/g for same ions). This review paper introduces advanced polymer fibers endowed with the capability to integrate hybrid technology, delves into the mechanism of hybrid technology, and examines its application in process technology for the effective removal of heavy metal ions. The versatility of these advanced fibers extends far beyond the removal of heavy metal ions in water treatment, making them poised to garner significant attention from researchers across diverse fields due to their broad range of potential applications. After further processes involving the removal of templates from chelating polymeric fibers used as supports and the reduction of precipitated heavy metal oxide crystals, the resulting heavy metal crystals can exhibit thin walls and well-interconnected porous structures, suitable for catalytic applications.
Collapse
Affiliation(s)
- Young Gun Ko
- Department of Chemical Engineering and Materials Science, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016, Republic of Korea.
| |
Collapse
|
15
|
Uliana AA, Pezoulas ER, Zakaria NI, Johnson AS, Smith A, Lu Y, Shaidu Y, Velasquez EO, Jackson MN, Blum M, Neaton JB, Yano J, Long JR. Removal of Chromium and Arsenic from Water Using Polyol-Functionalized Porous Aromatic Frameworks. J Am Chem Soc 2024; 146:23831-23841. [PMID: 39149836 PMCID: PMC11363125 DOI: 10.1021/jacs.4c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Chromium and arsenic are two of the most problematic water pollutants due to their high toxicity and prevalence in various water streams. While adsorption and ion-exchange processes have been applied for the efficient removal of numerous toxic contaminants, including heavy metals, from water, these technologies display relatively low overall performances and stabilities for the remediation of chromium and arsenic oxyanions. This work presents the use of polyol-functionalized porous aromatic framework (PAF) adsorbent materials that use chelation, ion-exchange, redox activity, and hydrogen-bonding interactions for the highly selective capture of chromium and arsenic from water. The chromium and arsenic binding mechanisms within these materials are probed using an array of characterization techniques, including X-ray absorption and X-ray photoelectron spectroscopies. Adsorption studies reveal that the functionalized porous aromatic frameworks (PAFs) achieve selective, near-instantaneous (reaching equilibrium capacity within 10 s), and high-capacity (2.5 mmol/g) binding performances owing to their targeted chemistries, high porosities, and high functional group loadings. Cycling tests further demonstrate that the top-performing PAF material can be recycled using mild acid and base washes without any measurable performance loss over at least ten adsorption-desorption cycles. Finally, we establish chemical design principles enabling the selective removal of chromium, arsenic, and boron from water. To achieve this, we show that PAFs appended with analogous binding groups exhibit differences in adsorption behavior, revealing the importance of binding group length and chemical identity.
Collapse
Affiliation(s)
- Adam A. Uliana
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ethan R. Pezoulas
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - N. Isaac Zakaria
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Arun S. Johnson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alex Smith
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Yubing Lu
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yusuf Shaidu
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ever O. Velasquez
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Megan N. Jackson
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Monika Blum
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B. Neaton
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Kavli Energy
NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
17
|
Matthys G, Laemont A, De Geyter N, Morent R, Lavendomme R, Van Der Voort P. Robust Imidazopyridinium Covalent Organic Framework as Efficient Iodine Capturing Materials in Gaseous and Aqueous Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404994. [PMID: 39169707 DOI: 10.1002/smll.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The development of a high-performing adsorbent that can capture both iodine vapor from volatile nuclear waste and traces of iodine species from water is an important challenge, especially in industrially relevant process conditions. This study introduces novel imidazopyridinium-based covalent organic frameworks (COFs) through post-modification of a picolinaldehyde-based imine COF. These COFs demonstrate excellent iodine adsorption capacity, adsorption kinetics, and a high stability/recyclability in both vapor and water phases. Notably, one imidazopyridinium COF exhibits gaseous iodine uptake of 21 wt.% under dynamic adsorption conditions at 150 °C and a relative humidity of 50%, surpassing the performance of the currently used silver-based zeolite adsorbents (Ag@MOR (17wt.%)). Additionally, the same imidazopyridinium COFs can efficiently remove iodine species at a low concentration from aqueous solution. Seawater containing triiodide ions treated under dynamic flow-through conditions resulted in decreased concentrations down to the ppb level. The adsorption mechanisms for iodine and polyiodide species are elucidated for the imine COF and imidazopyridinium COFs; involving halogen bonding, hydrogen bonding, and charge-transfer complexes.
Collapse
Affiliation(s)
- Gilles Matthys
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| | - Andreas Laemont
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, Ghent, 9000, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, Ghent, 9000, Belgium
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels, B-1050, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| |
Collapse
|
18
|
Tibebu S, Kassahun E, Ale TH, Worku A, Sime T, Berhanu AA, Akino B, Hailu AM, Ayana LW, Shibeshi A, Mohammed MA, Lema NK, Ammona AA, Tebeje A, Korsa G, Ayele A, Nuru S, Kebede S, Ayalneh S, Angassa K, Weldmichael TG, Ashebir H. The application of Rumex Abysinicus derived activated carbon/bentonite clay/graphene oxide/iron oxide nanocomposite for removal of chromium from aqueous solution. Sci Rep 2024; 14:19280. [PMID: 39164377 PMCID: PMC11335875 DOI: 10.1038/s41598-024-70238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Rapid industrialization has significantly boosted economic growth but has also introduced severe environmental challenges, particularly in water pollution. This study evaluates the effectiveness of a nanocomposite composed of Rumex Abyssinicus Activated Carbon/Acid Activated Bentonite Clay/Graphene Oxide, and Iron Oxide (RAAC/AABC/GO/Fe3O4) for chromium removal from aqueous solutions. The preparation of the nanocomposite involved precise methods, and its characterization was performed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, and the point of zero charge (pHpzc). Batch adsorption experiments were designed using Design Expert software with a central composite design under response surface methodology. The factors investigated included pH (3, 6, and 9), initial Cr (VI) concentration (40, 70, and 100 mg/L), adsorbent dose (0.5, 0.75, 1 g/200 mL), and contact time (60, 90, and 120 min). Adsorption isotherms were analyzed using nonlinearized Langmuir, Freundlich, and Temkin models, while pseudo-first-order and pseudo-second-order models were applied to adsorption kinetics. Characterization revealed a pHpzc of 8.25, a porous and heterogeneous surface (SEM), diverse functional groups (FTIR), an amorphous structure (XRD), and a significant surface area of 1201.23 m2/g (BET). The highest removal efficiency of 99.91% was achieved at pH 6, with an initial Cr (VI) concentration of 70 mg/L, a 90 min contact time, and an adsorbent dose of 1 g/200 mL. Optimization of the adsorption process identified optimal parameters as pH 5.84, initial Cr (VI) concentration of 88.94 mg/L, contact time of 60 min, and adsorbent dose of 0.52 g/200 mL. The Langmuir isotherm model, with an R2 value of 0.92836, best described the adsorption process, indicating a monolayer adsorption mechanism. The pseudo-second-order kinetics model provided the best fit with an R2 value of 0.988. Overall, the nanocomposite demonstrates significant potential as a cost-effective and environmentally friendly solution for chromium removal from wastewater.
Collapse
Affiliation(s)
- Solomon Tibebu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia.
| | - Estifanos Kassahun
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Innovation Incubation Center & Intellectual Property Right Coordination Office, University-Industry Linkage & Technology Transfer Directorate, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Tigabu Haddis Ale
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abebe Worku
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Takele Sime
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Afework Aemro Berhanu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Belay Akino
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abrha Mulu Hailu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Aksum University, Tigray, Ethiopia
| | - Lalise Wakshum Ayana
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Manufacturing Industry Development Institute, Chemical and Construction Inputs Industry Research and Development Center, Addis Ababa, Ethiopia
| | - Abebaw Shibeshi
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Mohammednur Abdu Mohammed
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Niguse Kelile Lema
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Andualem Arka Ammona
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Aseged Tebeje
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Gamachis Korsa
- Department of Biotechnology, College of Applied and Natural Science, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abate Ayele
- Department of Biotechnology, College of Applied and Natural Science, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Saba Nuru
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Seble Kebede
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Shiferaw Ayalneh
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Kenatu Angassa
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Tsedekech Gebremeskel Weldmichael
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Hailu Ashebir
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Wanyonyi FS, Orata F, Mutua GK, Odey MO, Zamisa S, Ogbodo SE, Maingi F, Pembere A. Application of South African heulandite (HEU) zeolite for the adsorption and removal of Pb 2+ and Cd 2+ ions from aqueous water solution: Experimental and computational study. Heliyon 2024; 10:e34657. [PMID: 39148992 PMCID: PMC11324938 DOI: 10.1016/j.heliyon.2024.e34657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
The capacity of South African Heulandite (HEU) zeolite to remove Pb2+ and Cd2+ ions from aqueous solution was investigated using batch experiments and molecular simulations studies. The effect of different factors on the adsorption of these ions onto the zeolite was investigated; contact time, initial metal ion concentration and the amount of HEU adsorbent. Molecular simulations was done using Monte Carlo and density functional theory. Experimental results obtained indicate that the maximum adsorption for the two ions occur at pH 5 and after 240 min of contact time. The percent removal based on contact time of Pb2+ and Cd2+ ions from water by the heulandite zeolite were 99.7 and 76.7 %, respectively. The adsorption of two metal ions onto the HEU zeolite follows the Langmuir adsorption isotherm. From the molecular simulation findings, the adsorption of Pb2+ ions onto the HEU window is equidistant from the two adjacent oxygen atoms within the HEU structure while the Cd2+ ion is adsorbed in the upper left side of the 8-ring HEU window. It was observed that the performance of the zeolite can significantly be improved by doping with germanium, aluminum, thallium indium, and sodium cations. These results indicate that the application of HEU zeolite as an adsorbent holds a great promise in heavy metal removal from aqueous solutions.
Collapse
Affiliation(s)
- Fred S Wanyonyi
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Francis Orata
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Gershom K Mutua
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Michael O Odey
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Sizwe Zamisa
- School of Chemistry and Physics, University of Kwazulu-Natal, Westville Campus, Private Bag X 54001, Durban, 4001, South Africa
| | - Sopuruchukwu E Ogbodo
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Francis Maingi
- Department of Science, Technology and Engineering, Kibabii University, PO Box 1699, Bungoma, 50200, Kenya
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya
| |
Collapse
|
20
|
Wang HZ, Chan MHY, Yam VWW. Heavy-Metal Ions Removal and Iodine Capture by Terpyridine Covalent Organic Frameworks. SMALL METHODS 2024:e2400465. [PMID: 39049798 DOI: 10.1002/smtd.202400465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Porous materials are excellent candidates for water remediation in environmental issues. However, it is still a key challenge to design efficient adsorbents for rapid water purification from various heavy metal ions-contaminated wastewater in one step. Here, two robust nitrogen-rich covalent organic frameworks (COFs) bearing terpyridine units on the pore walls by a "bottom-up" strategy are reported. Benefitting from the strong chelation interaction between the terpyridine units and various heavy metal ions, these two terpyridine COFs show excellent removal efficiency and capability for Pb2+, Hg2+, Cu2+, Ag+, Cd2+, Ni2+, and Cr3+ from water. These COFs are shown to remove such heavy metal ions with >90% of contents at one time after the aqueous metal ions mixture is passed through the COF filter. The nitrogen-rich features of the COFs also endow them with the capability of capturing iodine vapors, offering the terpyridine COFs the potential for environmental remediation applications.
Collapse
Affiliation(s)
- Huai-Zhen Wang
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| |
Collapse
|
21
|
Sharlin S, Lozano RA, Josephson TR. Monte Carlo Simulations of Water Pollutant Adsorption at Parts-per-Billion Concentration: A Study on 1,4-Dioxane. J Chem Theory Comput 2024; 20:5854-5865. [PMID: 38984690 DOI: 10.1021/acs.jctc.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
1,4-dioxane, an emerging water pollutant with high production volumes, is a probable human carcinogen. The inadequacy of conventional treatment processes demonstrates the need for an effective remediation strategy. Crystalline nanoporous materials are cost-effective adsorbents due to their high capacity and selective separation in mixtures. This study explores the potential of all-silica zeolites for the separation of 1,4-dioxane from water. These zeolites are highly hydrophobic and can preferentially adsorb nonpolar molecules from mixtures. We investigated six zeolite frameworks (BEA, EUO, FER, IFR, MFI, and MOR) using Monte Carlo simulations in the Gibbs ensemble. The simulations indicate high selectivity by FER and EUO, especially at low pressures, which we attribute to pore sizes and shapes with a greater affinity to 1,4-dioxane. We also demonstrate a Monte Carlo simulation workflow using gauge cells to model the adsorption of an aqueous solution of 1,4-dioxane at a 0.35 ppb concentration. We quantify 1,4-dioxane and water coadsorption and observe selectivities ranging from 1.1 × 105 in MOR to 8.7 × 106 in FER. We also demonstrate that 1,4-dioxane is in the infinite dilution regime in the aqueous phase at this concentration. This simulation technique can be extended to model other emerging water contaminants such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), chlorofluorocarbons, and others, which are also found in extremely low concentrations.
Collapse
Affiliation(s)
- Samiha Sharlin
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Rodrigo A Lozano
- Department of Chemistry, University of California Irvine, 1120 E Peltason Dr, Irvine, California 92617, United States
| | - Tyler R Josephson
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
22
|
Nakahata M, Sumiya A, Ikemoto Y, Nakamura T, Dudin A, Schwieger J, Yamamoto A, Sakai S, Kaufmann S, Tanaka M. Hyperconfined bio-inspired Polymers in Integrative Flow-Through Systems for Highly Selective Removal of Heavy Metal Ions. Nat Commun 2024; 15:5824. [PMID: 38992009 PMCID: PMC11239941 DOI: 10.1038/s41467-024-49869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.
Collapse
Affiliation(s)
- Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan.
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.
| | - Ai Sumiya
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, Hyogo, 679-5198, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Anastasia Dudin
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Julius Schwieger
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, 351-0198, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
23
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Sharma D, Kim DS, Oh SY, Lee KW, Yang WS, Zhang X, Swami SK, Cho HK, Cho SW. Photoassisted Water Purification through an Electrochemically Artificially Adjusted p-Cu 2O Light Absorption Layer. ACS OMEGA 2024; 9:29723-29731. [PMID: 39005819 PMCID: PMC11238238 DOI: 10.1021/acsomega.4c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
The implementation of photoelectrochemical water purification technology can address prevailing environmental challenges that impede the advancement and prosperity of human society. In this study, Cu, which is abundant on Earth, was fabricated using an electrochemical deposition process, in which the preferential orientation direction and carrier concentration of the Cu-based oxide semiconductor were artificially adjusted by carefully controlling the OH- and applied voltage. In particular, Cu2O grown with a sufficient supply of OH- ions exhibited the (111) preferred orientation, and the (200) surface facet was exposed, independently achieving 90% decomposition efficiency in a methyl orange (MO) solution for 100 min. This specialized method minimizes the recombination loss of electron-hole pairs by increasing the charge separation and transport efficiency of the bulk and surface of the Cu2O multifunctional absorption layer. These discoveries and comprehension not only offer valuable perspectives on mitigating self-photocorrosion in Cu2O absorbing layers but also provide a convenient and expeditious method for the mass production of water purification systems that harness unlimited solar energy. These properties enable significant energy saving and promote high-speed independent removal of organic pollutants (i.e., MO reduction) during the water purification process.
Collapse
Affiliation(s)
- Dhruv Sharma
- Department
of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Republic of Korea
| | - Dong Su Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Shin Young Oh
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Kun Woong Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Won Seok Yang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Xuan Zhang
- Department
of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Republic of Korea
| | - Sanjay Kumar Swami
- Department
of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Republic of Korea
- Department
of Physics, School of Engineering, Dayananda
Sagar University, Devarakaggalahalli,
Harohalli, Kanakapura Road, Ramanagara District, Bengaluru, Karnataka 562112, India
| | - Hyung Koun Cho
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Sung Woon Cho
- Department
of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
25
|
Chauhan K, Singh P, Sen K, Singhal RK, Thakur VK. Recent Advancements in the Field of Chitosan/Cellulose-Based Nanocomposites for Maximizing Arsenic Removal from Aqueous Environment. ACS OMEGA 2024; 9:27766-27788. [PMID: 38973859 PMCID: PMC11223156 DOI: 10.1021/acsomega.3c09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Water remediation, acknowledged as a significant scientific topic, guarantees the safety of drinking water, considering the diverse range of pollutants that can contaminate it. Among these pollutants, arsenic stands out as a particularly severe threat to human health, significantly compromising the overall quality of life. Despite widespread awareness of the harmful effects of arsenic poisoning, there remains a scarcity of literature on the utilization of biobased polymers as sustainable alternatives for comprehensive arsenic removal in practical concern. Cellulose and chitosan, two of the most prevalent biopolymers in nature, provide a wide range of potential benefits in cutting-edge industries, including water remediation. Nanocomposites derived from cellulose and chitosan offer numerous advantages over their larger equivalents, including high chelating properties, cost-effective production, strength, integrity during usage, and the potential to close the recycling loop. Within the sphere of arsenic remediation, this Review outlines the selection criteria for novel cellulose/chitosan-nanocomposites, such as scalability in synthesis, complete arsenic removal, and recyclability for technical significance. Especially, it aims to give an overview of the historical development of research in cellulose and chitosan, techniques for enhancing their performance, the current state of the art of the field, and the mechanisms underlying the adsorption of arsenic using cellulose/chitosan nanocomposites. Additionally, it extensively discusses the impact of shape and size on adsorbent efficiency, highlighting the crucial role of physical characteristics in optimizing performance for practical applications. Furthermore, this Review addresses regeneration, reuse, and future prospects for chitosan/cellulose-nanocomposites, which bear practical relevance. Therefore, this Review underscores the significant research gap and offers insights into refining the structural features of adsorbents to improve total inorganic arsenic removal, thereby facilitating the transition of green-material-based technology into operational use.
Collapse
Affiliation(s)
- Kalpana Chauhan
- Chemistry
under School of Engineering and Technology, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Prem Singh
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Kshipra Sen
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar Singhal
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
26
|
Yang K, Dong Q, Liu H, Wu L, Zong S, Wang Z. A MXene Hydrogel-Based Versatile Microrobot for Controllable Water Pollution Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309257. [PMID: 38704697 PMCID: PMC11234425 DOI: 10.1002/advs.202309257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The urgent demand for addressing dye contaminants in water necessitates the development of microrobots that exhibit remote navigation, rapid removal, and molecular identification capabilities. The progress of microrobot development is currently hindered by the scarcity of multifunctional materials. In this study, a plasmonic MXene hydrogel (PM-Gel) is synthesized by combining bimetallic nanocubes and Ti3C2Tx MXene through the rapid gelation of degradable alginate. The hydrogel can efficiently adsorb over 60% of dye contaminants within 2 min, ultimately achieving a removal rate of >90%. Meanwhile, the hydrogel exhibits excellent sensitivity in surface enhanced Raman scattering (SERS) detection, with a limit of detection (LOD) as low as 3.76 am. The properties of the plasmonic hydrogel can be further adjusted for various applications. As a proof-of-concept experiment, thermosensitive polymers and superparamagnetic particles are successfully integrated into this hydrogel to construct a versatile, light-responsive microrobot for dye contaminants. With magnetic and optical actuation, the robot can remotely sample, identify, and remove pollutants in maze-like channels. Moreover, light-driven hydrophilic-hydrophobic switch of the microrobots through photothermal effect can further enhance the adsorption capacity and reduced the dye residue by up to 58%. These findings indicate of a broad application potential in complex real-world environments.
Collapse
Affiliation(s)
- Kuo Yang
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Qianqian Dong
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Hang Liu
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Lei Wu
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Shenfei Zong
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Zhuyuan Wang
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
27
|
Ge F, Zhao Y, Feng C, Li X, Wang J, Liu H, Hu L, Chen Y, Chen F, Cheng F, Wei HY, Wu XJ. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core-Shell Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32847-32856. [PMID: 38862405 DOI: 10.1021/acsami.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Controlling the crystal facets of semiconductor nanocrystals (NCs) has been proven as an effective approach to tune their physicochemical properties. However, the study on facet-engineering of metastable zinc blende CdS (zb-CdS) and its heterostructures is still not fully explored. In this study, the zb-CdS and Au@zb-CdS core-shell NCs with tunable terminating facets are controllably synthesized, and their photocatalytic performance for water splitting are evaluated. It is found that the {111} facets of the zb-CdS NCs display higher intrinsic activity than the {100} counterparts, which originates from these surfaces being much more efficient, facilitating electron transition to enhance the adsorption ability and the dissociation of the adsorbed water, as revealed by theoretical calculations. Moreover, the Au@zb-CdS core-shell NCs exhibit better photocatalytic performance than the zb-CdS NCs terminated with the same facets under visible light irradiation (≥400 nm), which is mainly ascribed to the accelerated electron separation at the interface, as demonstrated by femtosecond transient absorption (fs-TA) spectroscopy. Importantly, the quantum yield of plasmon-induced hot electron transfer quantified by fs-TA in the Au@zb-CdS core-shell octahedrons can be reached as high as 1.2% under 615 nm excitation, which is higher than that of the Au@zb-CdS core-shell cubes. This work unravels the face-dependent photocatalytic performance of the metastable semiconductor NCs via a combination of experiments and theoretical calculations, providing the understanding of the underlying mechanism of these photocatalysts.
Collapse
Affiliation(s)
- Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuji Zhao
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Changsheng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuefei Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000, China
| | - Jiaqi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Haixia Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feifan Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Li W, Zhang J, Fan L, Zhao Y, Sun C, Li W, Chang Z. Construction of a novel Eu-MOF material based on different detection mechanisms and its application in sensing pollutants aniline, F - and Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124223. [PMID: 38574609 DOI: 10.1016/j.saa.2024.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Aniline is an organic pollutant with carcinogenicity and teratogenicity, while F- and Hg2+ are toxic ions that are easily soluble in water. When they are released to the environment, they will pose a threat to human health. Designing a material that can simultaneously detect three types of pollutants is of great significance. In this paper, a novel rare earth metal organic framework material (Eu-MOF) with three-dimensional structure based on 1-methylimidazole-4,5-dicarboxylic acid was synthesized for the first time through solvent thermal method. It has excellent luminescent performance and can be used as a multifunctional fluorescent probe to detect aniline, F-, and Hg2+ based on photoinduced electron transfer, energy competitive absorption, and ion exchange mechanisms, with detection limits of 1.79 × 10-8, 8.13 × 10-8, and 8.83 × 10-7 M, respectively. It is worth noting that Eu-MOF can detect F- and Hg2+ in real water samples, such as lake water and green tea water, with favorable recovery rates.
Collapse
Affiliation(s)
- Wenqing Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyue Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhan Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
29
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
30
|
Sharma M, Sharma S, Paavan, Gupta M, Goyal S, Talukder D, Akhtar MS, Kumar R, Umar A, Alkhanjaf AAM, Baskoutas S. Mechanisms of microbial resistance against cadmium - a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:13-30. [PMID: 38887775 PMCID: PMC11180082 DOI: 10.1007/s40201-023-00887-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/15/2023] [Indexed: 06/20/2024]
Abstract
The escalating cadmium influx from industrial activities and anthropogenic sources has raised serious environmental concerns due to its toxic effects on ecosystems and human health. This review delves into the intricate mechanisms underlying microbial resistance to cadmium, shedding light on the multifaceted interplay between microorganisms and this hazardous heavy metal. Cadmium overexposure elicits severe health repercussions, including renal carcinoma, mucous membrane degradation, bone density loss, and kidney stone formation in humans. Moreover, its deleterious impact extends to animal and plant metabolism. While physico-chemical methods like reverse osmosis and ion exchange are employed to mitigate cadmium contamination, their costliness and incomplete efficacy necessitate alternative strategies. Microbes, particularly bacteria and fungi, exhibit remarkable resilience to elevated cadmium concentrations through intricate resistance mechanisms. This paper elucidates the ingenious strategies employed by these microorganisms to combat cadmium stress, encompassing metal ion sequestration, efflux pumps, and enzymatic detoxification pathways. Bioremediation emerges as a promising avenue for tackling cadmium pollution, leveraging microorganisms' ability to transform toxic cadmium forms into less hazardous derivatives. Unlike conventional methods, bioremediation offers a cost-effective, environmentally benign, and efficient approach. This review amalgamates the current understanding of microbial cadmium resistance mechanisms, highlighting their potential for sustainable remediation strategies. By unraveling the intricate interactions between microorganisms and cadmium, this study contributes to advancing our knowledge of bioremediation approaches, thereby paving the way for safer and more effective cadmium mitigation practices.
Collapse
Affiliation(s)
- Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Paavan
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, 133101 Haryana India
| | - Mahiti Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Soniya Goyal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Daizee Talukder
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Mohd. Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001 Uttar Pradesh India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and ArtsPromising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001 Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Abdulrab Ahmed M. Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 11001 Najran, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500 Patras, Greece
| |
Collapse
|
31
|
Chen J, Shi H, Gong M, Chen H, Teng L, Xu P, Wang Y, Hu Z, Zeng Z. β-Lactoglobulin-based aerogels: Facile preparation and sustainable removal of organic contaminants from water. Int J Biol Macromol 2024; 272:132856. [PMID: 38834118 DOI: 10.1016/j.ijbiomac.2024.132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Economically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive β-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels. Firstly, photocurable BLG-based polymers were synthesized by grafting glycidyl methacrylate. Then, a cross-linking reaction, including photo-crosslinking and salting-out treatment, was applied to prepared BLG-based hydrogels. Finally, the BLG-based aerogels with high porosity and ultralight weight were obtained after freeze-drying. The outcomes revealed that the biocompatible BLG-based aerogels exhibited effective removal performance for a variety of organic pollutants under perfectly quiescent conditions, and could be regenerated and reused many times via a simple and rapid process of acid washing and centrifugation. Overall, this work not only demonstrates that BLG-based aerogels are promising adsorbents for water purification but also provides a potential way for the sustainable utilization of BLG.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Huanhuan Shi
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China
| | - Min Gong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China
| | - Hong Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Pu Xu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| |
Collapse
|
32
|
Ma Y, Li M, Qi X, Cao Y, Zhang W, Gao G, Tang B. A Multimode Optical Sensor for Selective and Sensitive Detection of Harmful Heavy Metal Cr(VI) in Fresh Water and Sea Water. Anal Chem 2024; 96:8705-8712. [PMID: 38717967 DOI: 10.1021/acs.analchem.4c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water pollution originating from heavy metals has shown great impacts on the ecological environment and human health due to their extremely low biodegradability. Hexavalent chromium Cr(VI), as one harmful heavy metal with strong oxidation, high biological permeability, and high carcinogenicity, is becoming an increasingly serious threat to human health. Therefore, conveniently but accurately, monitoring the Cr(VI) level in water to maintain its normal level and ensuring the stability of the ecosystem and human health become very valuable. However, most of these heavy metal sensors reported are turn-off type single-emission sensors. In this work, a ratiometric fluorescence/colorimetry/smartphone triple-mode turn-on optical sensor for Cr(VI) was developed based on a multifunctional metal-organic framework platform. The detection limits for these three mutual verification modes were only 1.28, 4.89, and 68.4 nM, respectively. Additionally, the color changes of the detection system under sunlight can also be observed directly by the naked eye. The accuracy and practicability of this multimode sensor were further proved by the detection of Cr(VI) in actual water and seawater samples, and the recovery rate ranged from 97.308 to 104.041%.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
33
|
Liu L, Lan H, Cui Y, Tang Q, Bai J, An X, Sun M, Liu H, Qu J. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification. SCIENCE ADVANCES 2024; 10:eadn8696. [PMID: 38787943 PMCID: PMC11122666 DOI: 10.1126/sciadv.adn8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Drinking water with micropollutants is a notable environmental concern worldwide. Membrane separation is one of the few methods capable of removing micropollutants from water. However, existing membranes face challenges in the simultaneous and efficient treatment of small-molecular and ionic contaminants because of their limited permselectivity. Here, we propose a high-efficiency water purification method using a low-pressure Janus membrane with electro-induced multi-affinity. By virtue of hydrophobic and electrostatic interactions between the functional interfaces and contaminants, the Janus membrane achieves simultaneous separation of diverse types of organics and heavy metals from water via single-pass filtration, with an approximately 100% removal efficiency, high water flux (>680 liters m-2 hour-1), and 98% lower energy consumption compared with commercial nanofiltration membranes. The electro-induced switching of interfacial affinity enables 100% regeneration of membrane performance; thus, our work paves a sustainable avenue for drinking water purification by regulating the interfacial affinity of membranes.
Collapse
Affiliation(s)
- Lie Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | | | - Yuqi Cui
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Bai
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Meng Sun
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Jin X, Li X, Liu Y, Cui Y, Liang Y, Wang Q, Wang J, Yang R, Zhao J, Xia C. Self-assembly of metal-polyphenolic network on biomass for enhanced organic contaminant capturing from water with a high cost-to-benefit ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134183. [PMID: 38574663 DOI: 10.1016/j.jhazmat.2024.134183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yilong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qin Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jin Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
35
|
Paparo R, Di Serio M, Roviello G, Ferone C, Trifuoggi M, Russo V, Tarallo O. Geopolymer-Based Materials for the Removal of Ibuprofen: A Preliminary Study. Molecules 2024; 29:2210. [PMID: 38792071 PMCID: PMC11124334 DOI: 10.3390/molecules29102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Every year, new compounds contained in consumer products, such as detergents, paints, products for personal hygiene, and drugs for human and veterinary use, are identified in wastewater and are added to the list of molecules that need monitoring. These compounds are indicated with the term emerging contaminants (or Contaminants of Emerging Concern, CECs) since they are potentially dangerous for the environment and human health. To date, among the most widely used methodologies for the removal of CECs from the aquatic environment, adsorption processes play a role of primary importance, as they have proven to be characterized by high removal efficiency, low operating and management costs, and an absence of undesirable by-products. In this paper, the adsorption of ibuprofen (IBU), a nonsteroidal anti-inflammatory drug widely used for treating inflammation or pain, was performed for the first time using two different types of geopolymer-based materials, i.e., a metakaolin-based (GMK) and an organic-inorganic hybrid (GMK-S) geopolymer. The proposed adsorbing matrices are characterized by a low environmental footprint and have been easily obtained as powders or as highly porous filters by direct foaming operated directly into the adsorption column. Preliminary results demonstrated that these materials can be effectively used for the removal of ibuprofen from contaminated water (showing a concentration decrease of IBU up to about 29% in batch, while an IBU removal percentage of about 90% has been reached in continuous), thus suggesting their potential practical application.
Collapse
Affiliation(s)
- Rosanna Paparo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.P.); (M.D.S.); (M.T.)
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.P.); (M.D.S.); (M.T.)
| | - Giuseppina Roviello
- Department of Engineering, University of Naples ‘Parthenope’, Centro Direzionale, Isola C4, 80143 Napoli, Italy; (G.R.); (C.F.)
- INSTM Research Group Napoli Parthenope, National Consortium for Science and Technology of Materials, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Claudio Ferone
- Department of Engineering, University of Naples ‘Parthenope’, Centro Direzionale, Isola C4, 80143 Napoli, Italy; (G.R.); (C.F.)
- INSTM Research Group Napoli Parthenope, National Consortium for Science and Technology of Materials, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.P.); (M.D.S.); (M.T.)
| | - Vincenzo Russo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.P.); (M.D.S.); (M.T.)
| | - Oreste Tarallo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.P.); (M.D.S.); (M.T.)
| |
Collapse
|
36
|
Peydayesh M, Mezzenga R. The circular economy of water across the six continents. Chem Soc Rev 2024; 53:4333-4348. [PMID: 38597321 DOI: 10.1039/d3cs00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Water is our most valuable and precious resource, yet it is only available in a limited amount. Sustainable use of water can therefore only operate in a circular way; nonetheless, still today depletion of water resources proceeds at an accelerated pace. Here, we quantitatively assess the water circular economy and the status of water management across 132 countries distributed over six continents by introducing the water circular economy index, WCEI, based on the three pillars of water circular economy, i.e., decreasing, optimising, and retaining. This index relies on eight indicators such as water stress, tap water price, water use efficiency, the degree of water resource management, proportion of safely treated wastewater, population with access to safe drinking water, drinking water quality, and surface water changes in hydrological basins. It allows ranking 132 countries, and most importantly to identify criticalities and bottlenecks in the sustainable use of water resources across the six continents, pointing at possible directions and actions towards a fully circular economy of water.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland.
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland.
- ETH Zurich, Department of Materials, 8093 Zurich, Switzerland
| |
Collapse
|
37
|
Xu Y, Huang C, Ma S, Bo C, Gong B, Ou J. Bifunctional fluorescent molecularly imprinted resin based on carbon dot for selective detection and enrichment of 2,4-dichlorophenoxyacetic acid in lettuce. Food Chem 2024; 439:138167. [PMID: 38071847 DOI: 10.1016/j.foodchem.2023.138167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
The work provided a method for synthesizing a simple fluorescent molecularly imprinted polymer by surface-initiated atom transfer radical polymerization (SI-ATRP) and its application in real sample. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres were selected as a matrix, 4-vinylpyridine, ethylene glycol dimethacrylate, 2,4-dichlorophenoxyacetic acid (2,4-D) as functional monomer, cross-linker and template molecule, respectively, to fabricate MAR@MIP with core-shell structure. For comparison, carbon dot (CD) as a fluorescence source was synthesized with o-phenylenediamine and tryptophan as precursors via hydrothermal method and integrated into MIP to acquire MAR@CD-MIP. MAR@CD-NIP was also prepared without adding the template molecule. The adsorption capacity of MAR@CD-MIP reached 104 mg g-1 for 2,4-D, which was higher than that of MAR@MIP (60 mg g-1). However, the adsorption capacity of MAR@CD-NIP was only 13.2 mg g-1. The linear range of fluorescence detection for 2,4-D was 18-72 μmol/L, and the limit of detection (LOD) was 0.35 μmol/L. The fluorescent MAR@CD-MIP was successfully applied in enrichment of lettuce samples. The recoveries of the three spiked concentrations of 2,4-D in lettuce were tested by fluorescence spectrophotometry and ranged in 97.3-101.7 %. Meanwhile, the results were also verified by HPLC. As a result, bi-functional molecularly imprinted resin was successfully fabricated to detect and enrich 2,4-D in real samples, and exhibited good selectivity, sensitivity and great application prospect in food detection.
Collapse
Affiliation(s)
- Yunjia Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China; College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
38
|
Tang K, Chen Y, Zhao Y. Exploiting halide perovskites for heavy metal ion detection. Chem Commun (Camb) 2024; 60:4511-4520. [PMID: 38597320 DOI: 10.1039/d4cc00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Heavy metal ions such as mercury (Hg), copper (Cu), and cadmium (Cd) pose significant threats to ecosystems and human health due to their toxicity and bioaccumulation potential. With growing environmental concerns over heavy metal ion pollution, there is an urgent need to develop efficient detection methods for safeguarding public health and the environment. Various materials, including polymers, nanomaterials, and porous substances, have been used for heavy metal ion detection and have shown promising performance for different scenarios. However, each of these materials has certain limitations as probes. Metal halide perovskites (MHPs), known for their exceptional optoelectronic properties and high structural and chemical tunability, have gained great attention in applications such as photovoltaics and LEDs. Yet, their potential as metal ion probes remains rarely explored. This review assesses MHPs as prospective materials for heavy metal ion detection, taking their structure, chemical properties, and responses to external stimuli into consideration. Three key detection mechanisms-cation exchange (CE), electron transfer (ET), and fluorescence resonance energy transfer (FRET), are explored to understand how metal ions trigger fluorescence changes on perovskites, enabling their detection. Finally, current avenues of developing perovskite probes are discussed, which include exploration of lead-free perovskites to mitigate environmental concerns arising from lead leakage and the pursuit of achieving high-sensitivity and stable detection in aqueous media, summarizing the existing and promising strategies in this field.
Collapse
Affiliation(s)
- Ke Tang
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuetian Chen
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Qin Y, Zhang M, Zhang F, Ozer SN, Feng Y, Sun W, Zhao Y, Xu Z. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133780. [PMID: 38401213 DOI: 10.1016/j.jhazmat.2024.133780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Chemically durable and effective adsorbents for radiotoxic TeOx2- (TeIV and TeVI) anions remain in great demand for contamination remediation. Herein, a low-cost iron-based metal-organic framework (MIL-101(Fe)) was used as an adsorbent to capture TeOx2- anions from contaminated solution with ultrafast kinetics and record-high adsorption capacity of 645 mg g-1 for TeO32- and 337 mg g-1 for TeO42-, outperforming previously reported adsorbents. Extended X-ray absorption fine structure (EXAFS) and density functional theory (DFT) calculations confirmed that the capture of TeOx2- by MIL-101(Fe) was mediated by the unique C-O-Te and Fe-O-Te coordination bonds at corresponding optimal adsorption sites, which enabled the selective adsorption of TeOx2- from solution and further irreversible immobilization under the geological environment. Meanwhile, MIL-101(Fe) works steadily over a wide pH range of 4-10 and at high concentrations of competing ions, and it is stable under β-irradiation even at high dose of 200 kGy. Moreover, the MIL-101(Fe) membrane was fabricated to efficiently remove TeO32- ions from seawater for practical use, overcoming the secondary contamination and recovery problems in powder adsorption. Finally, the good sustainability of MIL-101(Fe) was evaluated from three perspectives of technology, environment, and society. Our strategy provides an alternative to traditional removal methods that should be attractive for Te contamination remediation.
Collapse
Affiliation(s)
- Yongbo Qin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Meng Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Fuhao Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Seda Nur Ozer
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yujing Feng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Wenlong Sun
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yongming Zhao
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhanglian Xu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
40
|
Hu Q, Wang J, Liu C, Feng Y, Chen H. Determinants of mer Promoter Activity from Pseudomonas aeruginosa. Genes (Basel) 2024; 15:490. [PMID: 38674424 PMCID: PMC11049809 DOI: 10.3390/genes15040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Since the MerR family is known for its special regulatory mechanism, we aimed to explore which factors determine the expression activity of the mer promoter. The Tn501/Tn21 mer promoter contains an abnormally long spacer (19 bp) between the -35 and -10 elements, which is essential for the unique DNA distortion mechanism. To further understand the role of base sequences in the mer promoter spacer, this study systematically engineered a series of mutant derivatives and used luminescent and fluorescent reporter genes to investigate the expression activity of these derivatives. The results reveal that the expression activity of the mer promoter is synergistically modulated by the spacer length (17 bp is optimal) and the region upstream of -10 (especially -13G). The spacing is regulated by MerR transcription factors through symmetrical sequences, and -13G presumably functions through interaction with the RNA polymerase sigma-70 subunit.
Collapse
Affiliation(s)
| | | | | | | | - Hao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (Q.H.); (J.W.); (C.L.); (Y.F.)
| |
Collapse
|
41
|
Huang J, Tan X, Xie Y, Wu X, Dahn SL, Duan Z, Ali I, Cao J, Ruan Y. A new approach to explore and assess the sustainable remediation of chromium-contaminated wastewater by biochar based on 3E model. CHEMOSPHERE 2024; 353:141600. [PMID: 38458355 DOI: 10.1016/j.chemosphere.2024.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
As a cost-effective material, biochar, known as 'black gold', has been widely used for environmental applications (EA), including chromium-contaminated wastewater remediation. However, limited reports focused on the multiple impacts of biochar, including energy consumption (EC) and environmental risk (ER). Hence, to recommend biochar as a green material for sustainable development, the three critical units were explored and quantitatively assessed based on an adapted 3E model (EA-EC-ER). The tested biochar was produced by limited-oxygen pyrolysis at 400-700 °C by using three typical biomasses (Ulva prolifera, phoenix tree, and municipal sludge), and the optimal operational modulus of the 3E model was identified using six key indicators. The findings revealed a significant positive correlation between EC and biochar yield (p < 0.05). The biochar produced by phoenix tree consumed more energy due to having higher content of unstable carbon fractions. Further, high-temperature and low-temperature biochar demonstrated different chromium removal mechanisms. Notably, the biochar produced at low temperature (400 °C) achieved better EA due to having high removal capacity and stability. Regarding ER, pyrolysis temperature of 500 °C could effectively stabilize the ecological risk in all biochar and the biochar produced by Ulva prolifera depicted the greatest reduction (37-fold). However, the increase in pyrolysis temperature would lead to an increase in global warming potential by nearly 22 times. Finally, the 3E model disclosed that the biochar produced by Ulva prolifera at 500 °C with low EC, high EA, and low ER had the most positive recommendation index (+78%). Importantly, a rapid assessment methodology was established by extracting parameters from the correlation. Based on this methodology, about eight percent of biochar can be the highest recommended from more than 100 collected peer-related data. Overall, the obtained findings highlighted that the multiple impacts of biochar should be considered to efficiently advance global sustainable development goals.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yue Xie
- Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou, 233100, China
| | - Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Stephen L Dahn
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
42
|
Lai YR, Wang SSS, Lin TH. Using silver nanoparticle-decorated whey protein isolate amyloid fibrils to modify the electrode surface used for electrochemical detection of para-nitrophenol. Int J Biol Macromol 2024; 264:130404. [PMID: 38417752 DOI: 10.1016/j.ijbiomac.2024.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Due to their organized structures, remarkable stiffness, and nice biocompatibility and biodegradability, amyloid fibrils serve as building blocks for versatile sustainable materials. Silver nanoparticles (AgNPs) are commonly used as the nano-catalysts for various electrochemical reactions. Given their large specific surface area and high surface energy, AgNPs exhibit high aggregation propensity, which hampers their electrocatalytic performance. Food protein wastes have been identified to be associated with climate change and environmental impacts, and a surplus of whey proteins in dairy industries causes high biological and chemical demands, and greenhouse gas emissions. This study is aimed at constructing sustainable electrode surface modifiers using AgNP-deposited whey protein amyloid fibrils (AgNP/WPI-AFs). AgNP/WPI-AFs were synthesized and characterized via spectroscopic techniques, electron microscopy, and X-ray diffraction. Next, the electrocatalytic performance of AgNP/WPI-AF modified electrode was assessed via para-nitrophenol (p-NP) reduction combined with various electrochemical analyses. Moreover, the reaction mechanism of p-NP electrocatalysis on the surface of AgNP/WPI-AF modified electrode was investigated. The detection range, limit of detection, sensitivity, and selectivity of the AgNP/WPI-AF modified electrode were evaluated accordingly. This work not only demonstrates an alternative for whey valorization but also highlights the feasibility of using amyloid-based hybrid materials as the electrode surface modifier for electrochemical sensing purposes.
Collapse
Affiliation(s)
- You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
43
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Synthesis of surface-modified porous polysulfides from soybean oil by inverse vulcanization and its sorption behavior for Pb(II), Cu(II), and Cr(III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29264-29279. [PMID: 38573576 DOI: 10.1007/s11356-024-33152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
44
|
Maleki A, Bozorg A. From environmental issue to purification aid: Novel positively charged functionalized algal biochar as robust modifier of composite nanofiltration membranes. CHEMOSPHERE 2024; 353:141651. [PMID: 38460849 DOI: 10.1016/j.chemosphere.2024.141651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Robust membrane modifiers were achieved for the first time by functionalizing the algal biochar of unique porous structure. The biochar was prepared through the pyrolysis of Cladophora glomerata, the most widespread freshwater macroalga, functionalized by diethylenetriamine and dendrimer poly(amidoamine), and employed to fabricate positively charged composite nanofiltration membranes. The presence of hydrophilic functionalizers of positive charge on the membrane was verified through Fourier transform infrared and energy dispersive X-ray analyses and atomic force microscopy and zeta potential measurements were performed to determine surface roughness and confirm positive charge of the modified membranes. Dispersion of modifiers on the surface and morphology of the were also revealed through field-emission scanning electron microscopy images. It has shown that, compared to the pristine membrane, pure water fluxes were increased by 214% and 185%, and water contact angles were reduced from 66.1° to 39.5° and 43.3° in those modified by biochar functionalized with dendrimer poly(amidoamine) and diethylenetriamine, respectively. More than 90% dye rejections and salt and heavy metals removals were recorded for the membranes possessed 0.6 wt% of modifiers. Finally, a comparative study conducted between the novel modifier introduced in this study and those reported in the literature, indicated that C. glomerata biochar decorated with amine functional groups could be considered as a robust and practical alternative to the common modifiers used to manipulate nanocomposite membranes characteristics.
Collapse
Affiliation(s)
- Amin Maleki
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
45
|
Laasri S, El Hafidi EM, Mortadi A, Chahid EG. Solar-powered single-stage distillation and complex conductivity analysis for sustainable domestic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29321-29333. [PMID: 38573575 DOI: 10.1007/s11356-024-33134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
This study investigates the efficacy of a solar-powered single-stage distillation system for treating domestic wastewater, supplemented with complex conductivity analysis. Domestic wastewater samples were collected from a municipal manhole in El Jadida, Morocco, over a 24-h period. The single-stage distillation system, designed for domestic wastewater treatment, utilizes heat to vaporize the wastewater, followed by condensation to produce pure liquid water. The system demonstrated increased distilled water production with rising temperatures, with domestic wastewater outperforming seawater as a feed water source. Physical and chemical testing of the treated water revealed significant improvements in water quality, meeting, or exceeding Moroccan irrigation water standards. Reductions in parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), suspended matter, and heavy metals underscored the effectiveness of the distillation process. Complex conductivity analysis provided insights into the electrical properties of untreated wastewater and distilled water. Deconvolution of complex conductivity data using an equivalent electrical circuit model elucidated the electrochemical processes during treatment, highlighting the efficiency of the distillation process. The integration of solar energy addresses water scarcity while promoting environmental sustainability. Complex conductivity analysis enhances process understanding, offering avenues for monitoring and control in wastewater treatment.
Collapse
Affiliation(s)
- Said Laasri
- Energy Science Engineering Lab, National School of Applied Sciences, Chouaib Doukkali University of El Jadida, El Jadida, Morocco
| | - El Mokhtar El Hafidi
- Energy Science Engineering Lab, National School of Applied Sciences, Chouaib Doukkali University of El Jadida, El Jadida, Morocco.
| | - Abdelhadi Mortadi
- Laboratory Physics of Condensed Matter (LPMC), Chouaib Doukkali University, El Jadida, Morocco
| | - El Ghaouti Chahid
- Polydisciplinary Faculty of Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| |
Collapse
|
46
|
Jindal A, Schienbein P, Marx D. Revealing the Molecular Origin of Anisotropy around Chloride Ions in Bulk Water. J Phys Chem Lett 2024; 15:3037-3042. [PMID: 38466241 DOI: 10.1021/acs.jpclett.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A clear picture of the local solvation structure around halide anions in liquid water remains elusive. This discussion has been stimulated by pioneering simulation results that proposed a "hydrophobic cavity" around anions in the bulk, which is analogous to air at the air-water interface. However, there is also sound experimental and theoretical evidence that halide ions are rather symmetrically solvated in the bulk, leading to a different viewpoint. Using extensive ab initio molecular dynamics simulations of an aqueous Cl- solution, we indeed find an anisotropic arrangement of H-bonded versus interstitial water molecules. The latter are not H-bonded to the anions and thus do not couple much electronically to Cl-. The resulting purely electronic anisotropy of the local solvation environment correlates with that structural anisotropy, which however should not be understood as an empty cavity─as it would be at the air-water interface─but rather contains interstitial water molecules.
Collapse
Affiliation(s)
- Aman Jindal
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
47
|
Shen T, Peng H, Yuan X, Liang Y, Liu S, Wu Z, Leng L, Qin P. Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133442. [PMID: 38244458 DOI: 10.1016/j.jhazmat.2024.133442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Due to the broad interest in using biochar from biomass pyrolysis for the adsorption of heavy metals (HMs) in wastewater, machine learning (ML) has recently been adopted by many researchers to predict the adsorption capacity (η) of HMs on biochar. However, previous studies focused mainly on developing different ML algorithms to increase predictive performance, and no study shed light on engineering features to enhance predictive performance and improve model interpretability and generalizability. Here, based on a dataset widely used in previous ML studies, features of biochar were engineered-elemental compositions of biochar were calculated on mole basis-to improve predictive performance, achieving test R2 of 0.997 for the gradient boosting regression (GBR) model. The elemental ratio feature (H-O-2N)/C, representing the H site links to C (non-active site to HMs), was proposed for the first time to help interpret the GBR model. The (H-O-2N)/C and pH of biochar played essential roles in replacing cation exchange capacity (CEC) for predicting η. Moreover, expanding the coverages of variables by adding cases from references improved the generalizability of the model, and further validation using cases without CEC and specific surface area (R2 0.78) and adsorption experimental results (R2 0.72) proved the ML model desirable. Future studies in this area may take into account algorithm innovation, better description of variables, and higher coverage of variables to further increase the model's generalizability.
Collapse
Affiliation(s)
- Tian Shen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Xingzhong Yuan
- Xiangjiang Laboratory, Changsha 410205, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shengqiang Liu
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410100, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
48
|
El-Sewify IM, Ma S. Recent Development of Metal-Organic Frameworks for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5060-5076. [PMID: 38417120 DOI: 10.1021/acs.langmuir.3c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Water contamination is an increasing concern to mankind because of the increasing amount of pollutants in aquatic ecosystems. To purify the polluted water, various techniques have been used to remove hazardous components. Unfortunately, traditional cleanup techniques with a low uptake capacity are unable to achieve water purification. Metal-organic frameworks (MOFs) have recently shown potential in effective water pollutant isolation in terms of selectivity and adsorption capacity over traditional porous materials. The high surface area and versatile functionality of MOFs allow for the development of new adsorbents. The development of MOFs in a range of water treatments in the recent five years will be highlighted in this review, along with assessments of the adsorption performance relevant to the particular task. Moreover, the outlook on future opportunities for water purification using MOFs is also provided.
Collapse
Affiliation(s)
- Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566 Abbassia, Egypt
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| |
Collapse
|
49
|
Zhao D, Li Z, Zhu K, Lu A, Wang Y, Jiang J, Tang C, Shen XC, Ruan C. Highly dispersed amorphous nano-selenium functionalized carbon nanofiber aerogels for high-efficient uptake and immobilization of Hg(II) ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133162. [PMID: 38086302 DOI: 10.1016/j.jhazmat.2023.133162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Owing to the strong Hg-Se interaction, Se-containing materials are promising for the uptake and immobilization of Hg(II) ions; compared with metal selenides or selenized compounds, elemental Se contains the highest ratio of Se. However, it remains a challenge to fully expose all the potential Se binding sites and achieve high utilization efficiency of elemental Se. Through rational design on the structure, dispersity, and size of materials, Se/CNF aerogels composed of abundant well-dispersed and amorphous nano-Se have been prepared and applied for the high-efficient uptake and immobilization of Hg(II) ions. The well-dispersion of nano-Se increases the exposure of Se sites, the amorphous structure benefits the easy cleavage of Se-Se bonds, the 3D porous networks of aerogels permit fast ions transport and easy operation. Benefiting from the combination effect of strong Hg-Se interaction and sufficient exposure of Se-enriched sites, the Se/CNF aerogels demonstrate strong binding ability (Kd = 3.8 ×105 mL·g-1), high capacity (943.4 mg·g-1), and preeminent selectivity (αMHg > 100) towards highly toxic Hg(II) ions. Notably, the utilization efficiency of Se in Se/CNF aerogels is as high as 99.5%. Moreover, the strong Hg-Se interaction and extraordinary stability of HgSe could minimize the environmental impact of the spent Se/CNF adsorbents after its disposal.
Collapse
Affiliation(s)
- Dongmin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Zhuoyan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Kaini Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ai Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ying Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jingjing Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cong Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
50
|
Wang Y, Zhang P, Yang C, Guo Y, Gao P, Wang T, Liu Y, Xu L, Zhou G. Responses in Plant Growth and Root Exudates of Pistia stratiotes under Zn and Cu Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:736. [PMID: 38475582 PMCID: PMC10934204 DOI: 10.3390/plants13050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
At present, the situation regarding heavy metal pollution in aquatic environments is becoming more and more serious. The bioaccumulation of heavy metals in aquatic plants causes obvious phytotoxicity, which can also induce secondary pollution in the aquatic environment. Zinc and copper, as indispensable elements for plant growth, are also prominent heavy metals in water pollution in China, and their concentrations play a crucial role in plant growth. In this study, we investigated the response of Pistia stratiotes (P. stratiotes) to different concentrations of Zn and Cu, and the results showed that plant growth and photosynthesis were inhibited under both Zn (1, 2, 4, and 8 mg/L) and Cu (0.2, 0.4, 0.8, and 1 mg/L) stresses. The relative growth rates of P. stratiotes under 8 mg/L Zn or 1 mg/L Cu stress were 6.33% and 6.90%, which were much lower than those in the control group (10.86%). Meanwhile, Zn and Cu stress caused insignificant change in the relative water contents of plants. The decrease in phlorophyll fluorescence parameters and chlorophyll contents suggested the significant photoinhibition of Zn and Cu stress. Chemical analysis of plant root exudates showed that the root secretion species obtained by gas chromatography-mass spectrometry (GC-MS) mainly included amino acids, alkanes, aldehydes, ketones, phenols, and more. Compared with the control group, the influence of Zn or Cu on the reduction in relative amounts of exudates was greater than that on the increase. The results of this study provide important data for the utilization of P. stratiotes in heavy metal-polluted water environments.
Collapse
Affiliation(s)
- Yujie Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Pan Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Canhua Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Yibai Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Panpan Gao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Yu Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| |
Collapse
|