1
|
Trang TD, Khiem TC, Huy NN, Huang CW, Ghotekar S, Chen WH, Oh WD, Lin KYA. Magnetic raspberry-like CuCo nanoalloy-embedded carbon as an enhanced activator of Oxone to degrade azo contaminant: Cu-induced hollowed structure and boosted activities. J Colloid Interface Sci 2024; 675:275-292. [PMID: 38970913 DOI: 10.1016/j.jcis.2024.06.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Azo compounds, particularly azo dyes, are widely used but pose significant environmental risks due to their persistence and potential to form carcinogenic by-products. Advanced oxidation processes (AOPs) are effective in degrading these stubborn compounds, with Oxone activation being a particularly promising method. In this study, a unique nanohybrid material, raspberry-like CuCo alloy embedded carbon (RCCC), is facilely fabricated using CuCo-glycerate (Gly) as a template. With the incorporation of Cu into Co, RCCC is essentially different from its analogue derived from Co-Gly in the absence of Cu, affording a popcorn-like Co embedded on carbon (PCoC). RCCC exhibits a unique morphology, featuring a hollow spherical layer covered by nanoscale beads composed of CuCo alloy distributed over carbon. Therefore, RCCC significantly outperforms PCoC and Co3O4 for activating Oxone to degrade the toxic azo contaminant, Azorubin S (AS), in terms of efficiency and kinetics. Furthermore, RCCC remains highly effective in environments with high NaCl concentrations and can be efficiently reused across multiple cycles. Besides, RCCC also leads to the considerably lower Ea of AS degradation than the reported Ea values by other catalysts. More importantly, the contribution of incorporating Cu with Co as CuCo alloy in RCCC is also elucidated using the Density-Function-Theory (DFT) calculation and synergetic effect of Cu and Co in CuCo contributes to enhance Oxone activation, and boosts generation of SO4•-and •OH. The decomposition pathway of AS by RCCC + Oxone is also comprehensively investigated by studying the Fukui indices of AS and a series of its degradation by-products using the DFT calculation. In accordance to the toxicity assessment, RCCC + Oxone also considerably reduces acute and chronic toxicities to lower potential environmental impact. These results ensure that RCCC would be an advantageous catalyst for Oxone activation to degrade AS in water.
Collapse
Affiliation(s)
- Tran Doan Trang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Ta Cong Khiem
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam
| | - Chao-Wei Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan, ROC; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan, ROC
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, ROC.
| |
Collapse
|
2
|
Fan Y, Hao X, Jin Z. Recent advances in graphdiyne for photocatalytic hydrogen evolution. Phys Chem Chem Phys 2024; 26:27846-27860. [PMID: 39498777 DOI: 10.1039/d4cp03348e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Addressing the pressing issues of energy depletion and environmental contamination requires the advancement of renewable energy sources. Photocatalytic hydrogen evolution technology is considered an ideal solution due to its advantages of direct solar energy supply, environmental protection and pollution-free process. A catalyst with excellent performance has become an urgent need for photocatalytic hydrogen evolution. Graphdiyne (GDY) containing sp- and sp2-hybridized carbon networks is a new two-dimensional (2D) carbon allotrope. In 2010, Li and his team were the first to synthesize GDY, characterized by diacetylene bonds, conjugated systems, and a diverse distribution of surface spacing and pores. This material exhibits tunable electronic properties and remarkable chemical stability that are expected to be stronger and more adjustable than those of graphene. As a new carbon material, its unique 1,3-diyne bonds, hybrid benzene rings, CC bond and CC bond construct its stable planar structure, giving it excellent stability. This review examines the synthesis, properties, and applications of photocatalysis involving GDY and outlines the research and advancements of photocatalysts based on GDY, specifically for photocatalytic hydrogen evolution. Lastly, the paper addresses the challenges and future opportunities in the advancement of GDY-based photocatalysts for this purpose.
Collapse
Affiliation(s)
- Yu Fan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Xuqiang Hao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
3
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
4
|
Wang Y, Zhong M, Ma F, Wang C, Lu X. Shell-induced enhancement of Fenton-like catalytic performance towards advanced oxidation processes: Concept, mechanism, and properties. WATER RESEARCH 2024; 268:122655. [PMID: 39461218 DOI: 10.1016/j.watres.2024.122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.
Collapse
Affiliation(s)
- Yuezhu Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 China.
| | - Fuqiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Chao M, Huang Y, Zhou P, Wu G, Ren Y, Yan H, Dong S, Yan X, Chen H, Gao F. Au/Ag@ZnS yolk-shell photocatalysts enhanced with noble metals and hyaluronic acid for efficient hydrogen production in rheumatoid arthritis therapy. Int J Biol Macromol 2024; 280:135929. [PMID: 39322151 DOI: 10.1016/j.ijbiomac.2024.135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Rheumatoid arthritis, characterized by the abnormal proliferation of synovial cells and extensive macrophage infiltration, is a chronic inflammatory disease. Molecular hydrogen, known for its antioxidant properties, has shown promise in eliminating reactive oxygen species. However, the low solubility and bioavailability of hydrogen limit the effectiveness of this therapy. To overcome these issues, we developed a novel yolk-shell heterostructure, H-AAZS (Au/Ag@ZnS modified hyaluronic acid), utilizing a hydrothermal cation exchange process. Through ion doping, semiconductor hybridization, and Schottky barriers in H-AAZS, photocatalysis for hydrogen generation has been successfully implemented using 660 nm laser irradiation. Additionally, the H-AAZS demonstrate the capacity for mild photothermal therapy, inducing apoptosis in synovial cells with Au's hot electrons with 660 nm laser irradiation. This strategy not only improves the abnormal proliferation of synovial cells but also avoids the exacerbation of inflammation caused by thermal stimulation. Both in vitro and in vivo experiments validate the synergistic effects of hydrogen production mediated anti-inflammatory responses, macrophage polarization and photothermal therapy. Therefore, this work represents a significant advancement as it ingeniously harnesses photocatalysis to modulate the synovial microenvironment while mitigating the side effects associated with photothermal therapy. This nanocrystal provides new and valuable insights into the potential treatment of Rheumatoid arthritis.
Collapse
Affiliation(s)
- Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China; Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Yuqi Huang
- Department of Dermatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, Jiangsu, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hongliang Chen
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
6
|
Wu W, Luo J, Zhao J, Wang M, Luo L, Hu S, He B, Ma C, Li H, Zeng J. Facet sensitivity of iron carbides in Fischer-Tropsch synthesis. Nat Commun 2024; 15:6108. [PMID: 39030277 PMCID: PMC11271519 DOI: 10.1038/s41467-024-50544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Fischer-Tropsch synthesis (FTS) is a structure-sensitive reaction of which performance is strongly related to the active phase, particle size, and exposed facets. Compared with the full-pledged investigation on the active phase and particle size, the facet effect has been limited to theoretical studies or single-crystal surfaces, lacking experimental reports of practical catalysts, especially for Fe-based catalysts. Herein, we demonstrate the facet sensitivity of iron carbides in FTS. As the prerequisite, {202} and {112} facets of χ-Fe5C2 are fabricated as the outer shell through the conformal reconstruction of Fe3O4 nanocubes and octahedra, as the inner cores, respectively. During FTS, the activity and stability are highly sensitive to the exposed facet of iron carbides, whereas the facet sensitivity is not prominent for the chain growth. According to mechanistic studies, {202} χ-Fe5C2 surfaces follow hydrogen-assisted CO dissociation which lowers the activation energy compared with the direct CO dissociation over {112} surfaces, affording the high FTS activity.
Collapse
Grants
- 22221003, 22250007, 22361162655 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), Fundamental Research Funds for the Central Universities, Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450000), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), and International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC). J.Z. acknowledges support from the Tencent Foundation through the XPLORER PRIZE.
- National Key Research and Development Program of China (2023YFA1508003), Joint Funds from the Hefei National Synchrotron Radiation Laboratory (KY9990000202), USTC Research Funds of the Double First-Class Initiative (YD9990002014)
Collapse
Affiliation(s)
- Wenlong Wu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiahua Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Menglin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bingxuan He
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
7
|
Zhang W, Liu Y, Jeppesen HS, Pinna N. Stöber method to amorphous metal-organic frameworks and coordination polymers. Nat Commun 2024; 15:5463. [PMID: 38937499 PMCID: PMC11211336 DOI: 10.1038/s41467-024-49772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The Stöber method is a widely-used sol-gel route for synthesizing amorphous SiO2 colloids and conformal coatings. However, the material systems compatible with this method are still limited. Herein, we have extended the approach to metal-organic frameworks (MOFs) and coordination polymers (CPs) by mimicking the Stöber method. We introduce a general synthesis route to amorphous MOFs or CPs by making use of a base-vapor diffusion method, which allows to precisely control the growth kinetics. Twenty-four different amorphous CPs colloids were successfully synthesized by selecting 12 metal ions and 17 organic ligands. Moreover, by introducing functional nanoparticles (NPs), a conformal amorphous MOFs coating with controllable thickness can be grown on NPs to form core-shell colloids. The versatility of this amorphous coating technology was demonstrated by synthesizing over 100 core-shell composites from 20 amorphous CPs shells and over 30 different NPs. Besides, various multifunctional nanostructures, such as conformal yolk-amorphous MOF shell, core@metal oxides, and core@carbon, can be obtained through one-step transformation of the core@amorphous MOFs. This work significantly enriches the Stöber method and introduces a platform, enabling the systematic design of colloids exhibiting different level of functionality and complexity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
| | - Yanchen Liu
- Department of Chemistry, IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Henrik S Jeppesen
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Nicola Pinna
- Department of Chemistry, IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
8
|
Moon JH, Oh E, Koo TM, Jeon YS, Jang YJ, Fu HE, Ko MJ, Kim YK. One-Step Electrochemical Synthesis of Multiyolk-Shell Nanocoils for Exceptional Photocatalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312214. [PMID: 38190643 DOI: 10.1002/adma.202312214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Multiyolk-shell (mYS) nanostructures have garnered significant interest in various photocatalysis applications such as water splitting and waste treatment. Nonetheless, the complexity and rigorous conditions for the synthesis have hindered their widespread implementation. This study presents a one-step electrochemical strategy for synthesizing multiyolk-shell nanocoils (mYSNC), wherein multiple cores of noble metal nanoparticles, such as Au, are embedded within the hollow coil-shaped FePO4 shell structures, mitigating the challenges posed by conventional methods. By capitalizing on the dissimilar dissolution rates of bimetallic alloy nanocoils in an electrochemically programmed solution, nanocoils of different shapes and materials, including two variations of mYSNCs are successfully fabricated. The resulting Au-FePO4 mYSNCs exhibit exceptional photocatalytic performance for environmental remediation, demonstrating up to 99% degradation of methylene blue molecules within 50 min and 95% degradation of tetracycline within 100 min under ultraviolet-visible (UV-vis) light source. This remarkable performance can be attributed to the abundant electrochemical active sites, internal voids facilitating efficient light harvesting with coil morphology, amplified localized surface plasmon resonance (LSPR) at the plasmonic nanoparticle-semiconductor interface, and effective band engineering. The innovative approach utilizing bimetallic alloys demonstrates precise geometric control and design of intricate multicomponent hybrid composites, showcasing the potential for developing versatile hollow nanomaterials for catalytic applications.
Collapse
Affiliation(s)
- Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eunsoo Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| | - Young Jun Jang
- Department of Semiconductor Systems Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Naciri Y, Ghazzal MN, Paineau E. Nanosized tubular clay minerals as inorganic nanoreactors for energy and environmental applications: A review to fill current knowledge gaps. Adv Colloid Interface Sci 2024; 326:103139. [PMID: 38552380 DOI: 10.1016/j.cis.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Modern society pays further and further attention to environmental protection and the promotion of sustainable energy solutions. Heterogeneous photocatalysis is widely recognized as one of the most economically viable and ecologically sound technologies to combat environmental pollution and the global energy crisis. One challenge is finding a suitable photocatalytic material for an efficient process. Inorganic nanotubes have garnered attention as potential candidates due to their optoelectronic properties, which differ from their bulk equivalents. Among them, clay nanotubes (halloysite, imogolite, and chrysotile) are attracting renewed interest for photocatalysis applications thanks to their low production costs, their unique physical and chemical properties, and the possibility to functionalize or dope their structure to enhance charge-carriers separation into their structure. In this review, we provide new insights into the potential of these inorganic nanotubes in photocatalysis. We first discuss the structural and morphological features of clay nanotubes. Applications of photocatalysts based on clay nanotubes across a range of photocatalytic reactions, including the decomposition of organic pollutants, elimination of NOx, production of hydrogen, and disinfection of bacteria, are discussed. Finally, we highlight the obstacles and outline potential avenues for advancing the current photocatalytic system based on clay nanotubes. Our aim is that this review can offer researchers new opportunities to advance further research in the field of clay nanotubes-based photocatalysis with other vital applications in the future.
Collapse
Affiliation(s)
- Yassine Naciri
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France; Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France.
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| |
Collapse
|
10
|
Dong YW, Zhai XJ, Wu Y, Zhou YN, Li YC, Nan J, Wang ST, Chai YM, Dong B. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis. J Colloid Interface Sci 2024; 658:258-266. [PMID: 38104408 DOI: 10.1016/j.jcis.2023.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Photoelectrocatalyzed hydrogen production plays an important role in the path to carbon neutrality. The construction of heterojunctions provides an ideal example of an oxygen precipitation reaction. In this work, the performance of the n-n type heterojunction CeBTC@FeBTC/NIF in the photoelectronically coupled catalytic oxygen evolution reaction (OER) reaction is presented. The efficient transfer of carriers between components enhances the catalytic activity. Besides, the construction of heterojunctions optimizes the energy level structure and increases the absorption of light, and the microstructure forms holes with a blackbody effect that also enhances light absorption. Consequently, CeBTC@FeBTC/NIF has excellent photoelectric coupling catalytic properties and requires an overpotential of only 300 mV to drive a current density of 100 mA cm-2 under illumination. More importantly, the n-n heterojunction was found to be effective in enhancing charge and photogenerated electron migration by examining the carrier density of each component and carrier diffusion at the interface.
Collapse
Affiliation(s)
- Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yi-Chuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Nan
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
| | - Shu-Tao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
11
|
Liu R, Yu Z, Zhang R, Xiong J, Qiao Y, Liu X, Lu X. Hollow Nanoreactors for Controlled Photocatalytic Behaviors: Fundamental Theory, Structure-Performance Relationship, and Catalytic Advantages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308142. [PMID: 37984879 DOI: 10.1002/smll.202308142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.
Collapse
Affiliation(s)
- Runyu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Xinzhong Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian, 350108, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
12
|
Kong X, Deng Y, Zou Y, Ge J, Wang Y. Anion Exchange in Semiconductor Magic-Size Clusters. J Am Chem Soc 2024; 146:5445-5454. [PMID: 38304982 DOI: 10.1021/jacs.3c12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ion exchange is an effective postsynthesis strategy for the design of colloidal nanomaterials with unique structures and properties. In contrast to the rapid development of cation exchange (CE), the study of anion exchange is still in its infancy and requires an in-depth understanding. Magic-size clusters (MSCs) are important reaction intermediates in quantum dot (QD) synthesis, and studying the ion exchange processes can provide valuable insights into the transformations of QDs. Here, we achieved anion exchange in Cd-based MSCs and elucidated the reaction pathways. We demonstrated that the anion exchange was a stepwise intermolecular transition mediated by covalent inorganic complexes (CICs). We proposed that this transition involved three essential steps: the disassembly of CdE1-MSCs into CdE1-CICs (step 1), an anion exchange reaction from CdE1-CICs to CdE2-CICs (step 2), and assembly of CdE2-CICs to CdE2-MSCs (step 3). Step 3 was the rate-determining step and followed first-order reaction kinetics (kobs = 0.01 min-1; from CdSe-MSCs to CdS-MSCs). Further studies revealed that the activity of foreign anions only affected the reaction kinetics without altering the reaction pathway. The present study provides a deeper insight into the anion exchange mechanisms of MSCs and will further shed light on the synthesis of QDs.
Collapse
Affiliation(s)
- Xinke Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yalei Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yihao Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Junjun Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Wei Y, Zhao D, Wang D. Mesoscience in Hollow Multi-Shelled Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305408. [PMID: 38032116 PMCID: PMC10885658 DOI: 10.1002/advs.202305408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/28/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of mesoscale complexity in materials science underscores the significance of the compromise in competition principle, which gives rise to the emergence of mesoscience. This principle offers valuable insights into understanding the formation process, characteristics, and performance of complex material systems, ultimately guiding the future design of such intricate materials. Hollow multi-shelled structures (HoMS) represent a groundbreaking multifunctional structural system that encompasses several spatial regimes. A plethora of mesoscale cases within HoMS present remarkable opportunities for exploring, understanding, and utilizing mesoscience, varying from the formation process of HoMS, to the mesoscale structural parameters, and finally the distinctive mass/energy transfer behaviors exhibited by HoMS. The compromise in competition between the diffusion and reaction contributes to the successful formation of multi-shells of HoMS, allowing for precise regulation of the structural parameters by dynamically varying the interplay between two dominances. Moreover, the distinct roles played by the shells and cavities within HoMS significantly influence the energy/mass transfer processes with the unique temporal-spatial resolution, providing guidance for customizing the application performance. Hopefully, the empirical and theoretical anatomy of HoMS following mesoscience would fuel new discoveries within this promising and complex multifunctional material system.
Collapse
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Wang L, Chen Y, Zhang C, Zhong Z, Amirav L. Porous In 2O 3 Hollow Tube Infused with g-C 3N 4 for CO 2 Photocatalytic Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4581-4591. [PMID: 38232351 DOI: 10.1021/acsami.3c14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Converting CO2 into energy-rich fuels by using solar energy is a sustainable solution that promotes a carbon-neutral economy and mitigates our reliance on fossil fuels. However, affordable and efficient CO2 conversion remains an ongoing challenge. Here, we introduce polymeric g-C3N4 into the pores of a hollow In2O3 microtube. This architecture results in a compact and staggered arrangement between g-C3N4 and In2O3 components with an increased contact interface for improved charge separation. The hollow interior further contributes to strengthening light absorption. The resulting g-C3N4-In2O3 hollow tubes exhibit superior activity (274 μmol·g-1·h-1) toward CO2 to CO conversion in comparison with those of pure In2O3 and g-C3N4 (5.5 and 93.6 μmol·g-1·h-1, respectively), underlining the role of integrating g-C3N4 and In2O3 in this advanced system. This work offers a strategy for the advanced design and preparation of hollow heterostructures for optimizing CO2 adsorption and conversion by integrating inorganic and organic semiconductors.
Collapse
Affiliation(s)
- Letian Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Guangdong 515063, China
| | - Yuexing Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Chenchen Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Guangdong 515063, China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Guangdong 515063, China
| | - Lilac Amirav
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
15
|
Kazempour S, Naeimi H. Design, fabrication and characterization of mesoporous yolk-shell nanocomposites as a sustainable heterogeneous nanocatalyst for synthesis of ortho-aminocarbonitrile tetrahydronaphthalenes. Sci Rep 2023; 13:22464. [PMID: 38105317 PMCID: PMC10725875 DOI: 10.1038/s41598-023-50021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
A new structure of mesoporous spherical nanocomposites was designed and easily prepared from the reaction between NiCuFe2O4 nanoparticles and mesoporous silica in three steps. The prepared multi-yolk@shell NiCuFe2O4@mSiO2 mesoporous sphere was characterized by using FT-IR, XRD, VSM, EDX, BET, FE-SEM and HR-TEM techniques. This unique mesoporous nanocomposite sphere as a heterogeneous nanocatalyst has demonstrated highly catalytic activity for the green synthesis of tetrahydronaphthalene derivatives in 92-98% yields at reaction times of 60-75 min. This process was carried out through multi-component reaction of the cyclic ketone, malononitrile and aromatic aldehyde under solvent-free conditions. Furthermore, the procedure was optimized on the basis of catalyst loading amounts, various solvents and temperature conditions. This novel methodology exposes obvious benefits such as; catalyst reusability, easy reaction procedure, simplicity of work-up, excellent product yields and short reaction times.
Collapse
Affiliation(s)
- Somayeh Kazempour
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran.
| |
Collapse
|
16
|
Tuff WJ, Hughes RA, Nieukirk BD, Ciambriello L, Neal RD, Golze SD, Gavioli L, Neretina S. Periodic arrays of structurally complex oxide nanoshells and their use as substrate-confined nanoreactors. NANOSCALE 2023; 15:17609-17620. [PMID: 37876284 DOI: 10.1039/d3nr04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sacrificial templates present an effective pathway for gaining high-level control over nanoscale reaction products. Atomic layer deposition (ALD) is ideally suited for such approaches due to its ability to replicate the surface topography of a template material through the deposition of an ultrathin conformal layer. Herein, metal nanostructures are demonstrated as sacrificial templates for the formation of architecturally complex and deterministically positioned oxide nanoshells, open-topped nanobowls, vertically standing half-shells, and nanorings. The three-step process sees metal nanocrystals formed in periodic arrays, coated with an ALD-deposited oxide, and hollowed out with a selective etch through nanopores formed in the oxide shell. The procedure is further augmented through the use of a directional ion beam that is used to sculpt the oxide shells into bowl- and ring-like configurations. The functionality of the so-formed materials is demonstrated through their use as substrate-confined nanoreactors able to promote the growth and confinement of nanomaterials. Taken together, the work expands the design space for substrate-based nanomaterials, creates a platform for advancing functional surfaces and devices and, from a broader perspective, advances the use of ALD in forming complex nanomaterials.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Luca Ciambriello
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
17
|
Yang G, Yang W, Gu H, Fu Y, Wang B, Cai H, Xia J, Zhang N, Liang C, Xing G, Yang S, Chen Y, Huang W. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300383. [PMID: 36906920 DOI: 10.1002/adma.202300383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.
Collapse
Affiliation(s)
- Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Nan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330000, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710000, P. R. China
| |
Collapse
|
18
|
Lu X, Shan T, Deng L, Li M, Pan X, Yang X, Zhao X, Yang MQ. Facile synthesis of hierarchical CdS nanoflowers for efficient piezocatalytic hydrogen evolution. Dalton Trans 2023; 52:13426-13434. [PMID: 37695161 DOI: 10.1039/d3dt02328a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Piezocatalytic hydrogen evolution has emerged as a promising field for the collection and utilization of mechanical energy, as well as for generating sustainable energy throughout the day. Hexagonal CdS, an established semiconductor photocatalyst, has been widely investigated for its ability to split water into H2. However, its piezocatalytic performance has received less attention, and the relationship between its structure and piezocatalytic activity remains unclear. In this study, we prepared 3D ultrathin CdS nanoflowers with high voltage electrical response and low impedance. In pure water, without the use of any cocatalyst, CdS exhibited a piezoelectric catalytic hydrogen production rate of 1.46 mmol h-1 g-1, which was three times higher than that of CdS nanospheres (0.46 mmol h-1 g-1). Furthermore, the value-added oxidation product H2O2 was produced during the process of piezoelectric catalysis. These findings provide new insights for the design of high-efficiency piezoelectric catalytic hydrogen production.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Tao Shan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Lixun Deng
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Mengqing Li
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Xiaoyang Pan
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Xuhui Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Xiaojing Zhao
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
19
|
Bera S, Sahu P, Dutta A, Nobile C, Pradhan N, Cozzoli PD. Partial Chemicalization of Nanoscale Metals: An Intra-Material Transformative Approach for the Synthesis of Functional Colloidal Metal-Semiconductor Nanoheterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305985. [PMID: 37724799 DOI: 10.1002/adma.202305985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Heterostructuring colloidal nanocrystals into multicomponent modular constructs, where domains of distinct metal and semiconductor phases are interconnected through bonding interfaces, is a consolidated approach to advanced breeds of solution-processable hybrid nanomaterials capable of expressing richly tunable and even entirely novel physical-chemical properties and functionalities. To meet the challenges posed by the wet-chemical synthesis of metal-semiconductor nanoheterostructures and to overcome some intrinsic limitations of available protocols, innovative transformative routes, based on the paradigm of partial chemicalization, have recently been devised within the framework of the standard seeded-growth scheme. These techniques involve regiospecific replacement reactions on preformed nanocrystal substrates, thus holding great synthetic potential for programmable configurational diversification. This review article illustrates achievements so far made in the elaboration of metal-semiconductor nanoheterostructures with tailored arrangements of their component modules by means of conversion pathways that leverage on spatially controlled partial chemicalization of mono- and bi-metallic seeds. The advantages and limitations of these approaches are discussed within the context of the most plausible mechanisms underlying the evolution of the nanoheterostructures in liquid media. Representative physical-chemical properties and applications of chemicalization-derived metal-semiconductor nanoheterostructures are emphasized. Finally, prospects for developments in the field are outlined.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Puspanjali Sahu
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Anirban Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Concetta Nobile
- CNR NANOTEC - Institute of Nanotechnology, UOS di Lecce, Lecce, 73100, Italy
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - P Davide Cozzoli
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, 73100, Italy
- UdR INSTM di Lecce, c/o Università del Salento, Lecce, 73100, Italy
| |
Collapse
|
20
|
Kumar S, Maurya SK. Heterogeneous V 2O 5/TiO 2-Mediated Photocatalytic Reduction of Nitro Compounds to the Corresponding Amines under Visible Light. J Org Chem 2023. [PMID: 37367717 DOI: 10.1021/acs.joc.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The hydrogenation of nitro compounds to their corresponding amines is developed using a heterogeneous and recyclable catalyst (V2O5/TiO2) under irradiation of blue LED (9 W) at ambient temperature. Hydrazine hydrate is used as a reductant and ethanol is used as a solvent, facilitating green, sustainable, low-cost production. The synthesis of 32 (hetero)arylamines and their pharmaceutically relevant molecules (five) are described. Significant features of the protocol include catalyst recyclability, green solvent, ambient temperature, and gram-scale reactions. Among the other aspects studied are 1H-NMR-assisted reaction progress monitoring, control experiments for mechanistic studies, protocol applications, and recyclability studies. Furthermore, the developed protocol enabled wide functional group tolerance, chemo-selectivity, high yield, and low-cost, sustainable, and environmentally benign synthesis.
Collapse
Affiliation(s)
- Shashi Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Liu B, Wang S, Zhang G, Gong Z, Wu B, Wang T, Gong J. Tandem cells for unbiased photoelectrochemical water splitting. Chem Soc Rev 2023. [PMID: 37325843 DOI: 10.1039/d3cs00145h] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.
Collapse
Affiliation(s)
- Bin Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
| | - Shujie Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zichen Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Bo Wu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
22
|
Habibi Zare M, Mehrabani-Zeinabad A. Yolk@Wrinkled-double shell smart nanoreactors: new platforms for mineralization of pharmaceutical wastewater. Front Chem 2023; 11:1211503. [PMID: 37347043 PMCID: PMC10281210 DOI: 10.3389/fchem.2023.1211503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Nanomaterials with "yolk and shell" "structure" can be considered as "nanoreactors" that have significant potential for application in catalysis. Especially in terms of electrochemical energy storage and conversion, the nanoelectrode has a large specific surface area with a unique yolk@shell structure, which can reduce the volume change of the electrode during the charging and discharging process and fast ion/electron transfer channels. The adsorption of products and the improvement of conversion reaction efficiency can greatly improve the stability, speed and cycle performance of the electrode, and it is a kind of ideal electrode material. In this research, heterojunction nanoreactors (FZT Y@WDS) Fe3O4@ZrO2-X@TiO2-X were firstly synthesized based on the solvothermal combined hard-template process, partial etching and calcination. The response surface method was used to determine the performance of the FZT Y@WDS heterojunction nanoreactors and the effects of four process factors: naproxen concentration (NAP), solution pH, the amount of charged photocatalyst, and the irradiation time for photocatalytic degradation of NAP under visible light irradiation. To maximize the photocatalytic activity, the parameters of the loaded catalyst, the pH of the reaction medium, the initial concentration of NAP, and the irradiation time were set to 0.5 g/L, 3, 10 mg/L, and 60 min, respectively, resulting in complete removal of NAP and the optimum amount was calculated to be 0.5 g/L, 5.246, 14.092 mg/L, and 57.362 min, respectively. Considering the promising photocatalytic activity of FZT Y@WDS under visible light and the separation performance of the nanocomposite, we proposed this photocatalyst as an alternative solution for the treatment of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Masoud Habibi Zare
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
23
|
Ziarati A, Zhao J, Afshani J, Kazan R, Perez Mellor A, Rosspeintner A, McKeown S, Bürgi T. Advanced Catalyst for CO 2 Photo-Reduction: From Controllable Product Selectivity by Architecture Engineering to Improving Charge Transfer Using Stabilized Au Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207857. [PMID: 36895069 DOI: 10.1002/smll.202207857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Indexed: 06/15/2023]
Abstract
Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.
Collapse
Affiliation(s)
- Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jafar Afshani
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Ariel Perez Mellor
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Siobhan McKeown
- Deparment of Quantum Matter Physics, Laboratory of Advanced Technology, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| |
Collapse
|
24
|
Wu T, Guo RT, Li CF, You YH, Pan WG. Recent advances in core-shell structured catalysts for low-temperature NH 3-SCR of NO x. CHEMOSPHERE 2023; 333:138942. [PMID: 37187371 DOI: 10.1016/j.chemosphere.2023.138942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Ammonia selective catalytic reduction (NH3-SCR) of nitrogen oxides is an effective and well-established technology for NOx removal, but current commercial denitrification catalysts based on V2O5-WO3/TiO2 have some obvious disadvantages, including narrow operating temperature windows, toxicity, poor hydrothermal stability, and unsatisfied SO2/H2O tolerance. To overcome these drawbacks, it is imperative to investigate new types of highly efficient catalysts. In order to design catalysts with outstanding selectivity, activity, and anti-poisoning ability, core-shell structured materials have been widely applied in the NH3-SCR reaction, which exhibits numerous advantages including the large surface area, the strong synergy interaction of core-shell materials, the confinement effect, and the shielding effect from the shell layer to protect the core. This review summarizes recent developments of core-shell structured catalysts for NH3-SCR, including basic classification, synthesis methods, and a detailed description of the performance and mechanisms of each type of catalyst. It is hoped that the review will stimulate future developments in NH3-SCR technology, leading to novel catalyst designs with improved denitrification performance.
Collapse
Affiliation(s)
- Tong Wu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, China.
| | - Chu-Fan Li
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Yi-Hao You
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, China.
| |
Collapse
|
25
|
Li X, Zhuang Z, Chai J, Shao R, Wang J, Jiang Z, Zhu S, Gu H, Zhang J, Ma Z, Zhang P, Yan W, Zheng L, Wu K, Zheng X, Zhang L, Zhang J, Wang D, Chen W, Li Y. Atomically Strained Metal Sites for Highly Efficient and Selective Photooxidation. NANO LETTERS 2023; 23:2905-2914. [PMID: 36961203 DOI: 10.1021/acs.nanolett.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.
Collapse
Affiliation(s)
- Xinyuan Li
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing Chai
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ruiwen Shao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhuoli Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuwen Zhu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hongfei Gu
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jian Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhentao Ma
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wensheng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Xusheng Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiatao Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenxing Chen
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| |
Collapse
|
26
|
Bian H, Gani TZH, Liu J, Hondo E, Lim KH, Zhang T, Li D, Liu SF, Yan J, Kawi S. Ni nanoparticles supported on Al 2O 3 + La 2O 3 yolk-shell catalyst for photo-assisted thermal decomposition of methane. J Colloid Interface Sci 2023; 643:151-161. [PMID: 37058890 DOI: 10.1016/j.jcis.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Catalytic methane decomposition (CMD) has emerged as an appealing technology for large-scale production of H2 and carbon nanostructures from natural gas. As the CMD process is mildly endothermic, the application of concentrated renewable energy sources such as solar energy under a low-temperature regime could potentially represent a promising approach towards CMD process operation. Herein, Ni/Al2O3-La2O3 yolk-shell catalysts are fabricated using a straightforward single-step hydrothermal approach and tested for their performance in photothermal CMD. We show that the morphology of the resulting materials, dispersion and reducibility of Ni nanoparticles, and nature of metal-support interactions can be tuned by addition of varying amounts of La. Notably, the addition of an optimal amount of La (Ni/Al-20La) improved the H2 yield and catalyst stability relative to the base Ni/Al2O3 material, while also favoring base growth of carbon nanofibers. Additionally, we show for the first time a photothermal effect in CMD, whereby the introduction of 3 suns light irradiation at a constant bulk temperature of 500 °C reversibly increased the H2 yield of catalyst by about 1.2 times relative to the rate in the dark, accompanied by a decrease in apparent activation energy from 41.6 kJ mol-1 to 32.5 kJ mol-1. The light irradiation further suppressed undesirable CO co-production at low temperatures. Our work reveals photothermal catalysis as a promising route for CMD while providing an insightful understanding of the roles of modifier in enriching methane activation sites on Al2O3-based catalysts.
Collapse
Affiliation(s)
- Hui Bian
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Terry Z H Gani
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Jiaolong Liu
- School of Physics, Xidian University, Xian 710071, P.R. China
| | - Emmerson Hondo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Tianxi Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Deng Li
- School of Materials Science and Engineering, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Shengzhong Frank Liu
- School of Materials Science and Engineering, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Normal University, Xi'an 710119, China; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junqing Yan
- School of Materials Science and Engineering, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Normal University, Xi'an 710119, China.
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
27
|
Sun R, Tan B. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry 2023; 29:e202203077. [PMID: 36504463 DOI: 10.1002/chem.202203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Covalent Triazine Frameworks (CTFs) have received great attention from academia owing to their unique structure characteristics such as nitrogen-rich structure, chemical stability, fully conjugated skeleton and high surface area; all these unique properties make CTFs attractive for widespread applications, especially for photocatalytic applications. In this review, we aim to provide recent advances in the CTFs preparation, and mainly focus on their photocatalytic applications. This review provides a comprehensive and systematic overview of the CTFs' synthetic methods, crystallinity lifting strategies, and their applications for photocatalytic water splitting. Firstly, a brief background including the photocatalytic water splitting and crystallinity are provided. Then, synthetic methods related to CTFs and the strategies for enhancing the crystallinity are summarized and compared. After that, the general photocatalytic mechanism and the strategies to improve the photocatalytic performance of CTFs are discussed. Finally, the perspectives and challenges of fabricating high crystalline CTFs and designing CTFs with excellent photocatalytic performance are discussed, inspiring the development of CTF materials in photocatalytic applications.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
28
|
Wang S, Wu X, Fang J, Zhang F, Liu Y, Liu H, He Y, Luo M, Li R. Direct Z-Scheme Polymer/Polymer Double-Shell Hollow Nanostructures for Efficient NADH Regeneration and Biocatalytic Artificial Photosynthesis under Visible Light. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Song Wang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiewen Wu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jing Fang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Feng Zhang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yanli Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yu He
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Min Luo
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
29
|
Zhao X, Wang S, Yang K, Yang X, Liu X. Controlled gold-palladium cores in ceria hollow spheres as nanoreactor for plasmon-enhanced catalysis under visible light irradiation. J Colloid Interface Sci 2023; 633:11-23. [PMID: 36427425 DOI: 10.1016/j.jcis.2022.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Visible-light-driven organic transformations boosting by localized surface plasmon resonance (LSPR) have been attracting considerable interests. Gold-palladium (Au-Pd) bimetallic nanoparticles (NPs) are considered as ideal plasmonic catalysts realizing efficient light-driven catalysis. Nevertheless, stability and adjustability of plasmonic Au-Pd NPs remain to be a challenging task. Herein, we designed the controlled Au-Pd cores in ceria (CeO2) hollow spheres (Au-Pd@h-CeO2) as nanoreactor for Suzuki cross-coupling reactions. Under visible light irradiation, the Au-Pd@h-CeO2 exhibited remarkable photocatalytic performance with a turnover frequency (TOF) value as high as 797 h-1. More impressively, the coupling reactions of aryl chlorides bearing electron-withdrawing groups proceeded better and afforded the corresponding desired products in good yields. Detailed structural, optical and photoelectrochemical characterizations unraveled that the enhanced photocatalytic efficiency of Au-Pd@h-CeO2 was attributed to the LSPR effect of controllable Au-Pd cores and their synergetic effect of hollow CeO2 shells. The merits of this hollow sphere architecture lied on as followed: (I) Incident light could be reflected and refracted between the inner cores and outer shells, which extended the trapping of incident light, and then enhanced the light harvesting efficiency; (II) the mesoporous architecture of CeO2 hollow spheres provided a huge specific surface area and numerous mesoporous channels, which could enhance the absorption of reactants and provided more active sites; (III) LSPR excitation of Au-Pd NPs and band-gap excitation of CeO2 simultaneously occurred under visible light illumination, inducing a more efficient separation and transfer of charge carriers. Furthermore, due to the confinment effect of CeO2 shells, the Au-Pd@h-CeO2 exhibited an excellent reusability after six cycles without significant deactivation of yield. Our findings provided a facile way to design highly efficient plasmonic-enhanced photocatalysts utilized for catalytic organic reactions.
Collapse
Affiliation(s)
- Xiaohua Zhao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaixin Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinya Yang
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Xiang Liu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China.
| |
Collapse
|
30
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced . First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
31
|
Evaluation of the photodegradation of pharmaceuticals and dyes in water using a highly visible light-active graphitic carbon nitride modified with tungsten oxide. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
32
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
33
|
Synthesis of Cu-Doped TiO 2 on Wood Substrate with Highly Efficient Photocatalytic Performance and Outstanding Recyclability for Formaldehyde Degradation. Molecules 2023; 28:molecules28030972. [PMID: 36770650 PMCID: PMC9921009 DOI: 10.3390/molecules28030972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Photocatalytic oxidation is considered one of the most effective ways to remove formaldehyde from indoor air. However, the use of powder photocatalysts is limited by their low adsorption capacity and strong aggregation tendency. Hence, there is a need for a composite material with good cycling stability and high degradation efficiency. In the present study, a unique wood-based composite is produced by arranging Cu-TiO2 nanoparticles on porous structured wood. The porous structure of wood can adsorb formaldehyde, and the abundant functional groups on the surface can act as a reaction platform for anchoring the Cu-TiO2 nanoparticles. Cu doping facilitates electron interaction between TiO2 and Cu, promotes the transfer of charge carriers, lowers the electron-hole recombination rate, and improves the photocatalytic degradation efficiency of formaldehyde. The photocatalytic efficiency of the wood-based composites was highest (85.59%) when the n(Cu)/n(Ti) ratio was 7%. After nine cycles, the wood composites still had a high degradation rate, indicating good recyclability. Overall, this wood composite is an eco-friendly and promising material for indoor air filtration.
Collapse
|
34
|
Ivanchenko M, Carroll AL, Brothers AB, Jing H. Facile aqueous synthesis of hollow dual plasmonic hetero-nanostructures with tunable optical responses through nanoscale Kirkendall effects. NANOSCALE ADVANCES 2022; 5:88-95. [PMID: 36605812 PMCID: PMC9765514 DOI: 10.1039/d2na00606e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report the colloidal synthesis of hollow dual-plasmonic nanoparticles (NPs) using Au@Cu2O core-shell NPs as templates and exploiting the nanoscale Kirkendall effect. In our synthesis, we used organic compounds as a source of chalcogenide ions for an anion exchange reaction at elevated temperatures using polyvinylpyrrolidone (PVP) as a capping reagent to transform the solid Cu2O shell into a hollow copper chalcogenide shell. The resulting structures possess different features depending on the chalcogenide precursor employed. TEM images confirm the complete transformation of Au@Cu2O templates when 1,1-dimethyl-2-selenourea was added and the formation of hollow Au@Cu2-x Se nanostructures. In contrast, residues of Cu2O attached to the Au core were present when thioacetamide was used for the synthesis of Au@Cu2-x S with all other conditions kept the same. The divergence of architectures caused distinct optical properties of Au@Cu2-x S and Au@Cu2-x Se NPs. This synthetic approach is an effective pathway for maneuvering the size of interior voids by varying the concentration of chalcogenide ions in the reaction mixture. The insights gained from this work will enrich the synthetic toolbox at the nanoscale and guide us on the rational design of multicomponent plasmonic nanoparticles with precisely controlled hollow interiors and sophisticated geometries, further enhancing our capabilities to fine-tune the electronic, optical, compositional, and physicochemical properties.
Collapse
Affiliation(s)
- Mariia Ivanchenko
- Department of Chemistry and Biochemistry, George Mason University Fairfax Virginia 22030 USA
| | - Alison L Carroll
- Department of Chemistry and Biochemistry, George Mason University Fairfax Virginia 22030 USA
| | - Andrea B Brothers
- Department of Chemistry, American University Washington DC 20016 USA
| | - Hao Jing
- Department of Chemistry and Biochemistry, George Mason University Fairfax Virginia 22030 USA
| |
Collapse
|
35
|
Qiao M, Xing Y, Xie L, Kong B, Kleitz F, Li X, Du X. Temperature-Regulated Core Swelling and Asymmetric Shrinkage for Tunable Yolk@Shell Polydopamine@Mesoporous Silica Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205576. [PMID: 36399632 DOI: 10.1002/smll.202205576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Facile and controllable synthesis of functional yolk@shell structured nanospheres with a tunable inner core ('yolk') and mesoporous shell is highly desirable, yet it remains a great challenge. Herein, xx developed a strategy based on temperature-regulated swelling and restricted asymmetric shrinkage of polydopamine (PDA) nanospheres, combined with heterogeneous interface self-assembly growth. This method allows a simple and versatile preparation of PDA@mesoporous silica (MS) nanospheres exhibiting tunable yolk@shell architectures and shell pore sizes. Through reaction temperature-regulated swelling degree and confined shrinkage of PDA nanospheres, the volume ratio of the hollow cavity that the PDA core occupies can easily be tuned from ca. 2/3 to ca. 1/2, then to ca. 2/5, finally to ca. 1/3. Owing to the presence of PDA with excellent photothermal conversion capacity, the PDA@MS nanocomposites with asymmetric yolk distributions can become a colloidal nanomotor propelled by near-infrared (NIR) light. Noteworthily, the PDA@MS with half PDA yolk and microcracks in silica shell reaches 2.18 µm2 s-1 of effective diffusion coefficient (De) in the presence of 1.0 W cm-2 NIR light. This temperature-controlled swelling approach may provide new insight into the design and facile preparation of functional PDA-based yolk@shell structured nanocomposites for wide applications in biology and medicine.
Collapse
Affiliation(s)
- Minghang Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Xiaoyu Li
- National Engineering Research Center of green recycling for Strategic Metal Resources, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
36
|
Xu T, Zhang H, Ye M, Zhu Y, Yuan D, Li W, Zhou Y, Sun L. Controllable fabrication of hollow In 2O 3 nanoparticles by electron beam irradiation. NANOSCALE 2022; 14:12569-12573. [PMID: 35975472 DOI: 10.1039/d2nr03276g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A growth strategy is presented for controllable fabrication of hollow In2O3 nanoparticles (NPs) via oxidation of In nanocrystals under electron beam irradiation. The morphology of the NPs can be tailored by changing the electron beam energy and current density. Yolk-shell NPs are preferentially formed under 200 keV electron beam irradiation, while hollow NPs are preferentially formed at 300 keV. This work confirms that electron beam irradiation is a valuable method for the engineering and modification of nanomaterials.
Collapse
Affiliation(s)
- Tao Xu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Hao Zhang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Mao Ye
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Yatong Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Dundong Yuan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Wei Li
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Yilong Zhou
- Thermo Fisher Shanghai Nanoport, Thermo Fisher Electronic Technology Research and Development (Shanghai) Co., Ltd., Shanghai, 201203, P. R. China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
37
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
38
|
|
39
|
Zhu G, Jin Y, Ge M. Simple preparation of a CuO@γ-Al 2O 3 Fenton-like catalyst and its photocatalytic degradation function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68636-68651. [PMID: 35545745 DOI: 10.1007/s11356-022-20698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
We designed a photocatalyst and developed sustainable wastewater purification technology, which have significant advantages in effectively solving the global problem of drinking water shortage. In this study, a new nanocomposite was reported and shown to be a catalyst with excellent performance; CuO was coated successively onto functionalized nano γ-Al2O3, and this novel structure could provide abundant active sites. We evaluated the performance of the CuO@γ-Al2O3 nanocomposite catalyst for polyvinyl alcohol (PVA) degradation under visible light irradiation. Under optimized conditions (calcination temperature, 450 °C; mass ratio of γ-Al2O3:Cu(NO3)2·3H2O, 1:15; pH value, 7; catalyst dosage, 2.6 g/L; reaction temperature, 20 °C; and H2O2 dosage, 0.2 g/mL), the CuO@γ-Al2O3 nanocomposite catalyst presented an excellent PVA removal rate of 99.21%. After ten consecutive degradation experiments, the catalyst could still maintain a PVA removal rate of 97.58%, thus demonstrating excellent reusability. This study provides an efficient and easy-to-prepare photocatalyst and proposes a mechanism for the synergistic effect of the photocatalytic reaction and the Fenton-like reaction.
Collapse
Affiliation(s)
- Gaofeng Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Jin
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mingqiao Ge
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
40
|
Liu Q, Cao S, Sun Q, Xing C, Gao W, Lu X, Li X, Yang G, Yu S, Chen Y. A perylenediimide modified SiO 2@TiO 2 yolk-shell light-responsive nanozyme: Improved peroxidase-like activity for H 2O 2 and sarcosine sensing. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129321. [PMID: 35739809 DOI: 10.1016/j.jhazmat.2022.129321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Although light-responsive nanozyme have been widely used in colorimetric sensing, some limitations such as poor catalytic activity, low detection efficiency, and unclear structure-activity relationships remain unresolved. Herein, we prepared an excellent light-responsive peroxidase (POD) mimic, perylenediimide (PDI-OH) modified SiO2 @TiO2 yolk-shell spheres (SiO2 @TiO2/PDI-OH), based on DFT-assisted design. The experiment and DFT calculation revealed that the enhanced POD-like activity was mainly attributed to a suitable built-in electric field among adjacent PDI-OH molecules on the surface of the SiO2 @TiO2 and the unique yolk-shell structure with more reaction sites of SiO2 @TiO2. Consequently, the highly selective and ultrasensitive detection of H2O2 is achieved with a detection limit (LOD) of 7.6 × 10-8M. Further, the selective detection of sarcosine with LOD of 1.2 × 10-7 M was also achieved by introducing sarcosine oxidase (SOx). This colorimetric assay is successfully applied to selectively detect H2O2 and sarcosine levels in real samples. Controlled response time, anti-interference, and the robustness of the developed colorimetric sensor are the key advantages. And the present work firstly clarifies the effect of PDIs substituents on the POD-like activity of light-responsive nanozymes and provided new guidelines to develop high-performance nanozymes for hazardous substances detection.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Chuanwang Xing
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wen Gao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, 266580, Shandong, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
41
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
42
|
Liu X, Huang C, Ouyang B, Du Y, Fu B, Du Z, Ju Q, Ma J, Li A, Kan E. Enhancement of Mass and Charge Transfer during Carbon Dioxide Photoreduction by Enhanced Surface Hydrophobicity without a Barrier Layer. Chemistry 2022; 28:e202201034. [DOI: 10.1002/chem.202201034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xuan Liu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yongping Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Boyu Fu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Zhengwei Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Qiang Ju
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Jingjing Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering Ningxia University Ningxia 750021 P. R. China
| | - Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
43
|
Guan Z, Zhu S, Ding S, Xia D, Li D. Fe-O-Zr in MOF for effective photo-Fenton Bisphenol A degradation: Boosting mechanism of electronic transmission. CHEMOSPHERE 2022; 299:134481. [PMID: 35378167 DOI: 10.1016/j.chemosphere.2022.134481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
To enhance the efficiency of photogenerated electron transport in the photo-Fenton reaction, we report a Fe-doped UiO-66 containing Fe-O-Zr bonds for the photo-Fenton reaction system. The modulation changes the energy bandgap from 3.89 eV to 2.02 eV, and its absorption edge is red-shifted from the UV region to the visible range. Simultaneously, Fe-O-Zr reduces the redox internal resistance, enhances the photocurrent and catalytic process, and suppresses the compounding of photogenerated electrons and holes. These promote the valence cycling of Fe(III)/Fe(II) in the photo-Fenton reaction. Compared with UiO-66, the hydroxyl radical generation efficiency of this reaction system was increased by 5.8 times (UiO-66: 0.0009 mM/min, FeUiO-1: 0.0053 mM/min). The degradation efficiency of BPA was increased by 100.8 times (UiO-66: 0.0012 min-1, FeUiO-1: 0.121 min-1), and the removal rate of TOC also reached 69.55%. The removal rate of BPA was maintained at more than 85% through 5 cycles. The reaction system was able to maintain a removal rate more than 97% at pH:3-9. In the presence of anions, such as Cl-, SO42-, NO32- (10 mM), the degradation rates of BPA were still above 94%. The catalytic efficiency was 2.02 times higher under natural light than relative to dark conditions. It was demonstrated by EPR and inhibition experiments that the main active species in the reaction were hydroxyl radicals and vacancies. The HOMO energy level and LUMO energy level of the intermediates were analyzed, and the possible degradation pathways of the active species were speculated. Evaluation of the biological toxicity of intermediates demonstrated that the system can effectively detoxify BPA. This investigation provides a reference method to enhance the efficiency of the photo-Fenton reaction of MOFs.
Collapse
Affiliation(s)
- Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Shibo Zhu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Su Ding
- College of Environmental and Bioengineering, Henan University of Engineering, No. 1 Xianghe Road, Zhengzhou, 451191, China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
44
|
Li X, Liu P, Li J. Magnetically separable Fe3O4/mZrO2/Ag nanocomposites: Fabrication and photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Zeng R, Xu J, Lu L, Lin Q, Huang X, Huang L, Li M, Tang D. Photoelectrochemical bioanalysis of microRNA on yolk-in-shell Au@CdS based on the catalytic hairpin assembly-mediated CRISPR-Cas12a system. Chem Commun (Camb) 2022; 58:7562-7565. [PMID: 35708478 DOI: 10.1039/d2cc02821b] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports on the proof-of-concept of a photoelectrochemical (PEC) biosensor with a horseradish peroxidase-single stranded DNA-encoded magnetic bead (MB-ssDNA-HRP) signal probe cleaved by the catalytic hairpin assembly (CHA)-mediated clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a system for the quantification of microRNA (miR-21) by using yolk-in-shell Au@CdS as a photoactive material.
Collapse
Affiliation(s)
- Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
46
|
Singh PP, Srivastava V. Recent advances in visible-light graphitic carbon nitride (g-C 3N 4) photocatalysts for chemical transformations. RSC Adv 2022; 12:18245-18265. [PMID: 35800311 PMCID: PMC9210974 DOI: 10.1039/d2ra01797k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/04/2022] [Indexed: 01/02/2023] Open
Abstract
Graphitic carbon nitride (g-C3N4) has emerged as a new research hotspot, attracting broad interdisciplinary attention in the form of metal-free and visible-light-responsive photocatalysts in the field of solar energy conversion and environmental remediation. These photocatalysts have evolved as attractive candidates due to their non-toxicity, chemical stability, efficient light absorption capacity in the visible and near-infrared regions, and adaptability as a platform for the fabrication of hybrid materials. This review mainly describes the latest advances in g-C3N4 photocatalysts for chemical transformations. In addition, the typical applications of g-C3N4-based photocatalysts involving organic transformation reactions are discussed (synthesis of heterocycles, hydrosulfonylation, hydration, oxygenation, arylation, coupling reactions, etc.).
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| |
Collapse
|
47
|
Rapid synthesis of 'yolk-shell'-like nanosystem for MR molecular and chemo-radio sensitization. J Control Release 2022; 347:55-67. [PMID: 35489546 DOI: 10.1016/j.jconrel.2022.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
Though amounts of attempts about nanomedicine for chemo-radiotherapy have been made, more efficient strategies for chemo-radio therapy enhancement still need to be studied and perfected. Herein, a 'yolk-shell'-like nanostructure (Bi2S3@mBixMnyOz nanosystem) was facilely constructed by directly using radiosensitizer Bi2S3 nanorods (NRs) as a partial sacrificial template. Then, the chemotherapeutic drug doxorubicin (DOX) loaded PEGylated Bi2S3@mBixMnyOz nanosystem (PBmB-DOX) was constructed, which could realize tumor microenvironment (TME)-responsive drug release for chemotherapy sensitivity enhancement. And the Bi2S3 NRs core could deposit more radiant energy to improve the radiotherapy sensitivity. Meanwhile, the compounds shell could catalyze H2O2 to generate O2, so as to alleviate tumor hypoxia for further chemo-radio therapy sensitization enhancement. More importantly, ferroptosis was participated in the process of PBmB-induced therapy via glutathione (GSH)-depletion mediated GPX4 inactivation, together with Mn ions induced chemodynamic therapy (Fenton-like reaction), which made additional contributions to increase the therapeutic efficacy. Last but not least, the GSH-stimulated degradation of compounds shell could contribute to self-enhanced T1-MR imaging activation, which allowed on-demand tumor diagnosis. In this work, the synthetic strategy that directly using Bi2S3 NRs as a partial sacrificial template to rapidly synthesize the 'yolk-shell'-like nanostructure for nanomedical application has rarely been reported before. And the in vitro and in vivo results suggest that our 'yolk-shell'-like PBmB-DOX nanosystem holds great promise to regulate TME for tumor-specific diagnosis and synergistic therapy.
Collapse
|
48
|
Zhu S, Li X, Zhang J. Atomically Surficial Modulation in Two-Dimensional Semiconductor Nanocrystals for Selective Photocatalytic Reactions. Front Chem 2022; 10:890287. [PMID: 35494661 PMCID: PMC9046541 DOI: 10.3389/fchem.2022.890287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Photocatalysis, directly converting solar energy into chemical energy, is identified as an ideal strategy to reduce the increasing consumption of fossil fuels and facilitate carbon neutralization. In the past few years, a great number of endeavors have been devoted to developing photocatalysts with a high conversion efficiency and selectivity. Atomically surficial modulation strategies, including surface vacancies, single-atom modification, and dual-site components, exhibited positive impacts on tuning key steps of photocatalytic reactions. In this mini-review, we focus on the latest progress of the atomically surficial modulations on two-dimensional semiconductor photocatalysts and their role in enhancing selectively photocatalytic performance. We hope that this mini-review could provide new insights for researchers on nanosynthesis and photocatalysis.
Collapse
Affiliation(s)
| | - Xinyuan Li
- *Correspondence: Xinyuan Li, ; Jiatao Zhang,
| | | |
Collapse
|
49
|
She P, Qin JS, Sheng J, Qi Y, Rui H, Zhang W, Ge X, Lu G, Song X, Rao H. Dual-Functional Photocatalysis for Cooperative Hydrogen Evolution and Benzylamine Oxidation Coupling over Sandwiched-Like Pd@TiO 2 @ZnIn 2 S 4 Nanobox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105114. [PMID: 34984800 DOI: 10.1002/smll.202105114] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Photocatalytic hydrogen evolution (PHE) over semiconductor photocatalysts is usually constrained by the limited light-harvesting and separation of photogenerated electron-hole pairs. Most of the reported systems focusing on PHE are facilitated by consuming the photoinduced holes with organic sacrificial electron donors (SEDs). The introduction of the SEDs not only causes the environmental problem, but also increases the cost of the reaction. Herein, a dual-functional photocatalyst is developed with the morphology of sandwiched-like hollowed Pd@TiO2 @ZnIn2 S4 nanobox, which is synthesized by choosing microporous zeolites with sub-nanometer-sized Pd nanoparticles (Pd NPs) embedded as the sacrificial templates. The ternary Pd@TiO2 @ZnIn2 S4 photocatalyst exhibits a superior PHE rate (5.35 mmol g-1 h-1 ) and benzylamine oxidation conversion rate (>99%) simultaneously without adding any other SEDs. The PHE performance is superior to the reported composites of TiO2 and ZnIn2 S4 , which is attributed to the elevated light capture ability induced by the hollow structure, and the enhanced charge separation efficiency facilitated by the ultrasmall sized Pd NPs. The unique design presented here holds great potential for other highly efficient cooperative dual-functional photocatalytic reactions.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiyao Sheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongbang Rui
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
50
|
Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Due to the low efficiency of single-component nano materials, there are more and more studies on high-efficiency composites. As zero dimensional (0D) non-metallic semiconductor material, the emergence of graphene quantum dots (GQDs) overcomes the shortcomings of traditional photocatalysts (rapid rate of electron-hole recombination and narrow range of optical response). Their uniqueness is that they can combine the advantages of quantum dots (rich functional groups at edge) and sp2 carbon materials (large specific surface area). The inherent inert carbon stabilizes chemical and physical properties, and brings new breakthroughs to the development of benchmark photocatalysts. The photocatalytic efficiency of GQDs composite with semiconductor materials (SCs) can be improved by the following three points: (1) accelerating charge transfer, (2) extending light absorption range, (3) increasing active sites. The methods of preparation (bottom-up and top-down), types of heterojunctions, mechanisms of photocatalysis, and applications of GQDs/SCs (wastewater treatment, energy storage, gas sensing, UV detection, antibiosis and biomedicine) are comprehensively discussed. And it is hoped that this review can provide some guidance for the future research on of GQDs/SCs on photocatalysis.
Collapse
Affiliation(s)
- Chunyu Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|