1
|
Singh V, Chauhan DK, Pandey R. Supramolecular Ni(II)-Selective Gel Assembly toward Construction of a Schottky Barrier Diode. ACS OMEGA 2025; 10:378-389. [PMID: 39829584 PMCID: PMC11740625 DOI: 10.1021/acsomega.4c06387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
A mechanically stable and thermo-irreversible supramolecular Ni(II)-selective gel (MG) has been developed by utilizing the N,O-donor Schiff base (E)-1-((4-(diethylamino)phenylimino)-methyl)naphthalen-2-ol (HL) gelator and Et3N in binary THF:CH3OH (1:1) solutions at room temperature (rt). Metallogel MG has been characterized by spectral and analytical techniques, i.e., ESI-MS, FT-IR, NMR (1H & 13C), powder-XRD, FE-SEM, and rheological analysis. Further, noncovalent interactions responsible for the gelation mechanism have been illustrated with the aid of powder-XRD and FE-SEM analysis. The toughness, viscoelasticity, and flow behavior of MG were explored through rheological studies. Rheological and compressive measurements showed higher values of storage modulus and rigidity of MG; however, the flow property along with enrichment of toughness in MG can be an analytical metric for various engineering and industrial applications. Eventually, a Schottky barrier diode (SBD) was successfully constructed to mimic the functionality of MG-based metal-semiconductor (MS) junction devices for possible application in electrical engineering.
Collapse
Affiliation(s)
- Vaishali Singh
- National
Institute of Technology, Uttarakhand, Srinagar (Garhwal) 246174, India
| | - Deepak Kumar Chauhan
- Institute
of Nano Science and Technology (INST), Sector 81, SAS Nagar, Mohali 160062, India
| | - Rampal Pandey
- National
Institute of Technology, Uttarakhand, Srinagar (Garhwal) 246174, India
- Maulana
Azad National Institute of Technology, Bhopal, Bhopal 462003, Madhya Pradesh, India
| |
Collapse
|
2
|
Singh S, Chhetri S, Haldar D. Ni(II)-Directed Supramolecular Metallogel: Stimuli Responsiveness and Semiconducting Device Fabrication. Chem Asian J 2024:e202401429. [PMID: 39740805 DOI: 10.1002/asia.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C. The rheological tests have verified the gel with its mechanical stability, while a SEM image has shown a spherical aggregate morphology. The gel is photo-responsive in nature and exhibits gel to sol transformation upon adsorption of toxic gases like NH3 or H2S. Notably, electrical conductivity of the gel was observed in electronic metal-semiconductor (MS) junctions' devices with a measured conductivity of 0.9×10-6 Sm-1. These devices also exhibited Schottky barrier diode characteristics, underscoring the multifunctional potential of the Ni(II)-gel.
Collapse
Affiliation(s)
- Surajit Singh
- Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Shant Chhetri
- Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debasish Haldar
- Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
3
|
Roy A, Dhibar S, Kumar S, Some S, Garg P, Ruidas P, Bhattacharjee S, Bera A, Saha B, Ray SJ. An innovative semiconducting Ni(II)-metallogel based robust random access memory (RRAM) device for advanced flexible electronics applications. Sci Rep 2024; 14:31619. [PMID: 39738246 DOI: 10.1038/s41598-024-79358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/08/2024] [Indexed: 01/01/2025] Open
Abstract
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour. Field emission scanning electron microscopy (FESEM) showed a complex rocky network structure, while transmission electron microscopy (TEM) identified rod-shaped formations. Energy dispersive X-ray (EDX) mapping confirmed the chemical composition, and Fourier transform infrared spectroscopy (FTIR) alongside X-ray photoelectron spectroscopy (XPS) provided insights into the metallogel's formation mechanism. Schottky diode structures which were fabricated with this Ni(II)-metallogel exhibited notable charge transport properties. Moreover, resistive random access memory (RRAM) devices using NiA-TA demonstrated bipolar resistive switching with an ON/OFF ratio of ~ 110 and durability over 5000 cycles. In this work, logic gate circuits were designed using a 2 × 2 crossbar array. This work highlights the potential of Ni(II)-metallogels for non-volatile memory, neuromorphic computing, flexible electronics, and optoelectronics. Their easy fabrication, reliable switching, and stability make them promising candidates for advanced technologies, offering new opportunities for in-memory computing.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Saurav Kumar
- Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India
| | - Sangita Some
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology, Jammu, J&K, 181221, India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology, Jammu, J&K, 181221, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
| |
Collapse
|
4
|
Roy A, Dhibar S, Kumar S, Karmakar K, Garg P, Ruidas P, Bhattacharjee S, Bera A, Saha B, Ray SJ. A semiconducting supramolecular Co(II)-metallogel based resistive random access memory (RRAM) design with good endurance capabilities. Sci Rep 2024; 14:26848. [PMID: 39500967 PMCID: PMC11538287 DOI: 10.1038/s41598-024-74994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
A highly efficient approach for synthesizing a supramolecular metallogel of Co(II) ions, denoted as CoA-TA, has been established under room temperature and atmospheric pressure conditions. This method employs the metal-coordinating organic ligand benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. A comprehensive analysis of the mechanical properties of the resulting supramolecular Co(II)-metallogel was conducted through rheological investigation, considering angular frequency and thixotropic study. The hierarchical rocky network structure of the supramolecular Co(II)-metallogel was unveiled using field emission scanning electron microscopy (FESEM). Transmission electron microscopic (TEM) analysis showed rod-shaped structures via low-magnification high angle annular dark field (HAADF) bright field scanning transmission electron microscopic (STEM) imaging, while energy dispersive X-ray (EDX) elemental mapping confirmed its primary chemical constituents. The formation mechanism of the metallogel was examined via fourier transform infrared spectroscopy (FTIR) spectroscopy. The nature of the synthesized CoA-TA metallogel was affirmed through powder X-ray diffraction (PXRD) analysis. Furthermore, this study involved fabrication of Schottky diode structures in a metal-semiconductor-metal geometry based on cobalt(II) metallogel (CoA-TA), enabling observation of charge transport behavior. Remarkably, a resistive random access memory (RRAM) device utilizing cobalt(II) metallohydrogel (CoA-TA) demonstrated bipolar resistive switching at room temperature and under ambient conditions. The switching mechanism was investigated, revealing the formation and rupture of conductive filaments between metal electrodes that govern the resistive switching behavior. This RRAM device exhibited an impressive ON/OFF ratio (~ 414) and exceptional endurance over 5000 switching cycles. These structures offer great potential for diverse applications such as non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics. Their advantages lie in their fabrication process, reliable resistive switching behavior and overall performance stability.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India.
| | - Saurav Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology, Jammu, J&K-181221, India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University, Asansol, 713303, West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, 713303, West Bengal, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology, Jammu, J&K-181221, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India.
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India.
| |
Collapse
|
5
|
Dhibaris S, Pal S, Some S, Karmakar K, Saha R, Bhattacharjee S, Roy A, Ray SJ, Ajiboye TO, Dam S, Saha B. Efficient antimicrobial applications of two novel supramolecular metallogels derived from a l(+)-tartaric acid low molecular weight gelator. RSC Adv 2024; 14:26354-26361. [PMID: 39165795 PMCID: PMC11334155 DOI: 10.1039/d4ra03451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Novel metallogels were synthesized using l(+)-tartaric acid as a gelator, along with cadmium(ii)-acetate and mercury(ii)-acetate in N,N-dimethyl formamide at room temperature. Rheological analyses confirmed the mechanical stability of Cd(ii)- and Hg(ii)-metallogels under varying conditions. Characterization through EDX mapping and FESEM imaging provided insights into their chemical constituents and microstructural features. FT-IR spectroscopy elucidated the metallogel formation mechanism. Antimicrobial assays revealed significant activity against various bacteria, including Gram-positive and Gram-negative strains. This study presents a comprehensive exploration of Cd(ii) and Hg(ii)-based l(+)-tartaric acid-mediated metallogels, highlighting their potential in combating bacterial infections. These findings suggest promising applications in both industrial and biomedical fields, offering avenues for the development of advanced materials.
Collapse
Affiliation(s)
- Subhendu Dhibaris
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan 713104 West Bengal India
| | - Sangita Some
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Ratnakar Saha
- National Institute of Science Education and Research (NISER) Bhubaneswar Odisha 752050 India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Timothy O Ajiboye
- Department of Chemistry, University of the Free State Bloemfontein 9301 South Africa
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan 713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
6
|
Dhibar S, Mohan A, Karmakar K, Mondal B, Roy A, Babu S, Garg P, Ruidas P, Bhattacharjee S, Roy S, Bera A, Ray SJ, Predeep P, Saha B. Novel supramolecular luminescent metallogels containing Tb(iii) and Eu(iii) ions with benzene-1,3,5-tricarboxylic acid gelator: advancing semiconductor applications in microelectronic devices. RSC Adv 2024; 14:12829-12840. [PMID: 38645531 PMCID: PMC11027726 DOI: 10.1039/d3ra07903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
A novel strategy was employed to create supramolecular metallogels incorporating Tb(iii) and Eu(iii) ions using benzene-1,3,5-tricarboxylic acid (TA) as a gelator in N,N-dimethylformamide (DMF). Rheological analysis demonstrated their mechanical robustness under varying stress levels and angular frequencies. FESEM imaging revealed a flake-like hierarchical network for Tb-TA and a rod-shaped architecture for Eu-TA. EDX analysis confirmed essential chemical constituents within the metallogels. FT-IR, PXRD, Raman spectroscopy, and thermogravimetric analysis assessed their gelation process and material properties, showing semiconducting characteristics, validated by optical band-gap measurements. Metal-semiconductor junction-based devices integrating Al metal with Tb(iii)- and Eu(iii)-metallogels exhibited non-linear charge transport akin to a Schottky diode, indicating potential for advanced electronic device development. Direct utilization of benzene-1,3,5-tricarboxylic acid and Tb(iii)/Eu(iii) sources underscores their suitability as semiconducting materials for device fabrication. This study explores the versatile applications of Tb-TA and Eu-TA metallogels, offering insights for material science researchers.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Saranya Babu
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Sanjay Roy
- Department of Chemistry, School of Science, Netaji Subhas Open University, Kalyani Regional Centre Kolkata 741251 India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
7
|
Singh S, Sharma AK, Gade HM, Agarwal V, Nasani R, Verma N, Sharma B. Stimuli-responsive and self-healing supramolecular Zn(II)-guanosine metal-organic gel for Schottky barrier diode application. SOFT MATTER 2024; 20:1025-1035. [PMID: 38197513 DOI: 10.1039/d3sm01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spontaneous formation of a supramolecular metal-organic hydrogel using unsubstituted guanosine as a ligand and Zn2+ ions is reported. Guanosine, in the presence of NaOH, self-assembled into a stable G-quadruplex structure, which underwent crosslinking through Zn2+ ions to afford a stable hydrogel. The gel has been characterized using several spectroscopic as well as microscopic studies. The hydrogel demonstrated excellent stimuli responsiveness towards various chemicals and pH. Furthermore, the gel exhibited intrinsic thixotropic behavior and showed self-healing and injectable properties. The optical properties of the Zn-guanosine metallo-hydrogel suggested a semiconducting nature of the gel, which has been exploited for fabricating a thin film device based on a Schottky diode interface between metal and a semiconductor. The fabricated device shows excellent charge transport characteristics and linear rectifying behavior. The findings are likely to pave the way for newer research in the area of soft electronic devices fabricated using materials synthesized by employing simple biomolecules.
Collapse
Affiliation(s)
- Surbhi Singh
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Atul Kumar Sharma
- Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Hrushikesh M Gade
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rajendar Nasani
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Nisha Verma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| |
Collapse
|
8
|
Dhibar S, Roy A, Sarkar T, Das P, Karmakar K, Bhattacharjee S, Mondal B, Chatterjee P, Sarkar K, Ray SJ, Saha B. Rapid Semiconducting Supramolecular Mg(II)-Metallohydrogel: Exploring Its Potential in Nonvolatile Resistive Switching Applications and Antiseptic Wound Healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:179-192. [PMID: 38112377 DOI: 10.1021/acs.langmuir.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An effective strategy was employed for the rapid development of a supramolecular metallohydrogel of Mg(II) ion (i.e., Mg@PEHA) using pentaethylenehexamine (PEHA) as a low-molecular-weight gelator in aqueous medium under ambient conditions. The mechanical stability of the synthesized Mg@PEHA metallohydrogel was characterized by using rheological analysis, which showed its robustness across different angular frequencies and oscillator stress levels. The metallohydrogel exhibited excellent thixotropic behavior, which signifies that Mg@PEHA has a self-healing nature. Field emission scanning electron microscopy and transmission electron microscopy images were utilized to explore the rectangular pebble-like hierarchical network of the Mg@PEHA metallohydrogel. Elemental mapping through energy-dispersive X-ray spectroscopy analysis confirmed the presence of primary chemical constituents in the metallohydrogel. Fourier transform infrared spectroscopy spectroscopy provided insights into the possible formation strategy of the metallohydrogel. In this work, Schottky diode structures in a metal-semiconductor-metal geometry based on a magnesium(II) metallohydrogel (Mg@PEHA) were constructed, and the charge transport behavior was observed. Additionally, a resistive random access memory (RRAM) device was developed using Mg@PEHA, which displayed bipolar resistive switching behavior at room temperature. The researchers investigated the switching mechanism, which involved the formation or rupture of conduction filaments, to gain insights into the resistive switching process. The RRAM device demonstrated excellent performance with a high ON/OFF ratio of approximately 100 and remarkable endurance of over 5000 switching cycles. RRAM devices exhibit good endurance, meaning they can endure a large number of read and write cycles without significant degradation in performance. RRAM devices have shown promising reliability in terms of long-term performance and stability, making them suitable for critical applications that require reliable memory solutions. Significant inhibitory activity against the drug-resistant Klebsiella pneumonia strain and its biofilm formation ability was demonstrated by Mg@PEHA. The minimum inhibitory concentration value of the metallohydrogel was determined to be 3 mg/mL when it was dissolved in 1% DMSO. To study the antibiofilm activity, an MTT assay was performed, revealing that biofilm inhibition (60%) commenced at 1 mg/mL of Mg@PEHA when dissolved in 1% DMSO. Moreover, in the mouse excisional wound model, Mg@PEHA played a crucial role in preventing postoperative wound infections and promoting wound healing.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Tuhin Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Priyanka Das
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol 713303 West Bengal, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009 Chhattisgarh, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| |
Collapse
|
9
|
Karmakar K, Roy A, Dhibar S, Majumder S, Bhattacharjee S, Rahaman SKM, Saha R, Chatterjee P, Ray SJ, Saha B. Exploration of a wide bandgap semiconducting supramolecular Mg(II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing. Sci Rep 2023; 13:22318. [PMID: 38102201 PMCID: PMC10724216 DOI: 10.1038/s41598-023-48936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Shantanu Majumder
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
10
|
Dhibar S, Pal B, Karmakar K, Roy S, Hafiz SA, Roy A, Bhattacharjee S, Ray SJ, Ray PP, Saha B. A 5-aminoisophthalic acid low molecular weight gelator based novel semiconducting supramolecular Zn(ii)-metallogel: unlocking an efficient Schottky barrier diode for microelectronics. NANOSCALE ADVANCES 2023; 5:6714-6723. [PMID: 38024309 PMCID: PMC10662173 DOI: 10.1039/d3na00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A novel method has been successfully developed for creating supramolecular metallogels using zinc(ii) ions and 5-aminoisophthalic acid as the gelator (low molecular weight gelator) in a dimethylformamide (DMF) solvent at room temperature. Comprehensive rheological investigations confirm the robust mechanical strength of the resulting zinc(ii)-metallogel. Microstructural analysis conducted through field-emission scanning electron microscopy (FESEM) unveils a unique flake-like morphology, with energy-dispersive X-ray (EDX) elemental mapping confirming the prevalence of zinc as the primary constituent of the metallogel. To understand the formation mechanism of this metallogel, Fourier-transform infrared (FT-IR) spectroscopy was employed. Notably, these supramolecular zinc(ii)-metallogel assemblies exhibit electrical conductivity reminiscent of metal-semiconductor (MS) junction electronic components. Surprisingly, the metallogel-based thin film device showcases an impressive electrical conductivity of 1.34 × 10-5 S m-1. The semiconductor characteristics of the synthesized zinc(ii)-metallogel devices, including their Schottky barrier diode properties, have been extensively investigated. This multifaceted study opens up a promising avenue for designing functional materials tailored for electronic applications. It harnesses the synergistic properties of supramolecular metallogels and highlights their significant potential in the development of semiconductor devices. This work represents a novel approach to the creation of advanced materials with unique electronic properties, offering exciting prospects for future innovations in electronic and semiconductor technologies.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Baishakhi Pal
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Kalyani Regional Centre, Netaji Subhas Open University West Bengal India
| | - Sk Abdul Hafiz
- Department of Chemistry, KaziNazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | | | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
11
|
Dhibar S, Pal S, Karmakar K, Hafiz SA, Bhattacharjee S, Roy A, Rahaman SKM, Ray SJ, Dam S, Saha B. Two novel low molecular weight gelator-driven supramolecular metallogels efficient in antimicrobial activity applications. RSC Adv 2023; 13:32842-32849. [PMID: 38025858 PMCID: PMC10630960 DOI: 10.1039/d3ra05019j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
A remarkable ultrasonication technique was successfully employed to create two novel metallogels using citric acid as a low molecular weight gelator, in combination with cadmium(ii)-acetate and mercury(ii)-acetate dissolved in N,N-dimethyl formamide at room temperature and under ambient conditions. The mechanical properties of the resulting Cd(ii)- and Hg(ii)-metallogels were rigorously examined through rheological analyses, which revealed their robust mechanical stability under varying angular frequencies and shear strains. Detailed characterization of the chemical constituents within these metallogels was accomplished through EDX mapping experiments, while microstructural features were visualized using field emission scanning electron microscope (FESEM) images. Additionally, FT-IR spectroscopic analysis was employed to elucidate the metallogel formation mechanism. Significantly, the antimicrobial efficacy of these novel metallogels was assessed against a panel of bacteria, including Gram-positive strains such as Bacillus subtilis and Staphylococcus epidermidis, as well as Gram-negative species like Escherichia coli and Pseudomonas aeruginosa. The results demonstrated substantial antibacterial activity, highlighting the potential of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels as effective agents against a broad spectrum of bacteria. In conclusion, this study provides a comprehensive exploration of the synthesis, characterization, and antimicrobial properties of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels, shedding light on their promising applications in combating both Gram-positive and Gram-negative bacterial infections. These findings open up exciting prospects for the development of advanced materials with multifaceted industrial and biomedical uses.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
12
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Dhibar S, Pal B, Karmakar K, Kundu S, Bhattacharjee S, Sahoo R, Mehebub Rahaman SK, Dey D, Pratim Ray P, Saha B. Exploring a supramolecular gel to
in‐situ
crystal fabrication from the low molecular weight gelators: a crystal engineering approach towards microelectronic device application. ChemistrySelect 2023. [DOI: 10.1002/slct.202204214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Sánchez-Fernández JA. Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers (Basel) 2023; 15:1365. [PMID: 36987146 PMCID: PMC10052692 DOI: 10.3390/polym15061365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Supramolecular structures are of great interest due to their applicability in various scientific and industrial fields. The sensible definition of supramolecular molecules is being set by investigators who, because of the different sensitivities of their methods and observational timescales, may have different views on as to what constitutes these supramolecular structures. Furthermore, diverse polymers have been found to offer unique avenues for multifunctional systems with properties in industrial medicine applications. Aspects of this review provide different conceptual strategies to address the molecular design, properties, and potential applications of self-assembly materials and the use of metal coordination as a feasible and useful strategy for constructing complex supramolecular structures. This review also addresses systems that are based on hydrogel chemistry and the enormous opportunities to design specific structures for applications that demand enormous specificity. According to the current research status on supramolecular hydrogels, the central ideas in the present review are classic topics that, however, are and will be of great importance, especially the hydrogels that have substantial potential applications in drug delivery systems, ophthalmic products, adhesive hydrogels, and electrically conductive hydrogels. The potential interest shown in the technology involving supramolecular hydrogels is clear from what we can retrieve from the Web of Science.
Collapse
Affiliation(s)
- José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
15
|
A "heat set" Zr-Diimide based Fibrous Metallogel: Multiresponsive Sensor, Column-based Dye Separation, and Iodine Sequestration. J Colloid Interface Sci 2023; 633:441-452. [PMID: 36462267 DOI: 10.1016/j.jcis.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Sensing and monitoring hazardous contaminants in water and radioactive iodine sequestration is pivotal due to their detrimental impact on biological ecosystems. In this context, herein, a water stable zirconium-diimide based metallogel (Zr@MG) with fibrous columnar morphology is accomplished through the "heat set" method. The presence of diimide linkage with long aromatic chain manifests active luminescence properties in the linker as well as in the supramolecular framework structure. The as-synthesized Zr@MG xerogel can selectively detectCr2O72- (LOD = 0.52 ppm) and 2,4,6-trinitrophenol (TNP) (LOD = 80.2 ppb) in the aqueous medium. The Zr@MG paper strip-based detection for Cr2O72- and nitro explosive makes this metallogel reliable and an attractive luminescent sensor for practical use. Moreover, a column-based dye separation experiment was performed to show selective capture of positively charged methylene blue (MB) dye with 98 % separation efficiency from the mixture of two dyes. Also, the Zr@MG xerogel showed effective iodine sequestration from the vapor phase (232 wt%).
Collapse
|
16
|
Saha S, Das KS, Pal P, Hazra S, Ghosh A, Bala S, Ghosh A, Das AK, Mondal R. A Silver-Based Integrated System Showing Mutually Inclusive Super Protonic Conductivity and Photoswitching Behavior. Inorg Chem 2023; 62:3485-3497. [PMID: 36780226 DOI: 10.1021/acs.inorgchem.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Pulak Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| |
Collapse
|
17
|
Houard F, Cucinotta G, Guizouarn T, Suffren Y, Calvez G, Daiguebonne C, Guillou O, Artzner F, Mannini M, Bernot K. Metallogels: a novel approach for the nanostructuration of single-chain magnets. MATERIALS HORIZONS 2023; 10:547-555. [PMID: 36426997 DOI: 10.1039/d2mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study we demonstrate that single-chain magnets (SCMs) can be assembled in gel phase and transferred intact on surface. We take advantage of a family of SCMs based on TbIII ions and nitronyl-nitroxides radicals functionalized with short alkyl chains known to form crystalline supramolecular nanotubes interacting with heptane acting as crystallizing solvent. When the radicals are functionalized with long aliphatic chains a robust gel is formed with similar structural and functional properties respect to its crystalline parent. Indeed, a small-angle X-ray scattering (SAXS) study unambiguously demonstrates that the gel is made of supramolecular nanotubes: the high stability of the gel allows the determination from SAXS data of precise nanotube metrics such as diameter, helical pitch and monoclinic cell of the folded 2D crystal lattice along the tube direction. Additionally, static and dynamic magnetic investigations show the persistence of the SCM behavior in the metallogel. Last, on-surface gelation provides thick films as well as sub-monolayer deposits of supramolecular nanotubes on surface as evidenced by atomic force microscopy (AFM) observations. This paves the road toward magnetic materials and devices made of SCMs profiting of their isolation on surface as individual chains.
Collapse
Affiliation(s)
- Felix Houard
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Guiseppe Cucinotta
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via della Lastruccia n.3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Thierry Guizouarn
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Yan Suffren
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Carole Daiguebonne
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Olivier Guillou
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Franck Artzner
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Université de Rennes 1, F-35000 Rennes, France
| | - Matteo Mannini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via della Lastruccia n.3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Kevin Bernot
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
- Institut Universitaire de France, 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
18
|
Karmakar K, Dey A, Dhibar S, Sahu R, Bhattacharjee S, Karmakar P, Chatterjee P, Mondal A, Saha B. A novel supramolecular Zn(ii)-metallogel: an efficient microelectronic semiconducting device application. RSC Adv 2023; 13:2561-2569. [PMID: 36741164 PMCID: PMC9844075 DOI: 10.1039/d2ra07374a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
A unique strategy for the synthesis of a supramolecular metallogel employing zinc ions and adipic acid in DMF medium has been established at room temperature. Rheological analysis was used to investigate the mechanical characteristics of the supramolecular Zn(ii)-metallogel. Field emission scanning electron microscopy and transmission electron microscopy were used to analyse the hexagonal shape morphological features of the Zn(ii)-metallogel. Interestingly, the electrical conductivity is observed in the electronic device with Zn(ii)-metallogel based metal-semiconductor (MS) junctions. All aspects of the metallogel's electrical properties were investigated. The electrical conductivity of the metallogel-based thin film device was 7.38 × 10-5 S m-1. The synthesised Zn(ii)-metallogel based device was investigated for its semi-conductive properties, such as its Schottky barrier diode nature.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Arka Dey
- Department of Physics, National Institute of Technology Durgapur Durgapur-713209 West Bengal India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Rajib Sahu
- Max-Plank-Institut für Eisenforschung GmbH Max-Plank-Str. 1 40237 Düsseldorf Germany
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Priya Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan Golapbag Burdwan-713104 West Bengal India
| | - Aniruddha Mondal
- Department of Physics, National Institute of Technology Durgapur Durgapur-713209 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
19
|
Majumdar S, Pal B, Lepcha G, Sundar Das K, Pal I, Ray PP, Dey B. Establishment of different aliphatic amines-based rapid self-healing Mg(OH) 2 metallogels: exploring the morphology, rheology and intriguing semiconducting Schottky diode characteristics. NEW J CHEM 2023; 47:4752-4760. [DOI: 10.1039/d2nj06029a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Different aliphatic-amine-based rapid self-healing Mg(ii)-metallogels have been established through exploring their morphology, rheology and intriguing semiconducting Schottky diode characteristics.
Collapse
Affiliation(s)
- Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India
| |
Collapse
|
20
|
Squaric acid driven supramolecular metallogels of Cd(II) and Zn(II): Sensitive inhibitors for multi-drug resistance ESKAPE pathogens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
A Transparent Self-Healable Multistimuli-Responsive novel Supramolecular Co(II)-Metallogel derived from Adipic Acid: Effective Hole Transport Layer for Polymer Solar Cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Dhibar S, Dey A, Dalal A, Bhattacharya S, Sahu R, Sahoo R, Mondal A, Mehebub Rahaman SK, Kundu S, Saha B. An Organic Acid consisted Multiresponsive Self-Healing Supramolecular Cu(II)-Metallogel: Fabrication and Analysis of semiconducting device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Saha S, Pal B, Sundar Das K, Kumar Ghose P, Ghosh A, De A, Kumar Das A, Pratim Ray P, Mondal R. Design of Dual Purpose Fe‐metallogel for Magnetic Refrigeration and Fabrication of Schottky Barrier Diode. ChemistrySelect 2022. [DOI: 10.1002/slct.202203307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sayan Saha
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| | - Baisakhi Pal
- Department of Physics Jadavpur University Jadavpur Kolkata 700 032 India
| | - Krishna Sundar Das
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| | - Pradeepta Kumar Ghose
- School of Physical Science Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| | - Avik De
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| | - Partha Pratim Ray
- Department of Physics Jadavpur University Jadavpur Kolkata 700 032 India
| | - Raju Mondal
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road Kolkata 700032 West Bengal India
| |
Collapse
|
24
|
Hu X, Zhu Y, Wang J, Zheng G, Yao D, Lin B, Tian N, Zhou B, Long F. Stable organic-inorganic hybrid bismuth-halide: Exploration of crystal-structural, morphological, thermal, spectroscopic and optoelectronic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Lepcha G, Singha T, Majumdar S, Pradhan AK, Das KS, Datta PK, Dey B. Adipic acid directed self-healable supramolecular metallogels of Co(II) and Ni(II): intriguing scaffolds for comparative optical-phenomenon in terms of third-order optical non-linearity. Dalton Trans 2022; 51:13435-13443. [PMID: 35993453 DOI: 10.1039/d2dt01983c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two brilliant outcomes of supramolecular self-assembly directed, low molecular weight organic gelator based self-healable Co(II) and Ni(II) metallogels were achieved. Adipic acid as the low molecular weight organic gelator and dimethylformamide (DMF) solvent are employed for the metallogelation process. Rheological analyses of both gel-scaffolds reveal mechanical toughness as well as visco-elasticity. Thixotropic behaviours of both the gels were scrutinized. Morphological variations due to the presence of two different metal ions with diverse metal-ligand coordinating interactions were established. The mechanistic pathways for forming stable metallogels of Co(II)-adipic acid (Co-AA) and Ni(II)-adipic acid (Ni-AA) were judiciously developed through infrared absorption spectral analysis. The nonlinear optical properties, such as the third-order process, of these synthesized metallogels were scrutinized by means of the Z-scan method at a beam excitation wavelength of 750 nm by a femtosecond laser with different excitation intensities ranging from 64 to 140 GW cm-2. The third-order nonlinear optical susceptibility (χ(3)) of the order of 10-14 esu was obtained from the measured Z-scan data. Both the metallogels exhibit positive nonlinear refraction and reverse saturable (RSA) absorption at high-intensity excitation. Co(II) and Ni(II) metallogels show nonlinear refractive indices (n2I) of (3.619 ± 0.146) × 10-6 cm2 GW-1 and (3.472 ± 0.102) × 10-6 cm2 GW-1, respectively, and two photon absorption coefficients (β) of (1.503 ± 0.045) × 10-1 cm GW-1 and (1.381 ± 0.029) × 10-1 cm GW-1 at an excitation intensity of 140 GW cm-2. We also studied the optical limiting properties with a limiting threshold of 9.57 mJ cm-2. Therefore, both metallogels can be considered promising materials for photonic devices: for instance, for optical switching and optical limiting.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Amit Kumar Pradhan
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
26
|
Majumdar S, Pal B, Sahu R, Das KS, Ray PP, Dey B. A croconate-directed supramolecular self-healable Cd(II)-metallogel with dispersed 2D-nanosheets of hexagonal boron nitride: a comparative outcome of the charge-transport phenomena and non-linear rectifying behaviour of semiconducting diodes. Dalton Trans 2022; 51:9007-9016. [PMID: 35638739 DOI: 10.1039/d2dt01206e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of croconic acid disodium salt (CADS) as an organic gelator with Cd(II) salt to obtain an efficient soft-scaffold supramolecular self-healable metallogel (Cd-CADS) in N,N-dimethyl formamide (DMF) media was investigated following an ultrasonication technique. The experimentally scrutinized rheological values of the fabricated metallogel not only revealed the visco-elastic property and mechanical stiffness, but also exposed the self-healable behaviour of the gel material. Two-dimensional (2D) nanosheets of hexagonal boron nitride (h-BN) were incorporated within the gel network to obtain a 2D nanosheet dispersed metallogel of Cd(II) croconate (h-BN@Cd-CADS). The microstructural investigations of the original gel network and hexagonal boron nitride (h-BN) 2D nanosheet dispersed gel-network were performed through field emission scanning electron microscopy (FESEM) and established the interconnecting rod-like fibrous type morphological patterns and inter-connected hexagonal type rod-shaped architecture pattern, respectively. High resolution transmission electron microscopy (HRTEM) was used to visualize the morphological distinction of the Cd-CADS metallogel with the h-BN 2D nanosheets. The infrared spectral (FT-IR) outputs helped to identify the formation pathway to construct the semi-solid self-healing flexible metallogel and h-BN 2D nanosheet dispersed metallogel nanocomposite, respectively. Fascinating electronic-charge transportation was revealed in the as-fabricated Cd-CADS and h-BN@Cd-CADS metallogel-based devices. Furthermore, h-BN 2D-nanosheet-directed modulation of the non-linear rectifying feature of the supramolecular Cd-CADS-metallogel was observed, with the h-BN@Cd-CADS metallogel showing a greater rectifying property, implying that it has a higher conductivity compared to the Cd-CADS metallogel.
Collapse
Affiliation(s)
- Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Rajib Sahu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
27
|
Majumdar S, Ray PP, Sahu R, Dey A, Dey B. Strategic fabrication of efficient photo-responsive semiconductor electronic diode-devices by Bovine Serum Albumin protein-based Cu(II)-metallohydrogel scaffolds. Int J Biol Macromol 2022; 195:287-293. [PMID: 34896152 DOI: 10.1016/j.ijbiomac.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Bovine Serum Albumin protein-based two fascinating functional self-healing Cu(II) metallohydrogel scaffolds (MD1 and MD2) have been studied for the development of metal-semiconductor junction based Schottky diode device. Multiple metal-semiconductor (MS) junction devices, offering the sandwich-like configuration of Indium tin oxide (ITO)/ metallogel/Aluminium (Al), have been made-up to investigate the electrical properties of the synthesized metallohydrogel materials. Optical characterizations including optical band gap measurement have been carried out using Tauc's equation for both the metallohydrogels. The current-voltage (I-V) characteristics of just made-up devices are studied under irradiation and non- irradiation conditions to explore the electrical features through investigating the charge transport phenomenon. The electrical conductivity gets estimated as 3.13 × 10-5 S.m-1 and 2.69 × 10-5 S.m-1 for MD1 and MD2 under dark condition, and 11.06 × 10-5 S.m-1 and 5.99 × 10-5 S.m-1 for MD1 and MD2, respectively, in photo-irradiation. The measured optical and electrical properties of MD1 and MD2 metallohydrogels are thoroughly investigated and the data indicates that MD1 and MD2 metallohyrogels are semiconducting in nature with excellent photo-responsive behaviour. Moreover, the representative I - V characteristic of the MD1 and MD2 metallohydrogels at both irradiation and non-irradiation conditions represents the nonlinear rectifying behaviour, a typical signature for Schottky diode (SD).
Collapse
Affiliation(s)
- Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Rajib Sahu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Arka Dey
- Department of Physics, Jadavpur University, Kolkata 700032, India.
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
28
|
Dhibar S, Ojha SK, Mohan A, Prabhakaran SPC, Bhattacharjee S, Karmakar K, Karmakar P, Predeep P, Ojha AK, Saha B. A multistimulus-responsive self-healable supramolecular copper( ii)-metallogel derived from l-(+) tartaric acid: an efficient Schottky barrier diode. NEW J CHEM 2022. [DOI: 10.1039/d2nj03086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A low molecular weight gelator l-(+) tartaric acid- based self-healing supramolecular Cu(ii)-metallogel offers an electronic device of Schottky barrier diode at room temperature.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Saurav Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | | | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol-713303, West Bengal, India
| | - Kripasindhu Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Priya Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | - Animesh Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
29
|
Electronic charge transport phenomena directed smart fabrication of Metal-Semiconductor based electronic junction device by a supramolecular Mn(II)-Metallogel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Yadav PK, Upadhyay RK, Kumar D, Bano D, Chandra S, Jit S, Hasan SH. Synthesis of green fluorescent carbon quantum dots from the latex of Ficus benghalensis for the detection of tyrosine and fabrication of Schottky barrier diode. NEW J CHEM 2021. [DOI: 10.1039/d1nj01655e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Green fluorescent CQDs have been synthesized from the latex of ficus benghalensis and polyethyleneimine and utilized for the detection of tyrosine. Further, fabricated a Schottky barrier diode.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- Nano Material Research Laboratory
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| | | | - Deepak Kumar
- Nano Material Research Laboratory
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| | - Daraksha Bano
- Nano Material Research Laboratory
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| | - Subhash Chandra
- Nano Material Research Laboratory
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| | - Satyabrata Jit
- Department of Electronics Engineering
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| | - Syed Hadi Hasan
- Nano Material Research Laboratory
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| |
Collapse
|
31
|
Das P, Majumdar S, Dey A, Mandal S, Mondal A, Chakrabarty S, Ray PP, Dey B. 4,4′-Bipyridine-based Ni( ii)-metallogel for fabricating a photo-responsive Schottky barrier diode device. NEW J CHEM 2021. [DOI: 10.1039/d1nj01629f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
4,4′-Bipyridine-based Ni(ii)-metallogel has been implemented to execute a light-responsive semiconducting Schottky barrier diode device with advanced functionality.
Collapse
Affiliation(s)
- Pubali Das
- Department of Physics, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Sourav Mandal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Atish Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Sinchan Chakrabarty
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
32
|
Wang B, Li J, Shui S, Xu J. An acylhydrazone-based AIE organogel for the selective sensing of submicromolar level Al 3+ and Al( iii)-based metallogel formation to detect oxalic acid. NEW J CHEM 2021. [DOI: 10.1039/c9nj06340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The compound L can be fluorescence-tunable depending on the water volume fraction and optically sense Al3+ without interference.
Collapse
Affiliation(s)
- Bin Wang
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China
| | - Juan Li
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
| | - Shipeng Shui
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
| | - Jie Xu
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
| |
Collapse
|
33
|
Kumar V, Upadhyay RK, Bano D, Chandra S, Kumar D, Jit S, Hasan SH. The fabrication and characterization of a supramolecular Cu-based metallogel thin-film based Schottky diode. NEW J CHEM 2021. [DOI: 10.1039/d1nj00394a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of a Cu–H4L metallogel and its application in the fabrication of a Schottky diode are illustrated.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | | | - Daraksha Bano
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | - Subhash Chandra
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | - Deepak Kumar
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | - Satyabrata Jit
- Department of Electronics Engineering, IIT BHU
- Varanasi-221005
- India
| | - Syed Hadi Hasan
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| |
Collapse
|
34
|
Shukla J, Kumar Y, Dixit MK, Mahendar C, Sharma VK, Kalam A, Dubey M. Investigation of the Mechanism Behind Conductive Fluorescent and Multistimuli-responsive Li + -enriched Metallogel Formation. Chem Asian J 2020; 15:3020-3028. [PMID: 32749048 DOI: 10.1002/asia.202000630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
A fluorescent metallogel (2.6 % w/v) has been obtained from two non-fluorescent components viz. phenyl-succinic acid derived pro-ligand H2 PSL and LiOH (2 equiv.) in DMF. Li+ ion not only plays a crucial role in gelation through aggregation, but also contributed towards enhancement of fluorescence by imposing restriction over excited state intramolecular proton transfer (ESIPT) followed by origin of chelation enhanced fluorescence (CHEF) phenomenon. Further, the participation of CHEF followed by aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) in the gelation process have been well established by fluorescence experiments. Transmission electron microscopy (TEM) analysis disclosed the sequential creation of nanonuclei followed by nanoballs and their alignment towards the generation of fibers of about 3, 31 and 40 nm diameter, respectively. The presence of a long-range fibrous morphology inside the metallogel was further attested by scanning electron microscopy (SEM). Rheological studies on the metallogel showed its true gel-phase material nature. Nyquist impedance study shows a resistance value of 7.4 kΩ for the metallogel which upon applying ultrasound increased to 8.5 kΩ, while an elevated temperature of 70 °C caused reduction in the resistance value to 4.8 kΩ. The mechanism behind metallogel formation has been well established by using FTIR, UV-vis, SEM, TEM, PXRD, 1 H NMR, fluorescence and ESI-MS.
Collapse
Affiliation(s)
- Jay Shukla
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Yeeshu Kumar
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Manish K Dixit
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Chinthakuntla Mahendar
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Vinay K Sharma
- Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Abul Kalam
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, KSA
| | - Mrigendra Dubey
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
35
|
Mahendar C, Kumar Y, Dixit MK, Dubey M. An Li +-enriched Co 2+-induced metallogel: a study on thixotropic rheological behaviour and conductance. SOFT MATTER 2020; 16:3436-3442. [PMID: 32196044 DOI: 10.1039/c9sm02544h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An alkali base and counterion-selective red metallogel (1% w/v) has been synthesized by mixing the adipic acid-derived ligand H2AL with LiOH, followed by the addition of 1 equivalent of Co(OAc)2 in DMF. The addition of Co(OAc)2 not only resulted in the formation of a 2 : 2 (M : L) complex, but also led to the consecutive steps of aggregation, fiber creation, entrapment of the solvent and eventually gelation. The metallogel formation and the mechanism behind gelation have been well characterized and established using various instrumental techniques such as FTIR spectroscopy, UV-vis spectroscopy, FE-SEM, TEM, PXRD, ESI-mass spectrometry, Job's plot and rheology analysis. Nyquist plots suggested a large decrease in the resistance value from 11.3 kΩ to 4.2 kΩ for the solution obtained from the ligand deprotonated by LiOH (AL2-) and Co(OAc)2 containing the metallogel. The Nyquist plot and resistance of the metallogel have also been studied under the influence of temperature and ultrasound stimuli. The extensive rheological measurements provide information about the strength of the gel network and the highly reversible nature and thixotropic behaviour of the metallogel.
Collapse
Affiliation(s)
- Chinthakuntla Mahendar
- Soft Materials Research Laboratory, Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | | | | | | |
Collapse
|
36
|
Dhibar S, Dey A, Majumdar S, Dey A, Ray PP, Dey B. Organic-Acid-Mediated Luminescent Supramolecular Tb(III)-metallogel Applied in an Efficient Photosensitive Electronic Device with Excellent Charge Transport Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Department of Physics, Jadavpur University, Kolkata700032, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
37
|
Dhibar S, Dey A, Ghosh D, Majumdar S, Dey A, Ray PP, Dey B. Triethylenetetramine-Based Semiconducting Fe(III) Metallogel: Effective Catalyst for Aryl-S Coupling. ACS OMEGA 2020; 5:2680-2689. [PMID: 32095691 PMCID: PMC7033679 DOI: 10.1021/acsomega.9b03194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
A fascinating way to originate a mechanically stable metallogel of ferric ions with metal-coordinating organic ligand triethylenetetramine through direct mixing of their water solutions in a stoichiometric ratio is achieved under ambient conditions. The rheological study established the mechanical property of the Fe(III) metallogel. A cashew-shaped microstructure of the metallogel was observed by FESEM analysis. The electrical property of the Fe(III) metallogel was also carefully scrutinized. The semiconducting features like the Schottky barrier diode property of the Fe(III) metallogel were explored. The catalytic role of the Fe(III) metallogel was also critically explored. The Fe(III) metallogel shows an excellent catalytic property toward the synthesis of aryl thioethers via a C-S coupling reaction under mild reaction conditions without the use of any organic solvent.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department
of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec. III, Salt Lake, Kolkata 700106, India
- Department
of Physics, Jadavpur University, Kolkata 700032, India
| | - Debasish Ghosh
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Biswajit Dey
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
38
|
Ghosh D, Mulvee MT, Damodaran KK. Tuning Gel State Properties of Supramolecular Gels by Functional Group Modification. Molecules 2019; 24:E3472. [PMID: 31557821 PMCID: PMC6804314 DOI: 10.3390/molecules24193472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/02/2022] Open
Abstract
The factors affecting the self-assembly process in low molecular weight gelators (LMWGs) were investigated by tuning the gelation properties of a well-known gelator N-(4-pyridyl)isonicotinamide (4PINA). The N-H∙∙∙N interactions responsible for gel formation in 4PINA were disrupted by altering the functional groups of 4PINA, which was achieved by modifying pyridyl moieties of the gelator to pyridyl N-oxides. We synthesized two mono-N-oxides (INO and PNO) and a di-N-oxide (diNO) and the gelation studies revealed selective gelation of diNO in water, but the two mono-N-oxides formed crystals. The mechanical strength and thermal stabilities of the gelators were evaluated by rheology and transition temperature (Tgel) experiments, respectively, and the analysis of the gel strength indicated that diNO formed weak gels compared to 4PINA. The SEM image of diNO xerogels showed fibrous microcrystalline networks compared to the efficient fibrous morphology in 4PINA. Single-crystal X-ray analysis of diNO gelator revealed that a hydrogen-bonded dimer interacts with adjacent dimers via C-H∙∙∙O interactions. The non-gelator with similar dimers interacted via C-H∙∙∙N interaction, which indicates the importance of specific non-bonding interactions in the formation of the gel network. The solvated forms of mono-N-oxides support the fact that these compounds prefer crystalline state rather than gelation due to the increased hydrophilic interactions. The reduced gelation ability (minimum gel concentration (MGC)) and thermal strength of diNO may be attributed to the weak intermolecular C-H∙∙∙O interaction compared to the strong and unidirectional N-H∙∙∙N interactions in 4PINA.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Matthew T Mulvee
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| |
Collapse
|
39
|
Dhibar S, Dey A, Dey A, Majumdar S, Mandal A, Ray PP, Dey B. The development of a rapid self-healing semiconducting monoethanolamine-based Mg(OH) 2 metallogel for a Schottky diode application with a high ON/OFF ratio. NEW J CHEM 2019; 43:15691-15699. [DOI: 10.1039/c9nj03457a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A rapid self-healing Mg(OH)2 metallogel developed by mixing monoethanolamine and an Mg(ii) salt offers a Schottky barrier diode device with a high ON/OFF ratio.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Arka Dey
- Department of Condensed Matter Physics and Material Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
- Department of Physics
| | - Amiya Dey
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Santanu Majumdar
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Amit Mandal
- Department of Chemistry
- Behala College
- Kolkata 700060
- India
| | | | - Biswajit Dey
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| |
Collapse
|