1
|
Hunnisett LM, Francia N, Nyman J, Abraham NS, Aitipamula S, Alkhidir T, Almehairbi M, Anelli A, Anstine DM, Anthony JE, Arnold JE, Bahrami F, Bellucci MA, Beran GJO, Bhardwaj RM, Bianco R, Bis JA, Boese AD, Bramley J, Braun DE, Butler PWV, Cadden J, Carino S, Červinka C, Chan EJ, Chang C, Clarke SM, Coles SJ, Cook CJ, Cooper RI, Darden T, Day GM, Deng W, Dietrich H, DiPasquale A, Dhokale B, van Eijck BP, Elsegood MRJ, Firaha D, Fu W, Fukuzawa K, Galanakis N, Goto H, Greenwell C, Guo R, Harter J, Helfferich J, Hoja J, Hone J, Hong R, Hušák M, Ikabata Y, Isayev O, Ishaque O, Jain V, Jin Y, Jing A, Johnson ER, Jones I, Jose KVJ, Kabova EA, Keates A, Kelly PF, Klimeš J, Kostková V, Li H, Lin X, List A, Liu C, Liu YM, Liu Z, Lončarić I, Lubach JW, Ludík J, Marom N, Matsui H, Mattei A, Mayo RA, Melkumov JW, Mladineo B, Mohamed S, Momenzadeh Abardeh Z, Muddana HS, Nakayama N, Nayal KS, Neumann MA, Nikhar R, Obata S, O’Connor D, Oganov AR, Okuwaki K, Otero-de-la-Roza A, Parkin S, Parunov A, Podeszwa R, Price AJA, Price LS, Price SL, Probert MR, Pulido A, Ramteke GR, Rehman AU, Reutzel-Edens SM, Rogal J, Ross MJ, Rumson AF, Sadiq G, Saeed ZM, Salimi A, Sasikumar K, Sekharan S, Shankland K, Shi B, Shi X, Shinohara K, Skillman AG, Song H, Strasser N, van de Streek J, Sugden IJ, Sun G, Szalewicz K, Tan L, Tang K, Tarczynski F, Taylor CR, Tkatchenko A, Tom R, Touš P, Tuckerman ME, Unzueta PA, Utsumi Y, Vogt-Maranto L, Weatherston J, Wilkinson LJ, Willacy RD, Wojtas L, Woollam GR, Yang Y, Yang Z, Yonemochi E, Yue X, Zeng Q, Zhou T, Zhou Y, Zubatyuk R, Cole JC. The seventh blind test of crystal structure prediction: structure ranking methods. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:S2052520624008679. [PMID: 39418598 PMCID: PMC11789160 DOI: 10.1107/s2052520624008679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol-1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases.
Collapse
Affiliation(s)
- Lily M. Hunnisett
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Nicholas Francia
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Jonas Nyman
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Nathan S. Abraham
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Srinivasulu Aitipamula
- Crystallization and Particle Sciences Institute of Chemical and Engineering Sciences 1 Pesek Road Singapore 627833 Singapore
| | - Tamador Alkhidir
- Green Chemistry and Materials Modelling Laboratory Khalifa University of Science and Technology PO Box 127788 Abu DhabiUnited Arab Emirates
| | - Mubarak Almehairbi
- Green Chemistry and Materials Modelling Laboratory Khalifa University of Science and Technology PO Box 127788 Abu DhabiUnited Arab Emirates
| | - Andrea Anelli
- Roche Pharma Research and Early Development Therapeutic Modalities Roche Innovation Center Basel F Hoffmann-La Roche Ltd Grenzacherstrasse 124 4070 BaselSwitzerland
| | - Dylan M. Anstine
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - John E. Anthony
- Department of Chemistry University of KentuckyLexington KY 40506 USA
| | - Joseph E. Arnold
- School of Chemistry University of SouthamptonSouthampton SO17 1BJ UK
| | - Faezeh Bahrami
- Department of Chemistry Faculty of Science Ferdowsi University of MashhadMashhadIran
| | | | | | - Rajni M. Bhardwaj
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | | | - Joanna A. Bis
- Catalent Pharma Solutions 160 Pharma Drive Morrisville NC 27560 USA
| | - A. Daniel Boese
- Department of Chemistry University of Graz Heinrichstrasse 28 GrazAustria
| | - James Bramley
- School of Chemistry University of SouthamptonSouthampton SO17 1BJ UK
| | - Doris E. Braun
- University of Innsbruck Institute of Pharmacy Innrain 52c A-6020 InnsbruckAustria
| | | | - Joseph Cadden
- Crystallization and Particle Sciences Institute of Chemical and Engineering Sciences 1 Pesek Road Singapore 627833 Singapore
- School of Chemistry University of SouthamptonSouthampton SO17 1BJ UK
| | - Stephen Carino
- Catalent Pharma Solutions 160 Pharma Drive Morrisville NC 27560 USA
| | - Ctirad Červinka
- Department of Physical Chemistry University of Chemistry and Technology Technická 5 16628 Prague Czech Republic
| | - Eric J. Chan
- Department of Chemistry New York UniversityNew York NY 10003 USA
| | - Chao Chang
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Sarah M. Clarke
- Department of Chemistry Dalhousie University 6274 Coburg Road Dalhousie HalifaxCanada
| | - Simon J. Coles
- School of Chemistry University of SouthamptonSouthampton SO17 1BJ UK
| | - Cameron J. Cook
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Richard I. Cooper
- Department of Chemistry University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Tom Darden
- OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, USA
| | - Graeme M. Day
- School of Chemistry University of SouthamptonSouthampton SO17 1BJ UK
| | - Wenda Deng
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Hanno Dietrich
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | | | - Bhausaheb Dhokale
- Green Chemistry and Materials Modelling Laboratory Khalifa University of Science and Technology PO Box 127788 Abu DhabiUnited Arab Emirates
- Department of Chemistry University of Wyoming Laramie Wyoming 82071 USA
| | - Bouke P. van Eijck
- University of Utrecht (Retired), Department of Crystal and Structural Chemistry, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Dzmitry Firaha
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Wenbo Fu
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences Osaka University 1-6 Yamadaoka Suita Osaka 656-0871 Japan
- School of Pharmacy and Pharmaceutical Sciences Hoshi University 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | | | - Hitoshi Goto
- Information and Media Center Toyohashi University of Technology 1-1 Hibarigaoka Tempaku-cho Toyohashi Aichi 441-8580 Japan
- CONFLEX Corporation, Shinagawa Center building 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | | | - Rui Guo
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Jürgen Harter
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Julian Helfferich
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Johannes Hoja
- Department of Chemistry University of Graz Heinrichstrasse 28 GrazAustria
| | - John Hone
- Syngenta Ltd., Jealott’s Hill International Research Station, Berkshire, RG42 6EY, UK
| | - Richard Hong
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
- Department of Chemistry New York UniversityNew York NY 10003 USA
| | - Michal Hušák
- Department of Solid State Chemistry University of Chemistry and Technology Technická 5 16628 Prague Czech Republic
| | - Yasuhiro Ikabata
- Information and Media Center Toyohashi University of Technology 1-1 Hibarigaoka Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Ommair Ishaque
- Department of Physics and Astronomy University of DelawareNewark DE 19716 USA
| | - Varsha Jain
- OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, USA
| | - Yingdi Jin
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Aling Jing
- Department of Physics and Astronomy University of DelawareNewark DE 19716 USA
| | - Erin R. Johnson
- Department of Chemistry Dalhousie University 6274 Coburg Road Dalhousie HalifaxCanada
| | - Ian Jones
- Syngenta Ltd., Jealott’s Hill International Research Station, Berkshire, RG42 6EY, UK
| | - K. V. Jovan Jose
- School of Chemistry University of Hyderabad Professor CR Rao Road Gachibowli Hyderabad 500046 Telangana India
| | - Elena A. Kabova
- School of Pharmacy University of Reading Whiteknights Reading RG6 6AD UK
| | - Adam Keates
- Syngenta Ltd., Jealott’s Hill International Research Station, Berkshire, RG42 6EY, UK
| | - Paul F. Kelly
- Chemistry Department Loughborough UniversityLoughborough LE11 3TU UK
| | - Jiří Klimeš
- Department of Chemical Physics and Optics Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague Czech Republic
| | - Veronika Kostková
- Department of Physical Chemistry University of Chemistry and Technology Technická 5 16628 Prague Czech Republic
| | - He Li
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Xiaolu Lin
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Alexander List
- Department of Chemistry University of Graz Heinrichstrasse 28 GrazAustria
| | - Congcong Liu
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Yifei Michelle Liu
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Zenghui Liu
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | | | - Jan Ludík
- Department of Physical Chemistry University of Chemistry and Technology Technická 5 16628 Prague Czech Republic
| | - Noa Marom
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Hiroyuki Matsui
- Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa 992-8510 Yamagata Japan
| | - Alessandra Mattei
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - R. Alex Mayo
- Department of Chemistry Dalhousie University 6274 Coburg Road Dalhousie HalifaxCanada
| | - John W. Melkumov
- Department of Physics and Astronomy University of DelawareNewark DE 19716 USA
| | - Bruno Mladineo
- Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Sharmarke Mohamed
- Green Chemistry and Materials Modelling Laboratory Khalifa University of Science and Technology PO Box 127788 Abu DhabiUnited Arab Emirates
- Center for Catalysis and Separations Khalifa University of Science and Technology PO Box 127788 Abu DhabiUnited Arab Emirates
| | | | - Hari S. Muddana
- OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, USA
| | - Naofumi Nakayama
- Information and Media Center Toyohashi University of Technology 1-1 Hibarigaoka Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Kamal Singh Nayal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Marcus A. Neumann
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Rahul Nikhar
- Department of Physics and Astronomy University of DelawareNewark DE 19716 USA
| | - Shigeaki Obata
- Information and Media Center Toyohashi University of Technology 1-1 Hibarigaoka Tempaku-cho Toyohashi Aichi 441-8580 Japan
- CONFLEX Corporation, Shinagawa Center building 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Dana O’Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Artem R. Oganov
- Skolkovo Institute of Science and Technology Bolshoy Boulevard 30 121205 MoscowRussia
| | - Koji Okuwaki
- School of Pharmacy and Pharmaceutical Sciences Hoshi University 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Alberto Otero-de-la-Roza
- Department of Analytical and Physical Chemistry Faculty of Chemistry University of Oviedo Julián Clavería 8 33006 OviedoSpain
| | - Sean Parkin
- Department of Chemistry University of KentuckyLexington KY 40506 USA
| | - Antonio Parunov
- Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Rafał Podeszwa
- Institute of Chemistry University of Silesia in Katowice Szkolna 9 40-006 KatowicePoland
| | - Alastair J. A. Price
- Department of Chemistry Dalhousie University 6274 Coburg Road Dalhousie HalifaxCanada
| | - Louise S. Price
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Sarah L. Price
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Michael R. Probert
- School of Natural and Environmental Sciences Newcastle University Kings Road Newcastle NE1 7RU UK
| | - Angeles Pulido
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Gunjan Rajendra Ramteke
- School of Chemistry University of Hyderabad Professor CR Rao Road Gachibowli Hyderabad 500046 Telangana India
| | - Atta Ur Rehman
- Department of Physics and Astronomy University of DelawareNewark DE 19716 USA
| | - Susan M. Reutzel-Edens
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
- SuRE Pharma Consulting, LLC, 7163 Whitestown Parkway - Suite 305, Zionsville, IN 46077, USA
| | - Jutta Rogal
- Department of Chemistry New York UniversityNew York NY 10003 USA
- Fachbereich Physik, Freie Universität, Berlin, 14195, Germany
| | - Marta J. Ross
- School of Pharmacy University of Reading Whiteknights Reading RG6 6AD UK
| | - Adrian F. Rumson
- Department of Chemistry Dalhousie University 6274 Coburg Road Dalhousie HalifaxCanada
| | - Ghazala Sadiq
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Zeinab M. Saeed
- Green Chemistry and Materials Modelling Laboratory Khalifa University of Science and Technology PO Box 127788 Abu DhabiUnited Arab Emirates
| | - Alireza Salimi
- Department of Chemistry Faculty of Science Ferdowsi University of MashhadMashhadIran
| | - Kiran Sasikumar
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | | | - Kenneth Shankland
- School of Pharmacy University of Reading Whiteknights Reading RG6 6AD UK
| | - Baimei Shi
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Xuekun Shi
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Kotaro Shinohara
- Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa 992-8510 Yamagata Japan
| | | | - Hongxing Song
- Department of Chemistry New York UniversityNew York NY 10003 USA
| | - Nina Strasser
- Department of Chemistry University of Graz Heinrichstrasse 28 GrazAustria
| | | | - Isaac J. Sugden
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Guangxu Sun
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy University of DelawareNewark DE 19716 USA
| | - Lu Tan
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Kehan Tang
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Frank Tarczynski
- Catalent Pharma Solutions 160 Pharma Drive Morrisville NC 27560 USA
| | | | - Alexandre Tkatchenko
- Department of Physics and Materials Science University of Luxembourg 1511 Luxembourg City Luxembourg
| | - Rithwik Tom
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Petr Touš
- Department of Physical Chemistry University of Chemistry and Technology Technická 5 16628 Prague Czech Republic
| | - Mark E. Tuckerman
- Department of Chemistry New York UniversityNew York NY 10003 USA
- Courant Institute of Mathematical SciencesNew York UniversityNew York NY 10012 USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| | - Pablo A. Unzueta
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yohei Utsumi
- School of Pharmacy and Pharmaceutical Sciences Hoshi University 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | | | - Jake Weatherston
- School of Natural and Environmental Sciences Newcastle University Kings Road Newcastle NE1 7RU UK
| | - Luke J. Wilkinson
- Chemistry Department Loughborough UniversityLoughborough LE11 3TU UK
| | - Robert D. Willacy
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida USF Research Park 3720 Spectrum Blvd IDRB 202 Tampa FL 33612 USA
| | | | - Yi Yang
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Zhuocen Yang
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Etsuo Yonemochi
- School of Pharmacy and Pharmaceutical Sciences Hoshi University 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Xin Yue
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Qun Zeng
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Tian Zhou
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Yunfei Zhou
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Roman Zubatyuk
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jason C. Cole
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| |
Collapse
|
2
|
Hunnisett LM, Nyman J, Francia N, Abraham NS, Adjiman CS, Aitipamula S, Alkhidir T, Almehairbi M, Anelli A, Anstine DM, Anthony JE, Arnold JE, Bahrami F, Bellucci MA, Bhardwaj RM, Bier I, Bis JA, Boese AD, Bowskill DH, Bramley J, Brandenburg JG, Braun DE, Butler PWV, Cadden J, Carino S, Chan EJ, Chang C, Cheng B, Clarke SM, Coles SJ, Cooper RI, Couch R, Cuadrado R, Darden T, Day GM, Dietrich H, Ding Y, DiPasquale A, Dhokale B, van Eijck BP, Elsegood MRJ, Firaha D, Fu W, Fukuzawa K, Glover J, Goto H, Greenwell C, Guo R, Harter J, Helfferich J, Hofmann DWM, Hoja J, Hone J, Hong R, Hutchison G, Ikabata Y, Isayev O, Ishaque O, Jain V, Jin Y, Jing A, Johnson ER, Jones I, Jose KVJ, Kabova EA, Keates A, Kelly PF, Khakimov D, Konstantinopoulos S, Kuleshova LN, Li H, Lin X, List A, Liu C, Liu YM, Liu Z, Liu ZP, Lubach JW, Marom N, Maryewski AA, Matsui H, Mattei A, Mayo RA, Melkumov JW, Mohamed S, Momenzadeh Abardeh Z, Muddana HS, Nakayama N, Nayal KS, Neumann MA, Nikhar R, Obata S, O'Connor D, Oganov AR, Okuwaki K, Otero-de-la-Roza A, Pantelides CC, Parkin S, Pickard CJ, Pilia L, Pivina T, Podeszwa R, Price AJA, Price LS, Price SL, Probert MR, Pulido A, Ramteke GR, Rehman AU, Reutzel-Edens SM, Rogal J, Ross MJ, Rumson AF, Sadiq G, Saeed ZM, Salimi A, Salvalaglio M, Sanders de Almada L, Sasikumar K, Sekharan S, Shang C, Shankland K, Shinohara K, Shi B, Shi X, Skillman AG, Song H, Strasser N, van de Streek J, Sugden IJ, Sun G, Szalewicz K, Tan BI, Tan L, Tarczynski F, Taylor CR, Tkatchenko A, Tom R, Tuckerman ME, Utsumi Y, Vogt-Maranto L, Weatherston J, Wilkinson LJ, Willacy RD, Wojtas L, Woollam GR, Yang Z, Yonemochi E, Yue X, Zeng Q, Zhang Y, Zhou T, Zhou Y, Zubatyuk R, Cole JC. The seventh blind test of crystal structure prediction: structure generation methods. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:S2052520624007492. [PMID: 39405196 PMCID: PMC11789161 DOI: 10.1107/s2052520624007492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 02/05/2025]
Abstract
A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures.
Collapse
Affiliation(s)
- Lily M Hunnisett
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Jonas Nyman
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Nicholas Francia
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Nathan S Abraham
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Claire S Adjiman
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Tamador Alkhidir
- Green Chemistry and Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Mubarak Almehairbi
- Green Chemistry and Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Andrea Anelli
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dylan M Anstine
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Joseph E Arnold
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Faezeh Bahrami
- Department of Chemistry, Faculty of Science, Science Boulevard, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Rajni M Bhardwaj
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Imanuel Bier
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Joanna A Bis
- Catalent Pharma Solutions, 160 Pharma Drive, Morrisville, NC 27560, USA
| | - A Daniel Boese
- University of Graz, Department of Chemistry, Heinrichstrasse 28, Graz, Austria
| | - David H Bowskill
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - James Bramley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Jan Gerit Brandenburg
- Group Science and Technology Office, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Doris E Braun
- University of Innsbruck, Institute of Pharmacy, Innrain 52c, A-6020 Innsbruck, Austria
| | - Patrick W V Butler
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Joseph Cadden
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Stephen Carino
- Catalent Pharma Solutions, 160 Pharma Drive, Morrisville, NC 27560, USA
| | - Eric J Chan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Chao Chang
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Bingqing Cheng
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Sarah M Clarke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Dalhousie, Halifax, Canada
| | - Simon J Coles
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Richard I Cooper
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ricky Couch
- Catalent Pharma Solutions, 160 Pharma Drive, Morrisville, NC 27560, USA
| | - Ramon Cuadrado
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Tom Darden
- OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, USA
| | - Graeme M Day
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Hanno Dietrich
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Yiming Ding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | - Bhausaheb Dhokale
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Bouke P van Eijck
- University of Utrecht (Retired), Department of Crystal and Structural Chemistry, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mark R J Elsegood
- Chemistry Department, Loughborough University, Loughborough LE11 3TU, UK
| | - Dzmitry Firaha
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Wenbo Fu
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 656-0871, Japan
| | - Joseph Glover
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Hitoshi Goto
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | | | - Rui Guo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Jürgen Harter
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Julian Helfferich
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | | | - Johannes Hoja
- University of Graz, Department of Chemistry, Heinrichstrasse 28, Graz, Austria
| | - John Hone
- Syngenta Ltd, Jealott's Hill International Research Station, Berkshire, RG42 6EY, UK
| | - Richard Hong
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Geoffrey Hutchison
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Ommair Ishaque
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Varsha Jain
- OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, USA
| | - Yingdi Jin
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Aling Jing
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Dalhousie, Halifax, Canada
| | - Ian Jones
- Syngenta Ltd, Jealott's Hill International Research Station, Berkshire, RG42 6EY, UK
| | - K V Jovan Jose
- School of Chemistry, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
| | - Elena A Kabova
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Adam Keates
- Syngenta Ltd, Jealott's Hill International Research Station, Berkshire, RG42 6EY, UK
| | - Paul F Kelly
- Chemistry Department, Loughborough University, Loughborough LE11 3TU, UK
| | - Dmitry Khakimov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy Prospekt 47, Moscow 119991, Russia
| | - Stefanos Konstantinopoulos
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - He Li
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Xiaolu Lin
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Alexander List
- University of Graz, Department of Chemistry, Heinrichstrasse 28, Graz, Austria
| | - Congcong Liu
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Yifei Michelle Liu
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Zenghui Liu
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Zhi Pan Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Joseph W Lubach
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Alexander A Maryewski
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Hiroyuki Matsui
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| | - Alessandra Mattei
- AbbVie Inc., Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - R Alex Mayo
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Dalhousie, Halifax, Canada
| | - John W Melkumov
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Sharmarke Mohamed
- Green Chemistry and Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | | | - Hari S Muddana
- OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, USA
| | - Naofumi Nakayama
- CONFLEX Corporation, Shinagawa Center building 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Kamal Singh Nayal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Marcus A Neumann
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Rahul Nikhar
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Shigeaki Obata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Dana O'Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Koji Okuwaki
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Alberto Otero-de-la-Roza
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Constantinos C Pantelides
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Luca Pilia
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Tatyana Pivina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy Prospekt 47, Moscow 119991, Russia
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Alastair J A Price
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Dalhousie, Halifax, Canada
| | - Louise S Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Sarah L Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Michael R Probert
- School of Natural and Environmental Sciences, Newcastle University, Kings Road, Newcastle NE1 7RU, UK
| | - Angeles Pulido
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Gunjan Rajendra Ramteke
- School of Chemistry, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
| | - Atta Ur Rehman
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | | | - Jutta Rogal
- Faculty of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Marta J Ross
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Adrian F Rumson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Dalhousie, Halifax, Canada
| | - Ghazala Sadiq
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Zeinab M Saeed
- Green Chemistry and Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Alireza Salimi
- Department of Chemistry, Faculty of Science, Science Boulevard, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Leticia Sanders de Almada
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Kiran Sasikumar
- Avant-garde Materials Simulation, Alte Strasse 2, 79249 Merzhausen, Germany
| | - Sivakumar Sekharan
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Cheng Shang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kenneth Shankland
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Kotaro Shinohara
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| | - Baimei Shi
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Xuekun Shi
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - A Geoffrey Skillman
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Dalhousie, Halifax, Canada
| | - Hongxing Song
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Nina Strasser
- University of Graz, Department of Chemistry, Heinrichstrasse 28, Graz, Austria
| | | | - Isaac J Sugden
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Guangxu Sun
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Benjamin I Tan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Lu Tan
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Frank Tarczynski
- Catalent Pharma Solutions, 160 Pharma Drive, Morrisville, NC 27560, USA
| | | | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg City, Luxembourg
| | - Rithwik Tom
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Mark E Tuckerman
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Yohei Utsumi
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | - Jake Weatherston
- School of Natural and Environmental Sciences, Newcastle University, Kings Road, Newcastle NE1 7RU, UK
| | - Luke J Wilkinson
- Chemistry Department, Loughborough University, Loughborough LE11 3TU, UK
| | - Robert D Willacy
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, USF Research Park, 3720 Spectrum Blvd, IDRB 202, Tampa, FL 33612 USA
| | | | - Zhuocen Yang
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Etsuo Yonemochi
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Xin Yue
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Qun Zeng
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Yizu Zhang
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Tian Zhou
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Yunfei Zhou
- XtalPi Inc., International Biomedical Innovation Park II 3F 2 Hongliu Road, Futian District, Shenzhen, Guangdong, China
| | - Roman Zubatyuk
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jason C Cole
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
| |
Collapse
|
3
|
A P V, O R S, T V V, G L P. Sublimation of pyridine derivatives: fundamental aspects and application for two-component crystal screening. Phys Chem Chem Phys 2024; 26:22558-22571. [PMID: 39150718 DOI: 10.1039/d4cp01442a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The saturated vapour pressures of five heterocyclic compounds containing the pyridine fragment, namely, three isomers of aminopyridine (2-aminopyridine (2AmPy), 3-aminopyridine (3AmPy), and 4-aminopyridine (4AmPy)); 3-hydroxypyridine (3OHPy) and 2-(1H-imidazol-2-yl)pyridine (ImPy), were measured at appropriate temperature intervals using a transpiration (inert gas flow) method. The standard molar enthalpies, entropies, and Gibbs energies of sublimation for all the studied substances were determined. Among the compounds studied, the largest value of ΔH298sub was observed for ImPy. The influence of substitution and the effects of hydrogen bonds in the crystal lattices on sublimation parameters are discussed herein. The reliable dependences relating ΔG298sub to Tfus and ΔH298sub to ΔG298sub were plotted. A comparative analysis of several calculation schemes for the estimation of sublimation enthalpy and Gibbs free energy was carried out. Thermodynamic parameters obtained in this study were applied for the evaluation of cocrystallisation thermodynamic functions for two-component crystals (virtual screening) on the basis of the studied substituted pyridines.
Collapse
Affiliation(s)
- Voronin A P
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| | - Simonova O R
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| | - Volkova T V
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| | - Perlovich G L
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo, 153045, Russian Federation.
| |
Collapse
|
4
|
Wu EJ, Kelly AW, Iuzzolino L, Lee AY, Zhu X. Unprecedented Packing Polymorphism of Oxindole: An Exploration Inspired by Crystal Structure Prediction. Angew Chem Int Ed Engl 2024; 63:e202406214. [PMID: 38825853 DOI: 10.1002/anie.202406214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Crystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time-consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry. Herein, we focused on oxindole (OX), a small rigid molecule with four known polymorphs, including a reported disappearing form. Using crystal structure prediction (CSP), we assessed OX solid-state landscape and thermodynamic stability by comparing predicted structures with experimentally known forms. We then performed melt and solution crystallization in bulk and nanoconfinement to validate our predictions. These experiments successfully reproduced the known forms and led to the discovery of four novel polymorphs. Our approach provided insights into reconstructing disappearing polymorphs and building more comprehensive polymorph landscapes. These results also establish a new record of packing polymorphism for rigid molecules.
Collapse
Affiliation(s)
- Emily J Wu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Andrew W Kelly
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Luca Iuzzolino
- Modeling & Informatics, Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Alfred Y Lee
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Xiaolong Zhu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| |
Collapse
|
5
|
Malenfant J, Kuster L, Gagné Y, Signo K, Denis M, Canesi S, Frenette M. Towards routine organic structure determination using Raman microscopy. Chem Sci 2024; 15:701-709. [PMID: 38179529 PMCID: PMC10763559 DOI: 10.1039/d3sc02954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Raman microscopy can reveal a compound-specific vibrational "fingerprint" from micrograms of material with no sample preparation. We expect this increasingly available instrumentation to routinely assist synthetic chemists in structure determination; however, interpreting the information-dense spectra can be challenging for unreported compounds. Appropriate theoretical calculations using the highly efficient r2SCAN-3c method can accurately predict peak positions but are less precise in matching peak heights. To limit incorrect biases while comparing experimental and theoretical spectra, we introduce a user-friendly software that gives a match score to assist with structure determination. The capabilities and limitations of this approach are demonstrated for several proof-of-concept examples including the characterization of intermediates in the total synthesis of deoxyaspidodispermine.
Collapse
Affiliation(s)
- Jason Malenfant
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Lucille Kuster
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Yohann Gagné
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Kouassi Signo
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Maxime Denis
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Sylvain Canesi
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Mathieu Frenette
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| |
Collapse
|
6
|
Beran GJO. Frontiers of molecular crystal structure prediction for pharmaceuticals and functional organic materials. Chem Sci 2023; 14:13290-13312. [PMID: 38033897 PMCID: PMC10685338 DOI: 10.1039/d3sc03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The reliability of organic molecular crystal structure prediction has improved tremendously in recent years. Crystal structure predictions for small, mostly rigid molecules are quickly becoming routine. Structure predictions for larger, highly flexible molecules are more challenging, but their crystal structures can also now be predicted with increasing rates of success. These advances are ushering in a new era where crystal structure prediction drives the experimental discovery of new solid forms. After briefly discussing the computational methods that enable successful crystal structure prediction, this perspective presents case studies from the literature that demonstrate how state-of-the-art crystal structure prediction can transform how scientists approach problems involving the organic solid state. Applications to pharmaceuticals, porous organic materials, photomechanical crystals, organic semi-conductors, and nuclear magnetic resonance crystallography are included. Finally, efforts to improve our understanding of which predicted crystal structures can actually be produced experimentally and other outstanding challenges are discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
7
|
Napiórkowska E, Milcarz K, Szeleszczuk Ł. Review of Applications of Density Functional Theory (DFT) Quantum Mechanical Calculations to Study the High-Pressure Polymorphs of Organic Crystalline Materials. Int J Mol Sci 2023; 24:14155. [PMID: 37762459 PMCID: PMC10532210 DOI: 10.3390/ijms241814155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Since its inception, chemistry has been predominated by the use of temperature to generate or change materials, but applications of pressure of more than a few tens of atmospheres for such purposes have been rarely observed. However, pressure is a very effective thermodynamic variable that is increasingly used to generate new materials or alter the properties of existing ones. As computational approaches designed to simulate the solid state are normally tuned using structural data at ambient pressure, applying them to high-pressure issues is a highly challenging test of their validity from a computational standpoint. However, the use of quantum chemical calculations, typically at the level of density functional theory (DFT), has repeatedly been shown to be a great tool that can be used to both predict properties that can be later confirmed by experimenters and to explain, at the molecular level, the observations of high-pressure experiments. This article's main goal is to compile, analyze, and synthesize the findings of works addressing the use of DFT in the context of molecular crystals subjected to high-pressure conditions in order to give a general overview of the possibilities offered by these state-of-the-art calculations.
Collapse
Affiliation(s)
| | | | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland; (E.N.); (K.M.)
| |
Collapse
|
8
|
Butler PWV, Day GM. Reducing overprediction of molecular crystal structures via threshold clustering. Proc Natl Acad Sci U S A 2023; 120:e2300516120. [PMID: 37252993 PMCID: PMC10266058 DOI: 10.1073/pnas.2300516120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
Crystal structure prediction is becoming an increasingly valuable tool for assessing polymorphism of crystalline molecular compounds, yet invariably, it overpredicts the number of polymorphs. One of the causes for this overprediction is in neglecting the coalescence of potential energy minima, separated by relatively small energy barriers, into a single basin at finite temperature. Considering this, we demonstrate a method underpinned by the threshold algorithm for clustering potential energy minima into basins, thereby identifying kinetically stable polymorphs and reducing overprediction.
Collapse
Affiliation(s)
- Patrick W. V. Butler
- School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Graeme M. Day
- School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| |
Collapse
|
9
|
Andrews J, Yufit DS, McCabe JF, Fox MA, Steed JW. Vapor Sorption and Halogen-Bond-Induced Solid-Form Rearrangement of a Porous Pharmaceutical. CRYSTAL GROWTH & DESIGN 2023; 23:2628-2633. [PMID: 37038401 PMCID: PMC10080649 DOI: 10.1021/acs.cgd.2c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
A porous, nonsolvated polymorph of the voltage-gated sodium channel blocker mexiletine hydrochloride absorbs iodine vapor to give a pharmaceutical cocrystal incorporating an I2Cl- anion that forms a halogen-π interaction with the mexiletine cations. The most thermodynamically stable form of the compound does not absorb iodine. This example shows that vapor sorption is a potentially useful and underused tool for bringing about changes in pharmaceutical solid form as part of a solid form screening protocol.
Collapse
Affiliation(s)
- Jessica
L. Andrews
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Dmitry S. Yufit
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - James F. McCabe
- Pharmaceutical
Sciences, R&D, AstraZeneca, Charter Way, Silk Road Business
Park, Macclesfield SK10
2NA, U.K.
| | - Mark A. Fox
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Jonathan W. Steed
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
10
|
Price AJA, Otero-de-la-Roza A, Johnson ER. XDM-corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy. Chem Sci 2023; 14:1252-1262. [PMID: 36756332 PMCID: PMC9891363 DOI: 10.1039/d2sc05997e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular crystals are important for many applications, including energetic materials, organic semiconductors, and the development and commercialization of pharmaceuticals. The exchange-hole dipole moment (XDM) dispersion model has shown good performance in the calculation of relative and absolute lattice energies of molecular crystals, although it has traditionally been applied in combination with plane-wave/pseudopotential approaches. This has limited XDM to use with semilocal functional approximations, which suffer from delocalization error and poor quality conformational energies, and to systems with a few hundreds of atoms at most due to unfavorable scaling. In this work, we combine XDM with numerical atomic orbitals, which enable the efficient use of XDM-corrected hybrid functionals for molecular crystals. We test the new XDM-corrected functionals for their ability to predict the lattice energies of molecular crystals for the X23 set and 13 ice phases, the latter being a particularly stringent test. A composite approach using a XDM-corrected, 25% hybrid functional based on B86bPBE achieves a mean absolute error of 0.48 kcal mol-1 per molecule for the X23 set and 0.19 kcal mol-1 for the total lattice energies of the ice phases, compared to recent diffusion Monte-Carlo data. These results make the new XDM-corrected hybrids not only far more computationally efficient than previous XDM implementations, but also the most accurate density-functional methods for molecular crystal lattice energies to date.
Collapse
Affiliation(s)
- Alastair J. A. Price
- Department of Chemistry, Dalhousie University6274 Coburg RdHalifaxB3H 4R2Nova ScotiaCanada
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA-Consolider Team, Facultad de Química, Universidad de Oviedo Oviedo 33006 Spain
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University6274 Coburg RdHalifaxB3H 4R2Nova ScotiaCanada
| |
Collapse
|
11
|
Rana B, Beran GJO, Herbert JM. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2138789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Newman JA, Iuzzolino L, Tan M, Orth P, Bruhn J, Lee AY. From Powders to Single Crystals: A Crystallographer's Toolbox for Small-Molecule Structure Determination. Mol Pharm 2022; 19:2133-2141. [PMID: 35576503 PMCID: PMC10152450 DOI: 10.1021/acs.molpharmaceut.2c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the crystal structures of small-molecule compounds are often determined from single-crystal X-ray diffraction (scXRD), recent advances in three-dimensional electron diffraction (3DED) and crystal structure prediction (CSP) methods promise to expand the structure elucidation toolbox available to the crystallographer. Herein, a comparative assessment of scXRD, 3DED, and CSP in combination with powder X-ray diffraction is carried out on two former drug candidate compounds and a multicomponent crystal of a key building block in the synthesis of gefapixant citrate.
Collapse
Affiliation(s)
- Justin A. Newman
- Department
of Analytical Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Luca Iuzzolino
- Department
of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Melissa Tan
- Department
of Analytical Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Peter Orth
- Department
of Computational and Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jessica Bruhn
- Nanoimaging
Services, San Diego, California 92121, United States
| | - Alfred Y. Lee
- Department
of Analytical Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
13
|
Xiouras C, Cameli F, Quilló GL, Kavousanakis ME, Vlachos DG, Stefanidis GD. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chem Rev 2022; 122:13006-13042. [PMID: 35759465 DOI: 10.1021/acs.chemrev.2c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Artificial intelligence and specifically machine learning applications are nowadays used in a variety of scientific applications and cutting-edge technologies, where they have a transformative impact. Such an assembly of statistical and linear algebra methods making use of large data sets is becoming more and more integrated into chemistry and crystallization research workflows. This review aims to present, for the first time, a holistic overview of machine learning and cheminformatics applications as a novel, powerful means to accelerate the discovery of new crystal structures, predict key properties of organic crystalline materials, simulate, understand, and control the dynamics of complex crystallization process systems, as well as contribute to high throughput automation of chemical process development involving crystalline materials. We critically review the advances in these new, rapidly emerging research areas, raising awareness in issues such as the bridging of machine learning models with first-principles mechanistic models, data set size, structure, and quality, as well as the selection of appropriate descriptors. At the same time, we propose future research at the interface of applied mathematics, chemistry, and crystallography. Overall, this review aims to increase the adoption of such methods and tools by chemists and scientists across industry and academia.
Collapse
Affiliation(s)
- Christos Xiouras
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Gustavo Lunardon Quilló
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium.,Chemical and BioProcess Technology and Control, Department of Chemical Engineering, Faculty of Engineering Technology, KU Leuven, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium
| | - Mihail E Kavousanakis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Georgios D Stefanidis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece.,Laboratory for Chemical Technology, Ghent University; Tech Lane Ghent Science Park 125, B-9052 Ghent, Belgium
| |
Collapse
|
14
|
A complete description of thermodynamic stabilities of molecular crystals. Proc Natl Acad Sci U S A 2022; 119:2111769119. [PMID: 35131847 PMCID: PMC8832981 DOI: 10.1073/pnas.2111769119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
Predicting stable polymorphs of molecular crystals remains one of the grand challenges of computational science. Current methods invoke approximations to electronic structure and statistical mechanics and thus fail to consistently reproduce the delicate balance of physical effects determining thermodynamic stability. We compute the rigorous ab initio Gibbs free energies for competing polymorphs of paradigmatic compounds, using machine learning to mitigate costs. The accurate description of electronic structure and full treatment of quantum statistical mechanics allow us to predict the experimentally observed phase behavior. This constitutes a key step toward the first-principles design of functional materials for applications from photovoltaics to pharmaceuticals. Predictions of relative stabilities of (competing) molecular crystals are of great technological relevance, most notably for the pharmaceutical industry. However, they present a long-standing challenge for modeling, as often minuscule free energy differences are sensitively affected by the description of electronic structure, the statistical mechanics of the nuclei and the cell, and thermal expansion. The importance of these effects has been individually established, but rigorous free energy calculations for general molecular compounds, which simultaneously account for all effects, have hitherto not been computationally viable. Here we present an efficient “end to end” framework that seamlessly combines state-of-the art electronic structure calculations, machine-learning potentials, and advanced free energy methods to calculate ab initio Gibbs free energies for general organic molecular materials. The facile generation of machine-learning potentials for a diverse set of polymorphic compounds—benzene, glycine, and succinic acid—and predictions of thermodynamic stabilities in qualitative and quantitative agreement with experiments highlight that predictive thermodynamic studies of industrially relevant molecular materials are no longer a daunting task.
Collapse
|
15
|
Price SL. Progress in understanding crystallisation: a personal perspective. Faraday Discuss 2022; 235:569-581. [DOI: 10.1039/d2fd00077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After this discussion meeting, most participants felt that we do not understand crystallisation. However, in the 1980s I believe that most scientists would have considered that crystallisation was adequately understood....
Collapse
|
16
|
Hughes DS, Bingham AL, Hursthouse MB, Threlfall TL, Bond AD. The extensive solid-form landscape of sulfathiazole: geometrical similarity and interaction energies. CrystEngComm 2022. [DOI: 10.1039/d1ce01516h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfathiazole shows one of the most extensive solid-form landscapes known to date for an active pharmaceutical ingredient. A standardised structure set of 5 polymorphs, 59 co-crystals, 29 salts, and 3 other structures is established.
Collapse
Affiliation(s)
- David S. Hughes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ann L. Bingham
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael B. Hursthouse
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Terry L. Threlfall
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew D. Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
17
|
Dudek MK, Druzbicki K. Along the road to Crystal Structure Prediction (CSP) of pharmaceutical-like molecules. CrystEngComm 2022. [DOI: 10.1039/d1ce01564h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational methods used for predicting crystal structures of organic compounds are mature enough to be routinely used with many rigid and semi-rigid organic molecules. The usefulness of Crystal Structure Prediction...
Collapse
|
18
|
Han Y, Luo H, Lu Q, Liu Z, Liu J, Zhang J, Wei Z, Li J. Quantum Mechanical-Based Stability Evaluation of Crystal Structures for HIV-Targeted Drug Cabotegravir. Molecules 2021; 26:molecules26237178. [PMID: 34885762 PMCID: PMC8659202 DOI: 10.3390/molecules26237178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
The long-acting parenteral formulation of the HIV integrase inhibitor cabotegravir (GSK744) is currently being developed to prevent HIV infections, benefiting from infrequent dosing and high efficacy. The crystal structure can affect the bioavailability and efficacy of cabotegravir. However, the stability determination of crystal structures of GSK744 have remained a challenge. Here, we introduced an ab initio protocol to determine the stability of the crystal structures of pharmaceutical molecules, which were obtained from crystal structure prediction process starting from the molecular diagram. Using GSK744 as a case study, the ab initio predicted that Gibbs free energy provides reliable further refinement of the predicted crystal structures and presents its capability for becoming a crystal stability determination approach in the future. The proposed work can assist in the comprehensive screening of pharmaceutical design and can provide structural predictions and stability evaluation for pharmaceutical crystals.
Collapse
Affiliation(s)
- Yanqiang Han
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
| | - Hongyuan Luo
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
| | - Qianqian Lu
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
| | - Zeying Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Correspondence: (J.L.); (Z.W.); (J.L.)
| | - Jiarui Zhang
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
- Correspondence: (J.L.); (Z.W.); (J.L.)
| | - Jinjin Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
- Correspondence: (J.L.); (Z.W.); (J.L.)
| |
Collapse
|
19
|
Omar ÖH, Del Cueto M, Nematiaram T, Troisi A. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13557-13583. [PMID: 34745630 PMCID: PMC8515942 DOI: 10.1039/d1tc03256a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 06/01/2023]
Abstract
We present a review of the field of high-throughput virtual screening for organic electronics materials focusing on the sequence of methodological choices that determine each virtual screening protocol. These choices are present in all high-throughput virtual screenings and addressing them systematically will lead to optimised workflows and improve their applicability. We consider the range of properties that can be computed and illustrate how their accuracy can be determined depending on the quality and size of the experimental datasets. The approaches to generate candidates for virtual screening are also extremely varied and their relative strengths and weaknesses are discussed. The analysis of high-throughput virtual screening is almost never limited to the identification of top candidates and often new patterns and structure-property relations are the most interesting findings of such searches. The review reveals a very dynamic field constantly adapting to match an evolving landscape of applications, methodologies and datasets.
Collapse
Affiliation(s)
- Ömer H Omar
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Marcos Del Cueto
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | | | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
20
|
Van Lommel R, De Borggraeve WM, De Proft F, Alonso M. Computational Tools to Rationalize and Predict the Self-Assembly Behavior of Supramolecular Gels. Gels 2021; 7:87. [PMID: 34287290 PMCID: PMC8293097 DOI: 10.3390/gels7030087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Supramolecular gels form a class of soft materials that has been heavily explored by the chemical community in the past 20 years. While a multitude of experimental techniques has demonstrated its usefulness when characterizing these materials, the potential value of computational techniques has received much less attention. This review aims to provide a complete overview of studies that employ computational tools to obtain a better fundamental understanding of the self-assembly behavior of supramolecular gels or to accelerate their development by means of prediction. As such, we hope to stimulate researchers to consider using computational tools when investigating these intriguing materials. In the concluding remarks, we address future challenges faced by the field and formulate our vision on how computational methods could help overcoming them.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
21
|
Fowles DJ, Palmer DS, Guo R, Price SL, Mitchell JBO. Toward Physics-Based Solubility Computation for Pharmaceuticals to Rival Informatics. J Chem Theory Comput 2021; 17:3700-3709. [PMID: 33988381 PMCID: PMC8190954 DOI: 10.1021/acs.jctc.1c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
We demonstrate that
physics-based calculations of intrinsic aqueous
solubility can rival cheminformatics-based machine learning predictions.
A proof-of-concept was developed for a physics-based approach via
a sublimation thermodynamic cycle, building upon previous work that
relied upon several thermodynamic approximations, notably the 2RT approximation, and limited conformational sampling. Here,
we apply improvements to our sublimation free-energy model with the
use of crystal phonon mode calculations to capture the contributions
of the vibrational modes of the crystal. Including these improvements
with lattice energies computed using the model-potential-based Ψmol method leads to accurate estimates of sublimation free
energy. Combining these with hydration free energies obtained from
either molecular dynamics free-energy perturbation simulations or
density functional theory calculations, solubilities comparable to
both experiment and informatics predictions are obtained. The application
to coronene, succinic acid, and the pharmaceutical desloratadine shows
how the methods must be adapted for the adoption of different conformations
in different phases. The approach has the flexibility to extend to
applications that cannot be covered by informatics methods.
Collapse
Affiliation(s)
- Daniel J Fowles
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, U.K
| | - David S Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, U.K
| | - Rui Guo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Sarah L Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - John B O Mitchell
- EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Scotland KY16 9ST, U.K
| |
Collapse
|
22
|
Surov AO, Voronin AP, Drozd KV, Gruzdev MS, Perlovich GL, Prashanth J, Balasubramanian S. Polymorphic forms of antiandrogenic drug nilutamide: structural and thermodynamic aspects. Phys Chem Chem Phys 2021; 23:9695-9708. [PMID: 33908506 DOI: 10.1039/d1cp00793a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attempts to obtain new cocrystals of nonsteroidal antiandrogenic drug nilutamide produced alternative polymorphic forms of the compound (Form II and Form III) and their crystal structures were elucidated by single-crystal X-ray diffraction. Apart from the cocrystallization technique, lyophilization was found to be an effective strategy for achieving polymorph control of nilutamide, which was difficult to obtain by other methods. The physicochemical properties and relative stability of the commercial Form I and newly obtained Form II were comprehensively investigated by a variety of analytical methods (thermal analysis, solution calorimetry, solubility, and sublimation), whereas for Form III, only a handful of experimental parameters were obtained due to the elusive nature of the polymorph. Form I and Form II were found to be monotropically related, with Form I being confirmed as the thermodynamically most stable solid phase. In addition, the performance of different DFT-D and semi-empirical schemes for lattice energy calculation and polymorph energy ranking was compared and analysed. Lattice energy calculations using periodic DFT at B3LYP-D3/6-31(F+)G(d,p) and PBEh-3c/def2-mSVP levels of theory were found to provide the most accurate lattice energy values for Form I against experimental data, while PIXEL and PBEh-3c/def2-mSVP were the only methods that predicted the correct order of stability of Forms I and II.
Collapse
Affiliation(s)
- Artem O Surov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Demir S, Tekin A. FFCASP: A Massively Parallel Crystal Structure Prediction Algorithm. J Chem Theory Comput 2021; 17:2586-2598. [PMID: 33798330 DOI: 10.1021/acs.jctc.0c01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new algorithm called Fast and Flexible CrystAl Structure Predictor (FFCASP) was developed to predict the structure of covalent and molecular crystals. FFCASP is massively parallel and able to handle more than 200 atoms in the unit cell (in other terms, it allows global optimization around 100 individual parameters). It uses a global optimizer specialized for Crystal Structure Prediction (CSP) which combines particle swarm and simulated annealing optimizers. Three different molecular crystals, including diverse intermolecular interactions, namely, cytosine, coumarin, and pyrazinamide, have been selected to evaluate the performance of FFCASP. While cytosine polymorphs have been searched by employing two different force fields (a DFT-SAPT based intermolecular potential and generalized amber force field (GAFF)) up to Z = 16, only GAFF has been used both in coumarin and pyrazinamide polymorph searches up to Z = 4. For these three molecular crystals, FFCASP generated more than 20 000 crystal structures, and the unique ones have been further treated by DFT-D3. A combination of data mining and a machine learning approach was introduced to determine the unique structures and their distribution into different clusters, which ultimately gives an opportunity to retrieve the common features and relations between the resulting structures. There are two known experimental crystal structures of cytosine, and both were successfully located with FFCASP. Two of the reported crystal structures of coumarin have been reproduced. Similarly, in pyrazinamide, three known experimental structures have been rediscovered. In addition to finding the experimentally known structures, FFCASP also located other low-energy structures for each considered molecular crystals. These successes of FFCASP offer the possibility to discover the polymorphic nature of other important molecular crystals (e.g., drugs) as well.
Collapse
Affiliation(s)
- Samet Demir
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.,TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Kocaeli, Turkey
| | - Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.,TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
24
|
Bowskill DH, Sugden IJ, Konstantinopoulos S, Adjiman CS, Pantelides CC. Crystal Structure Prediction Methods for Organic Molecules: State of the Art. Annu Rev Chem Biomol Eng 2021; 12:593-623. [PMID: 33770462 DOI: 10.1146/annurev-chembioeng-060718-030256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prediction of the crystal structures that a given organic molecule is likely to form is an important theoretical problem of significant interest for the pharmaceutical and agrochemical industries, among others. As evidenced by a series of six blind tests organized over the past 2 decades, methodologies for crystal structure prediction (CSP) have witnessed substantial progress and have now reached a stage of development where they can begin to be applied to systems of practical significance. This article reviews the state of the art in general-purpose methodologies for CSP, placing them within a common framework that highlights both their similarities and their differences. The review discusses specific areas that constitute the main focus of current research efforts toward improving the reliability and widening applicability of these methodologies, and offers some perspectives for the evolution of this technology over the next decade.
Collapse
Affiliation(s)
- David H Bowskill
- Molecular Systems Engineering Group, Centre for Process Systems Engineering, Department of Chemical Engineering, and Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;
| | - Isaac J Sugden
- Molecular Systems Engineering Group, Centre for Process Systems Engineering, Department of Chemical Engineering, and Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;
| | - Stefanos Konstantinopoulos
- Molecular Systems Engineering Group, Centre for Process Systems Engineering, Department of Chemical Engineering, and Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;
| | - Claire S Adjiman
- Molecular Systems Engineering Group, Centre for Process Systems Engineering, Department of Chemical Engineering, and Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;
| | - Constantinos C Pantelides
- Molecular Systems Engineering Group, Centre for Process Systems Engineering, Department of Chemical Engineering, and Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;
| |
Collapse
|
25
|
Bier I, Marom N. Machine Learned Model for Solid Form Volume Estimation Based on Packing-Accessible Surface and Molecular Topological Fragments. J Phys Chem A 2020; 124:10330-10345. [DOI: 10.1021/acs.jpca.0c06791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Imanuel Bier
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
26
|
Reutzel-Edens SM, Bhardwaj RM. Crystal forms in pharmaceutical applications: olanzapine, a gift to crystal chemistry that keeps on giving. IUCRJ 2020; 7:955-964. [PMID: 33209310 PMCID: PMC7642794 DOI: 10.1107/s2052252520012683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
This contribution reviews the efforts of many scientists around the world to discover and structurally characterize olanzapine crystal forms, clearing up inconsistencies in the scientific and patent literature and highlighting the challenges in identifying new forms amidst 60+ known polymorphs and solvates. Owing to its remarkable solid-state chemistry, olanzapine has emerged over the last three decades as a popular tool compound for developing new experimental and computational methods for enhanced molecular level understanding of solid-state structure, form diversity and crystallization outcomes. This article highlights the role of olanzapine in advancing the fundamental understanding of crystal forms, interactions within crystal structures, and growth units in molecular crystallization, as well as influencing the way in which drugs are developed today.
Collapse
Affiliation(s)
- Susan M. Reutzel-Edens
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Rajni M. Bhardwaj
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
27
|
Carpenter JE, Grünwald M. Heterogeneous Interactions Promote Crystallization and Spontaneous Resolution of Chiral Molecules. J Am Chem Soc 2020; 142:10755-10768. [DOI: 10.1021/jacs.0c02097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- John E. Carpenter
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael Grünwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Guo R, Uddin MN, Price LS, Price SL. Calculation of Diamagnetic Susceptibility Tensors of Organic Crystals: From Coronene to Pharmaceutical Polymorphs. J Phys Chem A 2020; 124:1409-1420. [PMID: 31951408 PMCID: PMC7145345 DOI: 10.1021/acs.jpca.9b07104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Understanding
why crystallization in strong magnetic fields can
lead to new polymorphs requires methods to calculate the diamagnetic
response of organic molecular crystals. We develop the calculation
of the macroscopic diamagnetic susceptibility tensor, χcryst, for organic molecular crystals using periodic density
functional methods. The crystal magnetic susceptibility tensor, χcryst, for all experimentally known polymorphs,
and its molecular counterpart, χmol,
are calculated for flexible pharmaceuticals such as carbamazepine,
flufenamic acid, and chalcones, and rigid molecules, such as benzene,
pyridine, acridine, anthracene, and coronene, whose molecular magnetic
properties have been traditionally studied. A tensor addition method
is developed to approximate the crystal diamagnetic susceptibility
tensor, χcryst, from the molecular one, χmol, giving good agreement with those calculated
directly using the more costly periodic density functional method
for χcryst. The response of pharmaceutical
molecules and crystals to magnetic fields, as embodied by χcryst, is largely determined by the packing in the crystal,
as well as the molecular conformation. The anisotropy of χcryst can vary considerably between polymorphs though
the isotropic terms are fairly constant. The implications for developing
a computational method for predicting whether crystallization in a
magnetic field could produce a novel or different polymorph are discussed.
Collapse
Affiliation(s)
- Rui Guo
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - M Nadia Uddin
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - Louise S Price
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - Sarah L Price
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| |
Collapse
|
29
|
Dudek MK, Paluch P, Śniechowska J, Nartowski KP, Day GM, Potrzebowski MJ. Crystal structure determination of an elusive methanol solvate – hydrate of catechin using crystal structure prediction and NMR crystallography. CrystEngComm 2020. [DOI: 10.1039/d0ce00452a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A useful short-cut was developed to limit the number of molecular conformations that need to be regarded in crystal structure prediction calculations, which led to the crystal structure determination of new methanol solvate – hydrate of catechin.
Collapse
Affiliation(s)
- Marta K. Dudek
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Justyna Śniechowska
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Karol P. Nartowski
- Department of Drug Form Technology
- Wroclaw Medical University
- 50-556 Wroclaw
- Poland
| | - Graeme M. Day
- Computational Systems Chemistry
- School of Chemistry
- University of Southampton
- UK
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| |
Collapse
|
30
|
Boothroyd S, Anwar J. Solubility prediction for a soluble organic molecule via chemical potentials from density of states. J Chem Phys 2019; 151:184113. [PMID: 31731842 DOI: 10.1063/1.5117281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the solubility of a substance is a fundamental property of widespread significance, its prediction from first principles (starting from only the knowledge of the molecular structure of the solute and solvent) remains a challenge. Recently, we proposed a robust and efficient method to predict the solubility from the density of states of a solute-solvent system using classical molecular simulation. The efficiency, and indeed the generality, of the method has now been enhanced by extending it to calculate solution chemical potentials (rather than probability distributions as done previously), from which solubility may be accessed. The method has been employed to predict the chemical potential of Form 1 of urea in both water and methanol for a range of concentrations at ambient conditions and for two charge models. The chemical potential calculations were validated by thermodynamic integration with the two sets of values being in excellent agreement. The solubility determined from the chemical potentials for urea in water ranged from 0.46 to 0.50 mol kg-1, while that for urea in methanol ranged from 0.62 to 0.85 mol kg-1, over the temperature range 298-328 K. In common with other recent studies of solubility prediction from molecular simulation, the predicted solubilities differ markedly from experimental values, reflecting limitations of current forcefields.
Collapse
Affiliation(s)
- Simon Boothroyd
- Chemical Theory and Computation, Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jamshed Anwar
- Chemical Theory and Computation, Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
31
|
Cui P, McMahon DP, Spackman PR, Alston BM, Little MA, Day GM, Cooper AI. Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights. Chem Sci 2019; 10:9988-9997. [PMID: 32055355 PMCID: PMC6991173 DOI: 10.1039/c9sc02832c] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
New crystal forms of two well-studied organic molecules are identified in a computationally targeted way, by combining structure prediction with a robotic crystallisation screen, including a ‘hidden’ porous polymorph of trimesic acid.
Organic molecules tend to close pack to form dense structures when they are crystallised from organic solvents. Porous molecular crystals defy this rule: they contain open space, which is typically stabilised by inclusion of solvent in the interconnected pores during crystallisation. The design and discovery of such structures is often challenging and time consuming, in part because it is difficult to predict solvent effects on crystal form stability. Here, we combine crystal structure prediction (CSP) with a robotic crystallisation screen to accelerate the discovery of stable hydrogen-bonded frameworks. We exemplify this strategy by finding new phases of two well-studied molecules in a computationally targeted way. Specifically, we find a new ‘hidden’ porous polymorph of trimesic acid, δ-TMA, that has a guest-free hexagonal pore structure, as well as three new solvent-stabilized diamondoid frameworks of adamantane-1,3,5,7-tetracarboxylic acid (ADTA). Beyond porous solids, this hybrid computational–experimental approach could be applied to a wide range of materials problems, such as organic electronics and drug formulation.
Collapse
Affiliation(s)
- Peng Cui
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK .
| | - David P McMahon
- Computational Systems Chemistry , School of Chemistry , University of Southampton , SO17 1BJ , UK .
| | - Peter R Spackman
- Computational Systems Chemistry , School of Chemistry , University of Southampton , SO17 1BJ , UK . .,Leverhulme Research Centre for Functional Materials Design , Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK
| | - Ben M Alston
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK . .,Leverhulme Research Centre for Functional Materials Design , Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK .
| | - Graeme M Day
- Computational Systems Chemistry , School of Chemistry , University of Southampton , SO17 1BJ , UK .
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK . .,Leverhulme Research Centre for Functional Materials Design , Department of Chemistry and Materials Innovation Factory , University of Liverpool , Liverpool , L7 3NY , UK
| |
Collapse
|
32
|
Ueberricke L, Holub D, Kranz J, Rominger F, Elstner M, Mastalerz M. Triptycene End-Capped Quinoxalinophenanthrophenazines (QPPs): Influence of Substituents and Conditions on Aggregation in the Solid State. Chemistry 2019; 25:11121-11134. [PMID: 31210369 DOI: 10.1002/chem.201902002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 11/07/2022]
Abstract
Triptycene end-capped quinoxalinophenanthrophenazine reveals a coplanar arrangement with a high overlap of the π planes. Four structurally related model compounds bearing electron-withdrawing or -donating groups were synthesized, and their optoelectronic properties were characterized by using cyclovoltammetry, absorption- and emission spectroscopy as well as theoretical calculations. The directional robustness of the triptycene end-capping of these compounds was tested by using single-crystal X-ray diffraction. The impact of solvents and crystallization conditions has also been investigated. In total, 17 single-crystal structures were obtained. Each structure was evaluated for its potential charge-transfer capability taking into account the overall molecular packing, solvent enclathration and the structural overlap of the π planes of adjacent molecules. For this purpose, charge-transfer integrals were also calculated for every π-stacked dimer.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Daniel Holub
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Julian Kranz
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcus Elstner
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
33
|
Bhardwaj RM, McMahon JA, Nyman J, Price LS, Konar S, Oswald IDH, Pulham CR, Price SL, Reutzel-Edens SM. A Prolific Solvate Former, Galunisertib, under the Pressure of Crystal Structure Prediction, Produces Ten Diverse Polymorphs. J Am Chem Soc 2019; 141:13887-13897. [DOI: 10.1021/jacs.9b06634] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajni M. Bhardwaj
- Small Molecule Design & Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jennifer A. McMahon
- Small Molecule Design & Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jonas Nyman
- Small Molecule Design & Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
- School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Louise S. Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Sumit Konar
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Iain D. H. Oswald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, U.K
| | - Colin R. Pulham
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Sarah L. Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Susan M. Reutzel-Edens
- Small Molecule Design & Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
34
|
Taylor R, Wood PA. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem Rev 2019; 119:9427-9477. [PMID: 31244003 DOI: 10.1021/acs.chemrev.9b00155] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The founding in 1965 of what is now called the Cambridge Structural Database (CSD) has reaped dividends in numerous and diverse areas of chemical research. Each of the million or so crystal structures in the database was solved for its own particular reason, but collected together, the structures can be reused to address a multitude of new problems. In this Review, which is focused mainly on the last 10 years, we chronicle the contribution of the CSD to research into molecular geometries, molecular interactions, and molecular assemblies and demonstrate its value in the design of biologically active molecules and the solid forms in which they are delivered. Its potential in other commercially relevant areas is described, including gas storage and delivery, thin films, and (opto)electronics. The CSD also aids the solution of new crystal structures. Because no scientific instrument is without shortcomings, the limitations of CSD research are assessed. We emphasize the importance of maintaining database quality: notwithstanding the arrival of big data and machine learning, it remains perilous to ignore the principle of garbage in, garbage out. Finally, we explain why the CSD must evolve with the world around it to ensure it remains fit for purpose in the years ahead.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Peter A Wood
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
35
|
A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nat Commun 2019; 10:2048. [PMID: 31053704 PMCID: PMC6499792 DOI: 10.1038/s41467-019-10011-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable "steric control units" (SCUs). We determined the optimal alignment of core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a computational analysis. Then, we created a large library of handle-equipped MOF chromophoric linkers and computationally screened for the best SCUs. A thorough photophysical characterization confirmed the formation of J-aggregates with bright green emission, with unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This data demonstrates the viability of MOF-based crystal engineering approaches that can be universally applied to tailor the photophysical properties of organic semiconductor materials.
Collapse
|
36
|
Yang J, Li N, Li S. The interplay among molecular structures, crystal symmetries and lattice energy landscapes revealed using unsupervised machine learning: a closer look at pyrrole azaphenacenes. CrystEngComm 2019. [DOI: 10.1039/c9ce01190k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using unsupervised machine learning and CSPs to help crystallographers better understand how crystallizations are affected by molecular structures.
Collapse
Affiliation(s)
- Jack Yang
- Advanced Materials and Manufacturing Futures Institute
- School of Material Science and Engineering
- University of New South Wales
- Sydney
- Australia
| | - Nathan Li
- Advanced Materials and Manufacturing Futures Institute
- School of Material Science and Engineering
- University of New South Wales
- Sydney
- Australia
| | - Sean Li
- Advanced Materials and Manufacturing Futures Institute
- School of Material Science and Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
37
|
Nyman J, Yu L, Reutzel-Edens SM. Accuracy and reproducibility in crystal structure prediction: the curious case of ROY. CrystEngComm 2019. [DOI: 10.1039/c8ce01902a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of excessive electron delocalization, the polymorphs of ROY constitute a surprisingly challenging system for crystal structure prediction.
Collapse
Affiliation(s)
- Jonas Nyman
- School of Pharmacy
- University of Wisconsin – Madison
- Madison
- USA
- Small Molecule Design & Development
| | - Lian Yu
- School of Pharmacy
- University of Wisconsin – Madison
- Madison
- USA
| | | |
Collapse
|
38
|
Kamat K, Peters B. Gibbs free-energy differences between polymorphs via a diabat approach. J Chem Phys 2018; 149:214106. [PMID: 30525715 DOI: 10.1063/1.5051448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polymorph free-energy differences are critical to several applications. A recently proposed diabat interpolation framework estimated free-energy differences between polymorphs by quadratic interpolation of diabats. This work extends the Zwanzig-Bennett relation to the NPT ensemble so that the diabats directly give Gibbs free-energy differences. We also demonstrate how the approach can be used in cases where the diabats are not parabolic. We illustrate the diabat method for Gibbs free-energy difference of zirconium (BCC and HCP phases) and compare it with the conventional lattice switch Monte Carlo approach.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Baron Peters
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
39
|
Gryn'ova G, Lin KH, Corminboeuf C. Read between the Molecules: Computational Insights into Organic Semiconductors. J Am Chem Soc 2018; 140:16370-16386. [PMID: 30395466 PMCID: PMC6287891 DOI: 10.1021/jacs.8b07985] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
performance and key electronic properties of molecular organic
semiconductors are dictated by the interplay between the chemistry
of the molecular core and the intermolecular factors of which manipulation
has inspired both experimentalists and theorists. This Perspective
presents major computational challenges and modern methodological
strategies to advance the field. The discussion ranges from insights
and design principles at the quantum chemical level, in-depth atomistic
modeling based on multiscale protocols, morphological prediction and
characterization as well as energy-property maps involving data-driven
analysis. A personal overview of the past achievements and future
direction is also provided.
Collapse
Affiliation(s)
- Ganna Gryn'ova
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
40
|
Price SL. Control and prediction of the organic solid state: a challenge to theory and experiment †. Proc Math Phys Eng Sci 2018; 474:20180351. [PMID: 30333710 PMCID: PMC6189584 DOI: 10.1098/rspa.2018.0351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/15/2018] [Indexed: 11/12/2022] Open
Abstract
The ability of theoretical chemists to quantitatively model the weak forces between organic molecules is being exploited to predict their crystal structures and estimate their physical properties. Evolving crystal structure prediction methods are increasingly being used to aid the design of organic functional materials and provide information about thermodynamically plausible polymorphs of speciality organic materials to aid, for example, pharmaceutical development. However, the increasingly sophisticated experimental studies for detecting the range of organic solid-state behaviours provide many challenges for improving quantitative theories that form the basis for the computer modelling. It is challenging to calculate the relative thermodynamic stability of different organic crystal structures, let alone understand the kinetic effects that determine which polymorphs can be observed and are practically important. However, collaborations between experiment and theory are reaching the stage of devising experiments to target the first crystallization of new polymorphs or create novel organic molecular materials.
Collapse
Affiliation(s)
- Sarah L. Price
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| |
Collapse
|