1
|
Yang X, Pu X, Xu Y, Zhao J, Fang X, Cui J, Deng G, Liu Y, Zhu L, Shao M, Yang K. A novel prognosis evaluation indicator of patients with sepsis created by integrating six microfluidic-based neutrophil chemotactic migration parameters. Talanta 2025; 281:126801. [PMID: 39241649 DOI: 10.1016/j.talanta.2024.126801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Impaired neutrophil migration in sepsis is associated with a poor prognosis. The potential of utilizing neutrophil chemotaxis to assess immune function, disease severity, and patient prognosis in sepsis remains underexplored. This study employed an innovative approach by integrating a multi-tip pipette with a Six-Unit microfluidic chip (SU6-chip) to establish gradients in six microchannels, thereby analyzing neutrophil chemotaxis in sepsis patients. We compared chemotactic parameters between healthy controls (NH = 20) and sepsis patients (NS1 = 25), observing significant differences in gradient perception time (GP), migration distance (MD), peak velocity (Vmax), chemotactic index (CI), reverse migration rate (RM), and stop migration number (SM). A novel composite indicator, the Sepsis Neutrophil Migration Evaluation (SNME) index, was developed by integrating these six chemotactic migration parameters. The SNME index and individual chemotaxis parameters showed significant correlations with the Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE II) score, hypersensitivity C-reactive protein (hs-CRP), and heparin-binding protein (HBP). Moreover, the SNME index demonstrated potential for monitoring sepsis progression, with ROC analysis confirming its predictive accuracy (area under the curve [AUC] = 0.895, cutoff value = 31.5, specificity = 86.73 %, sensitivity = 86.71 %), outperforming individual neutrophil chemotactic parameters. In conclusion, the SNME index represents a promising new tool for adjunctive diagnosis and prognosis assessment in patients with sepsis.
Collapse
Affiliation(s)
- Xiao Yang
- University of Science and Technology of China, Hefei, 230026, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xuexue Pu
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuanyuan Xu
- Department of Pediatric Critical Care Medicine, Children's Medical Center of Anhui Medical University, Hefei, 230051, China
| | - Jun Zhao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiao Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junsheng Cui
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Guoqing Deng
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Min Shao
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Ascione F, Ferraro R, Dogra P, Cristini V, Guido S, Caserta S. Gradient-induced instability in tumour spheroids unveils the impact of microenvironmental nutrient changes. Sci Rep 2024; 14:20837. [PMID: 39242641 PMCID: PMC11379688 DOI: 10.1038/s41598-024-69570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.
Collapse
Affiliation(s)
- Flora Ascione
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy
| | - Rosalia Ferraro
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via G. Salvatore 436, 80131, Naples, Italy
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via G. Salvatore 436, 80131, Naples, Italy
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy.
- CEINGE Advanced Biotechnologies Franco Salvatore, Via G. Salvatore 436, 80131, Naples, Italy.
| |
Collapse
|
3
|
Huang S, Wu J, Zheng L, Long Y, Chen J, Li J, Dai B, Lin F, Zhuang S, Zhang D. 3D free-assembly modular microfluidics inspired by movable type printing. MICROSYSTEMS & NANOENGINEERING 2023; 9:111. [PMID: 37705925 PMCID: PMC10495351 DOI: 10.1038/s41378-023-00585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Reconfigurable modular microfluidics presents an opportunity for flexibly constructing prototypes of advanced microfluidic systems. Nevertheless, the strategy of directly integrating modules cannot easily fulfill the requirements of common applications, e.g., the incorporation of materials with biochemical compatibility and optical transparency and the execution of small batch production of disposable chips for laboratory trials and initial tests. Here, we propose a manufacturing scheme inspired by the movable type printing technique to realize 3D free-assembly modular microfluidics. Double-layer 3D microfluidic structures can be produced by replicating the assembled molds. A library of modularized molds is presented for flow control, droplet generation and manipulation and cell trapping and coculture. In addition, a variety of modularized attachments, including valves, light sources and microscopic cameras, have been developed with the capability to be mounted onto chips on demand. Microfluidic systems, including those for concentration gradient generation, droplet-based microfluidics, cell trapping and drug screening, are demonstrated. This scheme enables rapid prototyping of microfluidic systems and construction of on-chip research platforms, with the intent of achieving high efficiency of proof-of-concept tests and small batch manufacturing.
Collapse
Affiliation(s)
- Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Junyi Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Jianlang Li
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| |
Collapse
|
4
|
Ren J, Chen W, Zhong Z, Wang N, Chen X, Yang H, Li J, Tang P, Fan Y, Lin F, Bai C, Wu J. Bronchoalveolar Lavage Fluid from Chronic Obstructive Pulmonary Disease Patients Increases Neutrophil Chemotaxis Measured by a Microfluidic Platform. MICROMACHINES 2023; 14:1740. [PMID: 37763903 PMCID: PMC10537285 DOI: 10.3390/mi14091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a persistent and progressive respiratory disorder characterized by expiratory airflow limitation caused by chronic inflammation. Evidence has shown that COPD is correlated with neutrophil chemotaxis towards the airways, resulting in neutrophilic airway inflammation. This study aimed to evaluate neutrophil chemotaxis in bronchoalveolar lavage fluid (BALF) from COPD patients using a high-throughput nine-unit microfluidic platform and explore the possible correlations between neutrophil migratory dynamics and COPD development. The results showed that BALF from COPD patients induced stronger neutrophil chemotaxis than the Control BALF. Our results also showed that the chemotactic migration of neutrophils isolated from the blood of COPD patients was not significantly different from neutrophils from healthy controls, and neutrophil migration in three known chemoattractants (fMLP, IL-8, and LTB4) was not affected by glucocorticoid treatment. Moreover, comparison with clinical data showed a trend of a negative relationship between neutrophil migration chemotactic index (C. I.) in COPD BALF and patient's spirometry data, suggesting a potential correlation between neutrophil migration and the severity of COPD. The present study demonstrated the feasibility of using the microfluidic platform to assess neutrophil chemotaxis in COPD pathogenesis, and it may serve as a potential marker for COPD evaluation in the future.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenfang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zhicheng Zhong
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xi Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Ping Tang
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Changqing Bai
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Yang X, Gao C, Liu Y, Zhu L, Yang K. Simplified Cell Magnetic Isolation Assisted SC 2 Chip to Realize "Sample in and Chemotaxis Out": Validated by Healthy and T2DM Patients' Neutrophils. MICROMACHINES 2022; 13:1820. [PMID: 36363840 PMCID: PMC9692824 DOI: 10.3390/mi13111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Neutrophil migration in tissues critically regulates the human immune response and can either play a protective role in host defense or cause health problems. Microfluidic chips are increasingly applied to study neutrophil migration, attributing to their advantages of low reagent consumption, stable chemical gradients, visualized cell chemotaxis monitoring, and quantification. Most chemotaxis chips suffered from low throughput and fussy cell separation operations. We here reported a novel and simple "sample in and chemotaxis out" method for rapid neutrophils isolation from a small amount of whole blood based on a simplified magnetic method, followed by a chemotaxis assay on a microfluidic chip (SC2 chip) consisting of six cell migration units and six-cell arrangement areas. The advantages of the "sample in and chemotaxis out" method included: less reagent consumption (10 μL of blood + 1 μL of magnetic beads + 1 μL of lysis buffer); less time (5 min of cell isolation + 15 min of chemotaxis testing); no ultracentrifugation; more convenient; higher efficiency; high throughput. We have successfully validated the approach by measuring neutrophil chemotaxis to frequently-used chemoattractant (i.e., fMLP). The effects of D-glucose and mannitol on neutrophil chemotaxis were also analyzed. In addition, we demonstrated the effectiveness of this approach for testing clinical samples from diabetes mellitus type 2 (T2DM) patients. We found neutrophils' migration speed was higher in the "well-control" T2DM than in the "poor-control" group. Pearson coefficient analysis further showed that the migration speed of T2DM was negatively correlated with physiological indicators, such as HbA1c (-0.44), triglyceride (-0.36), C-reactive protein (-0.28), and total cholesterol (-0.28). We are very confident that the developed "sample in and chemotaxis out" method was hoped to be an attractive model for analyzing the chemotaxis of healthy and disease-associated neutrophils.
Collapse
Affiliation(s)
- Xiao Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Chaoru Gao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Liu Y, Ren X, Wu J, Wilkins JA, Lin F. T Cells Chemotaxis Migration Studies with a Multi-Channel Microfluidic Device. MICROMACHINES 2022; 13:1567. [PMID: 36295920 PMCID: PMC9611841 DOI: 10.3390/mi13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Immune surveillance is dependent on lymphocyte migration and targeted recruitment. This can involve different modes of cell motility ranging from random walk to highly directional environment-guided migration driven by chemotaxis. This study protocol describes a flow-based microfluidic device to perform quantitative multiplex cell migration assays with the potential to investigate in real time the migratory response of T cells at the population or single-cell level. The device also allows for subsequent in situ fixation and direct fluorescence analysis of the cells in the microchannel.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada
| | - Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John A. Wilkins
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, 799 JBRC, 715 McDermot Ave, Winnipeg, MB R3E 3P4, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Ren J, Wang N, Guo P, Fan Y, Lin F, Wu J. Recent advances in microfluidics-based cell migration research. LAB ON A CHIP 2022; 22:3361-3376. [PMID: 35993877 DOI: 10.1039/d2lc00397j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell migration is crucial for many biological processes, including normal development, immune response, and tissue homeostasis and many pathological processes such as cancer metastasis and wound healing. Microfluidics has revolutionized the research in cell migration since its inception as it reduces the cost of studies and allows precise manipulation of different parameters that affect cell migratory response. Over the past decade, the field has made great strides in many directions, such as techniques for better control of the cellular microenvironment, application-oriented physiological-like models, and machine-assisted cell image analysis methods. Here we review recent developments in the field of microfluidic cell migration through the following aspects: 1) the co-culture models for studying host-pathogen interactions at single-cell resolution; 2) the spatiotemporal manipulation of the chemical gradients guiding cell migration; 3) the organ-on-chip models to study cell transmigration; and 4) the deep learning image processing strategies for cell migration data analysis. We further discuss the challenges, possible improvement and future perspectives of using microfluidic techniques to study cell migration.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Piao Guo
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang University Cancer Center, Hangzhou, 310003, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Zhang J, Tavakoli H, Ma L, Li X, Han L, Li X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 2022; 187:114365. [PMID: 35667465 DOI: 10.1016/j.addr.2022.114365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has achieved remarkable success over the past decade by modulating patients' own immune systems and unleashing pre-existing immunity. However, only a minority of cancer patients across different cancer types are able to benefit from immunotherapy treatment; moreover, among those small portions of patients with response, intrinsic and acquired resistance remains a persistent challenge. Because the tumor microenvironment (TME) is well recognized to play a critical role in tumor initiation, progression, metastasis, and the suppression of the immune system and responses to immunotherapy, understanding the interactions between the TME and the immune system is a pivotal step in developing novel and efficient cancer immunotherapies. With unique features such as low reagent consumption, dynamic and precise fluid control, versatile structures and function designs, and 3D cell co-culture, microfluidic tumor organoid-on-a-chip platforms that recapitulate key factors of the TME and the immune contexture have emerged as innovative reliable tools to investigate how tumors regulate their TME to counteract antitumor immunity and the mechanism of tumor resistance to immunotherapy. In this comprehensive review, we focus on recent advances in tumor organoid-on-a-chip platforms for studying the interaction between the TME and the immune system. We first review different factors of the TME that recent microfluidic in vitro systems reproduce to generate advanced tools to imitate the crosstalk between the TME and the immune system. Then, we discuss their applications in the assessment of different immunotherapies' efficacy using tumor organoid-on-a-chip platforms. Finally, we present an overview and the outlook of engineered microfluidic platforms in investigating the interactions between cancer and immune systems, and the adoption of patient-on-a-chip models in clinical applications toward personalized immunotherapy.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lichun Han
- Xi'an Daxing Hospital, Xi'an 710016, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA; Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA.
| |
Collapse
|
9
|
Lin X, Su J, Zhou S. Microfluidic chip of concentration gradient and fluid shear stress on a single cell level. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Ippolitov D, Arreza L, Munir MN, Hombach-Klonisch S. Brain Microvascular Pericytes—More than Bystanders in Breast Cancer Brain Metastasis. Cells 2022; 11:cells11081263. [PMID: 35455945 PMCID: PMC9028330 DOI: 10.3390/cells11081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Brain tissue contains the highest number of perivascular pericytes compared to other organs. Pericytes are known to regulate brain perfusion and to play an important role within the neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell type a prime candidate to aid physiological adaptations but also propose pericytes as important modulators in diverse pathologies in the brain. This review highlights known phenotypes of pericytes in the brain, discusses the diverse markers for brain pericytes, and reviews current in vitro and in vivo experimental models to study pericyte function. Our current knowledge of pericyte phenotypes as it relates to metastatic growth patterns in breast cancer brain metastasis is presented as an example for the crosstalk between pericytes, endothelial cells, and metastatic cells. Future challenges lie in establishing methods for real-time monitoring of pericyte crosstalk to understand causal events in the brain metastatic process.
Collapse
Affiliation(s)
- Danyyl Ippolitov
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Leanne Arreza
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Maliha Nuzhat Munir
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
- Department of Pathology, University of Manitoba, Winnipeg, MB R3E 0Z2, Canada
- Correspondence:
| |
Collapse
|
11
|
Chen L, Zheng Y, Liu Y, Tian P, Yu L, Bai L, Zhou F, Yang Y, Cheng Y, Wang F, Zheng L, Jiang F, Zhu Y. Microfluidic-based in vitro thrombosis model for studying microplastics toxicity. LAB ON A CHIP 2022; 22:1344-1353. [PMID: 35179168 DOI: 10.1039/d1lc00989c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential impact of microplastics (MPs) on health has caused great concern, and a toxicology platform that realistically reproduces the system behaviour is urgently needed to further explore and validate MP-related health issues. Herein, we introduce an optically assisted thrombus platform to reveal the interaction of MPs with the vascular system. The risk of accumulation has also been evaluated using a mouse model, and the effect of MPs on the properties of the thrombus are validated via in vitro experiments. The microfluidic system is endothelialized, and the regional tissue injury-induced thrombosis is then realized through optical irradiation. Whole blood is perfused with MPs, and the invasion process visualized and recorded. The mouse model shows a cumulative risk in the blood with continuous exposure to MPs (P-value < 0.0001). The on-chip results show that MP invasion leads to decreased binding of fibrin to platelets (P-value < 0.0001), which is consistent with the results of the in vitro experiments, and shows a high risk of thrombus shedding in real blood flow compared with normal thrombus. This work provides a new method to further reveal MP-related health risks.
Collapse
Affiliation(s)
- Longfei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yantong Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Pengfu Tian
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Le Yu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Li Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Fenghua Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
12
|
Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X. Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. NANO LETTERS 2022; 22:1091-1099. [PMID: 35089039 DOI: 10.1021/acs.nanolett.1c04184] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential toxicity of nanoplastics on plants has previously been illustrated, but whether nanoplastics could cause neurotoxicity, especially to higher animals, remains unclear. We now demonstrate that nanoplastics can be deposited in the brain via nasal inhalation, triggering neuron toxicity and altering the animal behavior. Polystyrene nanoparticles (PS-NPs) of PS-COOH and PS-NH2 are used as models for nanoplastics. We designed a microfluidic chip to evaluate the PS-NPs with different concentrations, surface ligands, and sizes to interact with neurons. Smaller PS-NPs can induce more cellular uptake than larger PS-NPs. PS-NPs with a size of 80 nm can reach and deposit in the brain of mice via aerosol inhalation. Mice inhaling PS-NPs exhibit fewer activities in comparison to those inhaling water droplets. An obvious neurotoxicity of the nanoplastics could be observed from the results of the inhibition of AChE activities. Our results show the potential significance of the physiochemical properties of organic nanoplastics on depositing in mammalian brains by nasal inhalation.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Yingcan Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiabin Dou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, People's Republic of China
| | - Qinghong Hou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jinxiong Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, People's Republic of China
| |
Collapse
|
13
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
14
|
Dai B, Long Y, Wu J, Huang S, Zhao Y, Zheng L, Tao C, Guo S, Lin F, Fu Y, Zhang D, Zhuang S. Generation of flow and droplets with an ultra-long-range linear concentration gradient. LAB ON A CHIP 2021; 21:4390-4400. [PMID: 34704106 DOI: 10.1039/d1lc00749a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the chemical and biological fields, the creation of concentration gradient microenvironments is an important approach for many applications, such as crystal growth and drug screening. Although many concentration gradient generators have been demonstrated, current generators can hardly produce ultra-long linear concentration gradients. In this paper, we propose a concentration-gradient flow/droplet generator which consists of a microfluidic flow switch, a cavity array for stage-by-stage concentration dilution, and an optional T-junction for droplet formation. The generator can realize an ultra-long continuously-varying concentration gradient along the flow direction. Generation of a 38 mm concentration gradient was demonstrated. The length can be further extended by enlarging the capacity of the cavities and increasing the number of the stages. The concentration gradient showed high linearity in the range of 10% to 90%. Moreover, cyclic generation of a concentration gradient flow and droplets with different concentrations was realized by the generator. In a demonstration of drug screening, the generator was employed to produce paclitaxel in different concentrations. A negative correlation between the 4T1 cell viability and the paclitaxel concentration was observed after the treatment. We envision that the concentration gradient generator will be a promising candidate for various drug screening applications.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuan Zhao
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Chunxian Tao
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Yongfeng Fu
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
15
|
A Novel Microfluidic Device for the Neutrophil Functional Phenotype Analysis: Effects of Glucose and Its Derivatives AGEs. MICROMACHINES 2021; 12:mi12080944. [PMID: 34442566 PMCID: PMC8399494 DOI: 10.3390/mi12080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
Neutrophil dysfunction is closely related to the pathophysiology of patients with diabetes mellitus, but existing immunoassays are difficult to implement in clinical applications, and neutrophil’s chemotaxis as a functional biomarker for diabetes mellitus prognostic remains largely unexplored. Herein, a novel microfluidic device consisted of four independent test units with four cell docking structures was developed to study the neutrophil chemotaxis, which allowed multiple cell migration observations under a single field of view (FOV) and guaranteed more reliable results. In vitro studies, the chemotaxis of healthy neutrophils to N-Formyl-Met-Leu-Phe (fMLP) gradient (0, 10, 100, and 1000 nM) was concentration-dependent. The distinct promotion or suppression in the chemotaxis of metformin or pravastatin pretreated cells were observed after exposure to 100 nM fMLP gradient, indicating the feasibility and efficiency of this novel microfluidic device for clinically relevant evaluation of neutrophil functional phenotype. Further, the chemotaxis of neutrophils pretreated with 25, 50, or 70 mM of glucose was quantitatively lower than that of the control groups (i.e., 5 mM normal serum level). Neutrophils exposed to highly concentrated advanced glycation end products (AGEs) (0.2, 0.5, or 1.0 μM; 0.13 μM normal serum AGEs level), a product of prolonged hyperglycemia, showed that the higher the AGEs concentration was, the weaker the migration speed became. Specifically, neutrophils exposed to high concentrations of glucose or AGEs also showed a stronger drifting along with the flow, further demonstrating the change of neutrophil chemotaxis. Interestingly, adding the N-benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1) (i.e., high-affinity RAGE inhibitor) into the migration medium with AGEs could hinder the binding between AGEs and AGE receptor (RAGE) located on the neutrophil, thereby keeping the normal chemotaxis of neutrophils than the ones incubated with AGEs alone. These results revealed the negative effects of high concentrations of glucose and AGEs on the neutrophil chemotaxis, suggesting that patients with diabetes should manage serum AGEs and also pay attention to blood glucose indexes. Overall, this novel microfluidic device could significantly characterize the chemotaxis of neutrophils and have the potential to be further improved into a tool for risk stratification of diabetes mellitus.
Collapse
|
16
|
Baldwin SA, Van Bruggen SM, Koelbl JM, Appalabhotla R, Bear JE, Haugh JM. Microfluidic devices fitted with "flowver" paper pumps generate steady, tunable gradients for extended observation of chemotactic cell migration. BIOMICROFLUIDICS 2021; 15:044101. [PMID: 34290842 PMCID: PMC8282348 DOI: 10.1063/5.0054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/19/2021] [Indexed: 05/11/2023]
Abstract
Microfluidics approaches have gained popularity in the field of directed cell migration, enabling control of the extracellular environment and integration with live-cell microscopy; however, technical hurdles remain. Among the challenges are the stability and predictability of the environment, which are especially critical for the observation of fibroblasts and other slow-moving cells. Such experiments require several hours and are typically plagued by the introduction of bubbles and other disturbances that naturally arise in standard microfluidics protocols. Here, we report on the development of a passive pumping strategy, driven by the high capillary pressure and evaporative capacity of paper, and its application to study fibroblast chemotaxis. The paper pumps-flowvers (flow + clover)-are inexpensive, compact, and scalable, and they allow nearly bubble-free operation, with a predictable volumetric flow rate on the order of μl/min, for several hours. To demonstrate the utility of this approach, we combined the flowver pumping strategy with a Y-junction microfluidic device to generate a chemoattractant gradient landscape that is both stable (6+ h) and predictable (by finite-element modeling calculations). Integrated with fluorescence microscopy, we were able to recapitulate previous, live-cell imaging studies of fibroblast chemotaxis to platelet derived growth factor (PDGF), with an order-of-magnitude gain in throughput. The increased throughput of single-cell analysis allowed us to more precisely define PDGF gradient conditions conducive for chemotaxis; we were also able to interpret how the orientation of signaling through the phosphoinositide 3-kinase pathway affects the cells' sensing of and response to conducive gradients.
Collapse
Affiliation(s)
- Scott A. Baldwin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Shawn M. Van Bruggen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Joseph M. Koelbl
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Ravikanth Appalabhotla
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| |
Collapse
|
17
|
Liu X, Jia Y, Han Z, Hou Q, Zhang W, Zheng W, Jiang X. Integrating a Concentration Gradient Generator and a Single-Cell Trapper Array for High-Throughput Screening the Bioeffects of Nanomaterials. Angew Chem Int Ed Engl 2021; 60:12319-12322. [PMID: 33770418 DOI: 10.1002/anie.202101293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 02/02/2023]
Abstract
We herein develop a concentration gradient generator (CGG) on a microfluidic chip for diluting different nanoparticles. Specifically designed compact disk (CD)-shaped microchannels in the CGG module could thoroughly mix the flowing solutions and generate a linear concentration gradient of nanoparticles without aggregation. We combine the CGG with a single-cell trapper array (SCA) on microfluidics to evaluate the concentration-dependent bioeffects of the nanoparticles. The precise control of the spatiotemporal generation of nanoparticle concentration on the CGG module and the single-cell-level monitoring of the cell behaviors on the SCA module by a high-content system in real time, render the CGG-SCA system a highly precise platform, which can exclude the average effect of cell population and reflect the response of individual cells to the gradient concentrations accurately. In addition, the CGG-SCA system provides an automated platform for high-throughput screening of nanomedicines with high precision and low sample consumption.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yuexiao Jia
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Ziwei Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
| | - Qinghong Hou
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Wenfu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xingyu Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Liu X, Jia Y, Han Z, Hou Q, Zhang W, Zheng W, Jiang X. Integrating a Concentration Gradient Generator and a Single‐Cell Trapper Array for High‐Throughput Screening the Bioeffects of Nanomaterials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
- University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Yuexiao Jia
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Ziwei Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
| | - Qinghong Hou
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Wenfu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Xingyu Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
- University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
19
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
20
|
Wang A, Boroujeni SM, Schneider PJ, Christie LB, Mancuso KA, Andreadis ST, Oh KW. An Integrated Centrifugal Degassed PDMS-Based Microfluidic Device for Serial Dilution. MICROMACHINES 2021; 12:482. [PMID: 33922553 PMCID: PMC8145514 DOI: 10.3390/mi12050482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
We propose an integrated serial dilution generator utilizing centrifugal force with a degassed polydimethylsiloxane (PDMS) microfluidic device. Using gas-soluble PDMS as a centrifugal microfluidic device material, the sample can be dragged in any arbitrary direction using vacuum-driven force, as opposed to in a single direction, without adding further actuation components. The vacuum-driven force allows the device to avoid the formation of air bubbles and exhibit high tolerance in the surface condition. The device was then used for sample metering and sample transferring. In addition, centrifugal force was used for sample loading and sample mixing. In this study, a series of ten-fold serial dilutions ranging from 100 to 10-4 with about 8 μL in each chamber was achieved, while the serial dilution ratio and chamber volume could easily be altered by changing the geometrical designs of the device. As a proof of concept of our hybrid approach with the centrifugal and vacuum-driven forces, ten-fold serial dilutions of a cDNA (complementary DNA) sample were prepared using the device. Then, the diluted samples were collected by fine needles and subject to a quantitative polymerase chain reaction (qPCR), and the results were found to be in good agreement with those for samples prepared by manual pipetting.
Collapse
Affiliation(s)
- Anyang Wang
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Samaneh Moghadasi Boroujeni
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA; (S.M.B.); (S.T.A.)
| | - Philip J. Schneider
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Liam B. Christie
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Kyle A. Mancuso
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA; (S.M.B.); (S.T.A.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14263, USA
| | - Kwang W. Oh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA
| |
Collapse
|
21
|
Ren X, Getschman AE, Hwang S, Volkman BF, Klonisch T, Levin D, Zhao M, Santos S, Liu S, Cheng J, Lin F. Investigations on T cell transmigration in a human skin-on-chip (SoC) model. LAB ON A CHIP 2021; 21:1527-1539. [PMID: 33616124 PMCID: PMC8058301 DOI: 10.1039/d0lc01194k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A microfluidics-based three-dimensional skin-on-chip (SoC) model is developed in this study to enable quantitative studies of transendothelial and transepithelial migration of human T lymphocytes in mimicked skin inflammatory microenvironments and to test new drug candidates. The keys results include 1) CCL20-dependent T cell transmigration is significantly inhibited by an engineered CCL20 locked dimer (CCL20LD), supporting the potential immunotherapeutic use of CCL20LD for treating skin diseases such as psoriasis; 2) transepithelial migration of T cells in response to a CXCL12 gradient mimicking T cell egress from the skin is significantly reduced by a sphingosine-1-phosphate (S1P) background, suggesting the role of S1P for T cell retention in inflamed skin tissues; and 3) T cell transmigration is induced by inflammatory cytokine stimulated epithelial cells in the SoC model. Collectively, the developed SoC model recreates a dynamic multi-cellular micro-environment that enables quantitative studies of T cell transmigration at a single cell level in response to physiological cutaneous inflammatory mediators and potential drugs.
Collapse
Affiliation(s)
- Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada. and Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Samuel Hwang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95816, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Min Zhao
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95816, USA and Department of Ophthalmology & Vision Science, California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Susy Santos
- Victoria General Hospital, Winnipeg, MB R3T 2E8, Canada
| | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jasmine Cheng
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada.
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada. and Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada and Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95816, USA and Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
22
|
Kilb MF, Engemann VI, Siddique A, Stark RW, Schmitz K. Immobilisation of CXCL8 gradients in microfluidic devices for migration experiments. Colloids Surf B Biointerfaces 2020; 198:111498. [PMID: 33302150 DOI: 10.1016/j.colsurfb.2020.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
The release of inflammatory chemokines leads to the formation of chemokine gradients that result in the directed migration of immune cells to the site of injury. In this process, cells respond to soluble gradients (chemotaxis) as well as to immobilised gradients (haptotaxis). Surface-bound chemokine gradients are mostly presented by endothelial cells and supported by glycosaminoglycans (GAGs), such as heparan sulfate, involving the GAG binding site of chemokines. Microfluidic devices have been used to analyse cell migration along soluble chemokine gradients, as these devices allow the generation of stable gradients with resolutions in the range of microns. To immobilise well-controlled soluble gradients of interleukin-8 (CXCL8), an inflammatory chemokine, we developed a simple procedure using a heparin-coated PDMS-microfluidic device. We used these immobilised gradients for migration experiments with CXCL8-responsive THP-1 cells and confirmed directed cell migration. This setup might be useful for the examination of factors that may alter chemotaxis and haptotaxis as well as synergistic and antagonistic effects of other soluble and immobilised chemokines.
Collapse
Affiliation(s)
- Michelle F Kilb
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Victoria I Engemann
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Asma Siddique
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Robert W Stark
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Katja Schmitz
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
23
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
24
|
Satti S, Deng P, Matthews K, Duffy SP, Ma H. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment. LAB ON A CHIP 2020; 20:3096-3103. [PMID: 32748936 DOI: 10.1039/d0lc00311e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fundamental challenge to multiplexing microfluidic chemotaxis assays at scale is the requirement for time-lapse imaging to continuously track migrating cells. Drug testing and drug screening applications require the ability to perform hundreds of experiments in parallel, which is not feasible for assays that require continuous imaging. To address this limitation, end-point chemotaxis assays have been developed using fluid flow to align cells in traps or sieves prior to cell migration. However, these methods require precisely controlled fluid flow to transport cells to the correct location without undesirable mechanical stress, which introduce significant set up time and design complexity. Here, we describe a microfluidic device that eliminates the need for precise flow control by using centrifugation to align cells at a common starting point. A chemoattractant gradient is then formed using passive diffusion prior to chemotaxis in an incubated environment. This approach provides a simple and scalable approach to multiplexed chemotaxis assays. Centrifugal alignment is also insensitive to cell geometry, enabling this approach to be compatible with primary cell samples that are often heterogeneous. We demonstrate the capability of this approach by assessing chemotaxis of primary neutrophils in response to an fMLP (N-formyl-met-leu-phe) gradient. Our results show that cell alignment by centrifugation offers a potential avenue to develop scalable end-point multiplexed microfluidic chemotaxis assays.
Collapse
Affiliation(s)
- Sampath Satti
- School of Biomedical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada
| | - Pan Deng
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada
| | - Kerryn Matthews
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada and British Columbia Institute of Technology, Canada
| | - Hongshen Ma
- School of Biomedical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada and Department of Urologic Sciences, University of British Columbia, Canada
| |
Collapse
|
25
|
Abstract
The immune system is composed of heterogeneous populations of immune cells that regulate physiological processes and protect organisms against diseases. Single cell technologies have been used to assess immune cell responses at the single cell level, which are crucial for identifying the causes of diseases and elucidating underlying biological mechanisms to facilitate medical therapy. In the present review we first discuss the most recent advances in the development of single cell technologies to investigate cell signaling, cell-cell interactions and cell migration. Each technology's advantages and limitations and its applications in immunology are subsequently reviewed. The latest progress toward commercialization, the remaining challenges and future perspectives for single cell technologies in immunology are also briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
26
|
Kashem MA, Ren X, Li H, Liang B, Li L, Lin F, Plummer FA, Luo M. TILRR Promotes Migration of Immune Cells Through Induction of Soluble Inflammatory Mediators. Front Cell Dev Biol 2020; 8:563. [PMID: 32719797 PMCID: PMC7348050 DOI: 10.3389/fcell.2020.00563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
TILRR has been identified as an important modulator of inflammatory responses. It is associated with NF-κB activation, and inflammation. Our previous study showed that TILRR significantly increased the expression of many innate immune responsive genes and increased the production of several pro-inflammatory cytokines/chemokines by cervical epithelial cells. In this study, we evaluated the effect of TILRR-induced pro-inflammatory cytokines/chemokines on the migration of immune cells. The effect of culture supernatants of TILRR-overexpressed cervical epithelial cells on the migration of THP-1 monocytes and MOLT-4 T-lymphocytes was evaluated using Transwell assay and a novel microfluidic device. We showed that the culture supernatants of TILRR-overexpressed HeLa cells attracted significantly more THP-1 cells (11–40%, p = 0.0004–0.0373) and MOLT-4 cells (14–17%, p = 0.0010–0.0225) than that of controls. The microfluidic device-recorded image analysis showed that significantly higher amount with longer mean cell migration distance of THP-1 (p < 0.0001–0.0180) and MOLT-4 (p < 0.0001–0.0025) cells was observed toward the supernatants of TILRR-overexpressed cervical epithelial cells compared to that of the controls. Thus, the cytokines/chemokines secreted by the TILRR-overexpressed cervical epithelial cells attracted immune cells, such as monocytes and T cells, and may potentially influence immune cell infiltration in tissues.
Collapse
Affiliation(s)
- Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xiaoou Ren
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Binhua Liang
- JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Li
- JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Francis Lin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Yao X, Ding J. Effects of Microstripe Geometry on Guided Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27971-27983. [PMID: 32479054 DOI: 10.1021/acsami.0c05024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell migration on material surfaces is a fundament issue in the fields of biomaterials, cell biology, tissue engineering, regenerative medicine, etc. Herein, we aim to guide cell migration by flat microstripes with significant contrast of cell adhesion and varied geometric features of the adhesive stripes. To this end, we designed and fabricated cell-adhesive arginine-glycine-aspartate (RGD) microstripes on the nonfouling poly(ethylene glycol) (PEG) background and examined the microstripe-guided adhesion and migration of a few cell types. The migration of cell clusters adhering on the RGD regions was found to be significantly affected by the widths and arc radiuses of the guided microstripes. The cells migrated fastest on the straight microstripes with width of about 20 μm, which we defined as single file confined migration (SFCM). We also checked the possible left-right asymmetric bias of cell migration guided by combinatory microstripes with alternative wavy and quasi-straight stripes under a given width, and found that the velocity of CCW (counter clockwise) migration was higher than that of CW (clockwise) migration for primary rat mesenchymal stem cells (rMSCs), whereas no left-right asymmetric bias was observed for NIH3T3 (mouse embryonic fibroblast cell line) and Hela (human cervix epithelial carcinoma cell line) cells. Comparison of migration of cells on the nanotopological stripe and smooth surfaces further confirmed the importance of cell orientation coherence for guided cell migration and strengthened the superiority of SFCM.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Xu L, Wang A, Li X, Oh KW. Passive micropumping in microfluidics for point-of-care testing. BIOMICROFLUIDICS 2020; 14:031503. [PMID: 32509049 PMCID: PMC7263483 DOI: 10.1063/5.0002169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/14/2020] [Indexed: 05/11/2023]
Abstract
Suitable micropumping methods for flow control represent a major technical hurdle in the development of microfluidic systems for point-of-care testing (POCT). Passive micropumping for point-of-care microfluidic systems provides a promising solution to such challenges, in particular, passive micropumping based on capillary force and air transfer based on the air solubility and air permeability of specific materials. There have been numerous developments and applications of micropumping techniques that are relevant to the use in POCT. Compared with active pumping methods such as syringe pumps or pressure pumps, where the flow rate can be well-tuned independent of the design of the microfluidic devices or the property of the liquids, most passive micropumping methods still suffer flow-control problems. For example, the flow rate may be set once the device has been made, and the properties of liquids may affect the flow rate. However, the advantages of passive micropumping, which include simplicity, ease of use, and low cost, make it the best choice for POCT. Here, we present a systematic review of different types of passive micropumping that are suitable for POCT, alongside existing applications based on passive micropumping. Future trends in passive micropumping are also discussed.
Collapse
Affiliation(s)
- Linfeng Xu
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Anyang Wang
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Kwang W. Oh
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| |
Collapse
|
29
|
Nie J, Gao Q, Fu J, He Y. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Adv Healthc Mater 2020; 9:e1901773. [PMID: 32125787 DOI: 10.1002/adhm.201901773] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
The inadequacy of conventional cell-monolayer planar cultures and animal experiments in predicting the toxicity and clinical efficacy of drug candidates has led to an imminent need for in vitro methods with the ability to better represent in vivo conditions and facilitate the systematic investigation of drug candidates. Recent advances in 3D bioprinting have prompted the precise manipulation of cells and biomaterials, rendering it a promising technology for the construction of in vitro tissue/organ models and drug screening devices. This review presents state-of-the-art in vitro methods used for preclinical drug screening and discusses the limitations of these methods. In particular, the significance of constructing 3D in vitro tissue/organ models and microfluidic analysis devices for drug screening is emphasized, and a focus is placed on the grafting process of 3D bioprinting technology to the construction of such models and devices. The in vitro methods for drug screening are generalized into three types: mini-tissue, organ-on-a-chip, and tissue/organ construct. The revolutionary process of the in vitro methods is demonstrated in detail, and relevant studies are listed as examples. Specifically, the tumor model is adopted as a precedent to illustrate the possible grafting of 3D bioprinting to antitumor drug screening.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
30
|
Tong W, Yao X, Duan S, Yu B, Ding X, Ding X, Xu FJ. Gradient Functionalization of Various Quaternized Polyethylenimines on Microfluidic Chips for the Rapid Appraisal of Antibacterial Potencies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:354-361. [PMID: 31826611 DOI: 10.1021/acs.langmuir.9b02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to appraise antibacterial potencies of surface-immobilized bactericidal polymers is still a major challenge in the engineering of antibacterial surfaces to combat hospital-acquired (nosocomial) infections. In this work, we fabricated a microfluidic platform with gradiently immobilized bactericidal polymers to enable the rapid appraisal of antibacterial potencies by in situ live/dead staining of bacteria. To this end, a variety of synthetic quaternary polymers, named QPEI-C1, QPEI-C6, QPEI-C8, and QPEI-C10, were gradiently immobilized in microfluidic channels, and their surface densities at different distances along the channels were quantified by using fluorescein-labeled polymers. We found that the surface densities of quaternary polymers could be well-tuned, and the length of the channel, resulting in a 50% reduction of live bacteria (L50), can be used to appraise the antibacterial potency of each bactericidal polymer. For instance, the L50 values of QPEI-C6-, QPEI-C8-, and QPEI-C10-modified channels against Escherichia coli were 35.5, 44.7, and 49.2 mm, respectively, indicating that QPEI-C10 exerted the most potent antibacterial efficacy. More importantly, this microfluidic platform enabled the rapid discrimination of antibacterial potencies of polymers (e.g., QPEI-C8, and QPEI-C10) while the conventional live/dead staining method found no significant difference. This work provides a powerful toolkit by combining advances of microfluidic systems and polymer science for the rapid screening of antibacterial coatings, which would find applications in surface modification of medical devices to combat bacterial infections.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xin Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|