1
|
Yanjuan L, Shuangyou D, Ying W, Xing C, Yue C, Zixuan Y, Shumeng Z, Lingli C, Jie L. The Research Progress: Cuproptosis and Copper Metabolism in Regulating Cardiovascular Diseases. J Cardiovasc Pharmacol 2025; 85:89-96. [PMID: 39591592 DOI: 10.1097/fjc.0000000000001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
ABSTRACT Studies have shown an association between cardiovascular disease and abnormal copper metabolism. Cuproptosis is caused by the accumulation of copper in vivo, and is a newly identified form of cell death. It regulates cardiovascular diseases by affecting vascular endothelial function and myocardial energy metabolism through pathways such as oxidative stress, mitochondrial function, and gene expression. The treatment of copper accumulation in Traditional Chinese Medicine primarily involves heat-clearing and detoxification therapy, supplemented with diuretic therapy. In contrast, Western medicine mainly uses copper chelators. Flavonoids are common active ingredients used in the treatment of copper metabolism-related and cardiovascular diseases. In this article, we reviewed the relationship between copper metabolism, cuproptosis, and cardiovascular disease, providing novel strategies for preventing and treating cardiovascular disease; our ultimate aim is to encourage inspiration and contemplation among readers.
Collapse
Affiliation(s)
- Liu Yanjuan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Deng Shuangyou
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Wang Ying
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Chen Xing
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Chen Yue
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Yu Zixuan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Zhang Shumeng
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Chen Lingli
- Hunan University of Chinese Medicine, Changsha, China
| | - Li Jie
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| |
Collapse
|
2
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2024; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Zhao H, Yang M, Han Y, Jiang N, Liu Y, Li C, Yang J, Luo S, Liu C, Sun L, Liu F, Liu Y. HIF-1α/BNIP3-Mediated Endoplasmic Reticulum Degradation via Autophagy Protects Against Ischemia Reperfusion-Induced Acute Kidney Injury. Antioxid Redox Signal 2024. [PMID: 39099334 DOI: 10.1089/ars.2023.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Affiliation(s)
- Hao Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ming Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Zhang X, Han X. Targeting cuproptosis for cancer therapy: Focus on the anti-tumor immune system. CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
6
|
Zuo X, Ding X, Zhang Y, Kang YJ. Reversal of atherosclerosis by restoration of vascular copper homeostasis. Exp Biol Med (Maywood) 2024; 249:10185. [PMID: 38978540 PMCID: PMC11228934 DOI: 10.3389/ebm.2024.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Zuo
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaya Zhang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Y James Kang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Li Q, Wang T, Zhou Y, Shi J. Cuproptosis in lung cancer: mechanisms and therapeutic potential. Mol Cell Biochem 2024; 479:1487-1499. [PMID: 37480450 DOI: 10.1007/s11010-023-04815-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Cuproptosis, a recently identified form of cell death that differs from other forms, is induced by the disruption of the binding of copper to mitochondrial respiratory acylation components. Inducing cell cuproptosis and targeting cell copper death pathways are considered potential directions for treating tumor diseases. We have provided a detailed introduction to the metabolic process of copper. In addition, this study attempts to clarify and summarize the relationships between cuproptosis and therapeutic targets and signaling pathways of lung cancer. This review aims to summarize the theoretical achievements for translating the results of lung cancer and cuproptosis experiments into clinical treatment.
Collapse
Affiliation(s)
- Qixuan Li
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
10
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
11
|
Zhang H, Sun J, Zou P, Huang Y, Yang Q, Zhang Z, Luo P, Jiang X. Identification of hypoxia- and immune-related biomarkers in patients with ischemic stroke. Heliyon 2024; 10:e25866. [PMID: 38384585 PMCID: PMC10878920 DOI: 10.1016/j.heliyon.2024.e25866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Background The immune microenvironment and hypoxia play crucial roles in the pathophysiology of ischemic stroke (IS). Hence, in this study, we aimed to identify hypoxia- and immune-related biomarkers in IS. Methods The IS microarray dataset GSE16561 was examined to determine differentially expressed genes (DEGs) utilizing bioinformatics-based analysis. The intersection of hypoxia-related genes and DEGs was conducted to identify differentially expressed hypoxia-related genes (DEHRGs). Then, using weighted correlation network analysis (WGCNA), all of the genes in GSE16561 dataset were examined to create a co-expression network, and module-clinical trait correlations were examined for the purpose of examining the genes linked to immune cells. The immune-related DEHRGs were submitted to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed by Cytoscape plugin MCODE, in order to extract hub genes. The miRNet was used to predict hub gene-related transcription factors (TFs) and miRNAs. Finally, a diagnostic model was developed by least absolute shrinkage and selection operator (LASSO) logistic regression. Results Between the control and IS samples, 4171 DEGs were found. Thereafter, the intersection of hypoxia-related genes and DEGs was conducted to obtain 45 DEHRGs. Ten significantly differentially infiltrated immune cells were found-namely, CD56dim natural killer cells, activated CD8 T cells, activated dendritic cells, activated B cells, central memory CD8 T cells, effector memory CD8 T cells, natural killer cells, gamma delta T cells, plasmacytoid dendritic cells, and neutrophils-between IS and control samples. Subsequently, we identified 27 immune-related DEHRGs through the intersection of DEHRGs and genes in important modules of WGCNA. The immune-related DEHRGs were primarily enriched in response to hypoxia, cellular polysaccharide metabolic process, response to decreased oxygen levels, polysaccharide metabolic process, lipid and atherosclerosis, and HIF-1 signaling pathway H. Using MCODE, FOS, DDIT3, DUSP1, and NFIL3 were found to be hub genes. In the validation cohort and training set, the AUC values of the diagnostic model were 0.9188034 and 0.9395085, respectively. Conclusion In brief, we identified and validated four hub genes-FOS, DDIT3, DUSP1, and NFIL3-which might be involved in the pathological development of IS, potentially providing novel perspectives for the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jidong Sun
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Zou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiuzi Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
13
|
Hopkins CD, Wessel C, Chen O, El-Kersh K, Cathey D, Cave MC, Cai L, Huang J. A hypothesis: Potential contributions of metals to the pathogenesis of pulmonary artery hypertension. Life Sci 2024; 336:122289. [PMID: 38007143 PMCID: PMC10872724 DOI: 10.1016/j.lfs.2023.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pulmonary artery hypertension (PAH) is characterized by vasoconstriction and vascular remodeling resulting in both increased pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP). The chronic and high-pressure stress experienced by endothelial cells can give rise to inflammation, oxidative stress, and infiltration by immune cells. However, there is no clearly defined mechanism for PAH and available treatment options only provide limited symptomatic relief. Due to the far-reaching effects of metal exposures, the interaction between metals and the pulmonary vasculature is of particular interest. This review will briefly introduce the pathophysiology of PAH and then focus on the potential roles of metals, including essential and non-essential metals in the pathogenic process in the pulmonary arteries and right heart, which may be linked to PAH. Based on available data from human studies of occupational or environmental metal exposure, including lead, antimony, iron, and copper, the hypothesis of metals contributing to the pathogenesis of PAH is proposed as potential risk factors and underlying mechanisms for PAH. We propose that metals may initiate or exacerbate the pathogenesis of PAH, by providing potential mechanism by which metals interact with hypoxia-inducible factor and tumor suppressor p53 to modulate their downstream cellular proliferation pathways. These need further investigation. Additionally, we present future research directions on roles of metals in PAH.
Collapse
Affiliation(s)
- C Danielle Hopkins
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Caitlin Wessel
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Dakotah Cathey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew C Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA; The Transplant Program at University of Louisville Health - Jewish Hospital Trager Transplant Center, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; The Transplant Program at University of Louisville Health - Jewish Hospital Trager Transplant Center, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
14
|
Li S, Weng J, Xiao C, Lu J, Cao W, Song F, He Z, Zhang P, Zhu Z, Xu J. Cuproptosis-related molecular patterns and gene (ATP7A) in hepatocellular carcinoma and their relationships with tumor immune microenvironment and clinical features. Cancer Rep (Hoboken) 2023; 6:e1904. [PMID: 37885090 PMCID: PMC10728522 DOI: 10.1002/cnr2.1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Cuproptosis has been studied in various aspects as a new form of cell death. AIMS We hope to explore the molecular patterns and genes related to cuproptosis in evaluating and predicting the prognosis of hepatocellular carcinoma (HCC), as well as the impact of tumor immune microenvironment. METHODS AND RESULTS Sixteen cuproptosis related gene (CRGs) and cuproptosis related molecular and gene characteristics were comprehensively analyzed from 492 HCC samples. Cuproptosis related molecular patterns were generated by consensus clustering algorithm, including cuproptosis clusters, cuproptosis gene clusters (CGC) and cuproptosis score (CS). The characteristics of tumor microenvironment (TME) and tumor immune cells were described by the ssGSEA and ESTIMATE algorithms. Cuproptosis score was established to assess the clinical characteristics, prognostic and immunotherapy. The role and mechanism of CRG (ATP7A) in HCC, as well as its relationship with TME and immune checkpoints, have been further explored. The results of somatic mutation, copy number variations (CNV), and CRGs expression in HCC suggested the CRGs might participate in the HCC oncogenesis. The cuproptosis clusters were closely related to the clinical pathological characteristics, biological processes, and prognosis of HCC. The three CGC was revealed to be consistent with the three immune infiltration characterizations, including immune-high, immune-mid, and immune-low subtypes. Higher CS was characterized by decreased TMB, activated immunity, higher immune cell proportion score (IPS) and better overall survival (OS), which indicated higher CS was immune-high type and with better treatment effect and prognosis. The ATP7A had the highest hazard ratio (HR = 1.465, p < .001), was high expression in HCC tissues and with a shorter 5-year OS. Knocking down ATP7A could enhance intracellular copper concentration, cause a decrease in DLAT expression, and induce cuproptosis and inhibit cell proliferation and migration. ATP7A was also positively correlated with most cancer immune cells and immune checkpoints. CONCLUSION Taken together, this research revealed the cuproptosis related molecular patterns and genes associated with the clinical pathological characteristics, TME phenotype and prognosis of HCC. The CS will further deepen our understanding of the TME characteristics of HCC, and the involvement of ATP7A in cuproptosis will provide new ideas for predicting HCC prognosis and immunotherapy.
Collapse
Affiliation(s)
- Shanbao Li
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junyong Weng
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Chao Xiao
- Department of General SurgeryFudan University Huashan HospitalShanghaiChina
| | - Jing Lu
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wanyue Cao
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fangbin Song
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zeping He
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng Zhang
- Department of General SurgeryFudan University Huashan HospitalShanghaiChina
| | - Zhonglin Zhu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Junming Xu
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
15
|
Hao H, Hou Y, Li A, Niu L, Li S, He B, Zhang X, Song H, Cai R, Zhou Y, Yao C, Wang Y, Wang Y. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury. CNS Neurosci Ther 2023; 29:3802-3814. [PMID: 37334735 PMCID: PMC10651974 DOI: 10.1111/cns.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important mediator of neuropathology in various central nervous system (CNS) diseases. However, little is known about its inducers for production from the nerve cells, as well as the underlying regulatory mechanism. Injury-induced HIF-1α has been shown to exacerbate neuroinflammation by activating multiple downstream target molecules. It is postulated that HIF-1α is involved in the regulation of MIF following spinal cord injury (SCI). METHODS SCI model of Sprague-Dawley rats was established by cord contusion at T8-T10. The dynamic changes of HIF-1α and MIF protein levels at lesion site of rat spinal cord were determined by Western blot. The specific cell types of HIF-1α and MIF expression were examined by immunostaining. Primary astrocytes were isolated from the spinal cord, cultured and stimulated with various agonist or inhibitor of HIF-1α for analysis of HIF-1α-mediated expression of MIF. Luciferase report assay was used to determine the relationship between HIF-1α and MIF. The Basso, Beattie, and Bresnahan (BBB) locomotor scale was used to assess the locomotor function following SCI. RESULTS The protein levels of HIF-1α and MIF at lesion site were significantly elevated by SCI. Immunofluorescence demonstrated that both HIF-1α and MIF were abundantly expressed in the astrocytes of the spinal cord. By using various agonists or inhibitors of HIF-1α, it was shown that HIF-1α sufficiently induced astrocytic production of MIF. Mechanistically, HIF-1α promoted MIF expression through interaction with MIF promoter. Inhibition of HIF-1α activity using specific inhibitor markedly reduced the protein levels of MIF at lesion site following SCI, which in turn favored for the functional recovery. CONCLUSION SCI-induced activation of HIF-1α is able to promote MIF production from astrocytes. Our results have provided new clues for SCI-induced production of DAMPs, which may be helpful for clinical treatment of neuroinflammation.
Collapse
Affiliation(s)
- Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Li Niu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Shaolan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yue Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
16
|
Vatte S, Ugale R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem Int 2023; 170:105605. [PMID: 37657765 DOI: 10.1016/j.neuint.2023.105605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic window of the only approved therapies like intravenous thrombolysis and thrombectomy. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke by regulating multiple pathways including glucose metabolism, angiogenesis, neuronal survival, neuroinflammation and blood brain barrier regulation. Here, we give a brief overview of the HIF-1α-targeting strategies currently under investigation and summarise recent research on how HIF-1α is regulated in various brain cells, including neurons and microglia, at various stages in ischemic stroke. The roles of HIF-1 in stroke varies with ischemic time and degree of ischemia, are still up for debate. More focus has been placed on prospective HIF-1α targeting drugs, such as HIF-1α activator, HIF-1α stabilizers, and natural compounds. In this review, we have highlighted the regulation of HIF-1α in the novel therapeutic approaches for treatment of stroke.
Collapse
Affiliation(s)
- Sneha Vatte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
17
|
Su Z, Zhang G, Li X, Zhang H. Inverse correlation between Alzheimer's disease and cancer from the perspective of hypoxia. Neurobiol Aging 2023; 131:59-73. [PMID: 37572528 DOI: 10.1016/j.neurobiolaging.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/14/2023]
Abstract
Sporadic Alzheimer's disease and cancer remain epidemiologically inversely related, and exploring the reverse pathogenesis is important for our understanding of both. Cognitive dysfunctions in Alzheimer's disease (AD) might result from the depletion of adaptive reserves in the brain. Energy storage in the brain is limited and is dynamically regulated by neurovascular and neurometabolic coupling. The research on neurodegenerative diseases has been dominated by the neurocentric view that neuronal defects cause the diseases. However, the proposal of the 2-hit vascular hypothesis in AD led us to focus on alterations in the vasculature, especially hypoperfusion. Chronic hypoxia is a feature shared by AD and cancer. It is interesting how contradicting chronic hypoxia's effects on both cancer and AD are. In this article, we discuss the potential links between the 2 diseases' etiology, from comparable upstream circumstances to diametrically opposed downstream effects. We suggest opposing potential mechanisms, including upregulation and downregulation of hypoxia-inducible factor-1α, the Warburg and reverse-Warburg effects, lactate-mediated intracellular acidic and alkaline conditions, and VDAC1-mediated apoptosis and antiapoptosis, and search for regulators that may be identified as the crossroads between cancer and AD.
Collapse
Affiliation(s)
- Zhan Su
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangting Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Nie B, Duan Y, Xie X, Qiu L, Shi S, Fan Z, Zheng X, Jiang L. Systematic analysis of cuproptosis-related genes in immunological characterization and predictive drugs in Alzheimer's disease. Front Aging Neurosci 2023; 15:1204530. [PMID: 37920383 PMCID: PMC10618683 DOI: 10.3389/fnagi.2023.1204530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
Objectives This study aimed to make a systematic analysis of cuproptosis-related genes (CRGs) in immunological characterization and predictive drugs in Alzheimer's disease (AD) through bioinformatics and biological experiments. Methods The molecular clusters related to CRGs and associated immune cell infiltrations in AD were investigated. The diagnostic models were constructed for AD and different AD subtypes. Moreover, drug prediction and molecular docking were also performed. Subsequently, a molecular dynamics (MD) simulation was conducted to further verify the findings. Finally, RT-qPCR validation was performed. Results The characterization of 12 AD-related CRGs was evaluated in AD, and a diagnostic model for AD showed a satisfying discrimination power based on five CRGs by LASSO regression analysis. The dysregulated CRGs and activated immune responses partially differed between patients with AD and healthy subjects. Furthermore, two molecular subtypes (clusters A and B) with different immune infiltration characteristics in AD were identified. Similarly, a diagnostic model for different AD subtypes was built with nine CRGs, which achieved a good performance. Molecular docking revealed the optimum conformation of CHEMBL261454 and its target gene CSNK1D, which was further validated by MD simulation. The RT-qPCR results were consistent with those of the comprehensive analysis. Conclusion This study systematically elucidated the complex relationship between cuproptosis and AD, providing novel molecular targets for treatment and diagnosis biomarkers of AD.
Collapse
Affiliation(s)
- Bin Nie
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Yefen Duan
- Department of Clinical Laboratory, Yibin No. 4 People’s Hospital, Yibin, China
| | - Xuelong Xie
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Lihua Qiu
- Imaging Department, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Shaorui Shi
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Zhili Fan
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Xuxiang Zheng
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Ling Jiang
- Department of Neurology, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
19
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
20
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
21
|
Zhou C, Yang J, Liu T, Jia R, Yang L, Sun P, Zhao W. Copper metabolism and hepatocellular carcinoma: current insights. Front Oncol 2023; 13:1186659. [PMID: 37476384 PMCID: PMC10355993 DOI: 10.3389/fonc.2023.1186659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Copper is an essential trace element that acts as a cofactor in various enzyme active sites in the human body. It participates in numerous life activities, including lipid metabolism, energy metabolism, and neurotransmitter synthesis. The proposal of "Cuproptosis" has made copper metabolism-related pathways a research hotspot in the field of tumor therapy, which has attracted great attention. This review discusses the biological processes of copper uptake, transport, and storage in human cells. It highlights the mechanisms by which copper metabolism affects hepatocellular carcinogenesis and metastasis, including autophagy, apoptosis, vascular invasion, cuproptosis, and ferroptosis. Additionally, it summarizes the current clinical applications of copper metabolism-related drugs in antitumor therapy.
Collapse
Affiliation(s)
- Cheng Zhou
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinqiu Yang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ran Jia
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Pengfei Sun
- Department of Orthopaedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wenxia Zhao
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
22
|
Kim HH, Shim YR, Kim HN, Yang K, Ryu T, Kim K, Choi SE, Kim MJ, Woo C, Chung KPS, Hong SH, Shin H, Suh JM, Jung Y, Hwang GS, Kim W, Kim SH, Eun HS, Seong JK, Jeong WI. xCT-mediated glutamate excretion in white adipocytes stimulates interferon-γ production by natural killer cells in obesity. Cell Rep 2023; 42:112636. [PMID: 37310859 DOI: 10.1016/j.celrep.2023.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Obesity-mediated hypoxic stress underlies inflammation, including interferon (IFN)-γ production by natural killer (NK) cells in white adipose tissue. However, the effects of obesity on NK cell IFN-γ production remain obscure. Here, we show that hypoxia promotes xCT-mediated glutamate excretion and C-X-C motif chemokine ligand 12 (CXCL12) expression in white adipocytes, resulting in CXCR4+ NK cell recruitment. Interestingly, this spatial proximity between adipocytes and NK cells induces IFN-γ production in NK cells by stimulating metabotropic glutamate receptor 5 (mGluR5). IFN-γ then triggers inflammatory activation of macrophages and augments xCT and CXCL12 expression in adipocytes, forming a bidirectional pathway. Genetic or pharmacological inhibition of xCT, mGluR5, or IFN-γ receptor in adipocytes or NK cells alleviates obesity-related metabolic disorders in mice. Consistently, patients with obesity showed elevated levels of glutamate/mGluR5 and CXCL12/CXCR4 axes, suggesting that a bidirectional pathway between adipocytes and NK cells could be a viable therapeutic target in obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Ha Neul Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Min Jeong Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chaerin Woo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Katherine Po Sin Chung
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Song Hwa Hong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyemi Shin
- Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
23
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Guan D, Zhao L, Shi X, Ma X, Chen Z. Copper in cancer: From pathogenesis to therapy. Biomed Pharmacother 2023; 163:114791. [PMID: 37105071 DOI: 10.1016/j.biopha.2023.114791] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
One of the basic trace elements for the structure and metabolism of human tissue is copper. However, as a heavy metal, excessive intake or abnormal accumulation of copper in the body can cause inevitable damage to the organism because copper can result in direct injury to various cell components or disruption of the redox balance, eventually leading to cell death. Interestingly, a growing body of research reports that diverse cancers have raised serum and tumor copper levels. Tumor cells depend on more copper for their metabolism than normal cells, and a decrease in copper or copper overload can have a detrimental effect on tumor cells. New modalities for identifying and characterizing copper-dependent signals offer translational opportunities for tumor therapy, but their mechanisms remain unclear. Therefore, this article summarizes what we currently know about the correlation between copper and cancer and describes the characteristics of copper metabolism in tumor cells and the prospective application of copper-derived therapeutics.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lihui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xin Shi
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
25
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
26
|
Magazenkova DN, Skomorokhova EA, Farroukh MA, Zharkova MS, Jassem ZM, Rekina VE, Shamova OV, Puchkova LV, Ilyechova EY. Influence of Silver Nanoparticles on the Growth of Ascitic and Solid Ehrlich Adenocarcinoma: Focus on Copper Metabolism. Pharmaceutics 2023; 15:pharmaceutics15041099. [PMID: 37111584 PMCID: PMC10145613 DOI: 10.3390/pharmaceutics15041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
The link between copper metabolism and tumor progression motivated us to use copper chelators for suppression of tumor growth. We assume that silver nanoparticles (AgNPs) can be used for lowering bioavailable copper. Our assumption is based on the ability of Ag(I) ions released by AgNPs in biological media and interfere with Cu(I) transport. Intervention of Ag(I) into copper metabolism leads to the replacement of copper by silver in ceruloplasmin and the decrease in bioavailable copper in the bloodstream. To check this assumption, mice with ascitic or solid Ehrlich adenocarcinoma (EAC) were treated with AgNPs using different protocols. Copper status indexes (copper concentration, ceruloplasmin protein level, and oxidase activity) were monitored to assess copper metabolism. The expression of copper-related genes was determined by real-time PCR in the liver and tumors, and copper and silver levels were measured by FAAS. Intraperitoneal AgNPs treatment beginning on the day of tumor inoculation enhanced mice survival, reduced the proliferation of ascitic EAC cells, and suppressed the activity of HIF1α, TNF-α and VEGFa genes. Topical treatment by the AgNPs, which was started together with the implantation of EAC cells in the thigh, also enhanced mice survival, decreased tumor growth, and repressed genes responsible for neovascularization. The advantages of silver-induced copper deficiency over copper chelators are discussed.
Collapse
Affiliation(s)
- Daria N. Magazenkova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Ekaterina A. Skomorokhova
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Mohammad Al Farroukh
- Federal State Budgetary Scientific Institution, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Maria S. Zharkova
- Department of General Pathology and Pathophysiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Zena M. Jassem
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
| | - Valeria E. Rekina
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Olga V. Shamova
- Department of General Pathology and Pathophysiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ludmila V. Puchkova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Y. Ilyechova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-(921)-7605274
| |
Collapse
|
27
|
Wang XX, Deng SZ, Wu LH, Liu QQ, Zheng G, Du K, Dou QY, Zheng J, Zhang HM. Cuproptosis-Mediated Patterns Characterized by Distinct Tumor Microenvironment and Predicted the Immunotherapy Response for Gastric Cancer. ACS OMEGA 2023; 8:10851-10862. [PMID: 37008098 PMCID: PMC10061503 DOI: 10.1021/acsomega.2c07052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Cuproptosis is a newly discovered programmed cell death process, and several cuproptosis-related genes have been reported to regulate cancer cell proliferation and progression. The association between cuproptosis and tumor microenvironment in gastric cancer (GC) remains unclear. This study aimed to explore multiomics characteristics of cuproptosis-related genes regulating tumor microenvironment and provide strategies for prognosis and prediction of immunotherapy response in GC patients. We collected 1401 GC patients from the TCGA and 5 GEO data sets and identified three different cuproptosis-mediated patterns, each of which shared a distinct tumor microenvironment and different overall survival. The GC patients with high cuproptosis levels were enriched in CD8+ T cells and had a better prognosis. Whereas, the low cuproptosis level patients were associated with inhibitory immune cell infiltration and had the worst prognosis. In addition, we constructed a 3-gene (AHCYL2, ANKRD6 and FDGFRB) cuproptosis-related prognosis signature (CuPS) via Lasso-Cox and multivariate Cox regression analysis. The GC patients in the low-CuPS subgroup had higher TMB levels, MSI-H fractions, and PD-L1 expression, which suggests a better immunotherapy response. Therefore, the CuPS might have the potential value for predicting prognosis and immunotherapy sensitivity in GC patients.
Collapse
Affiliation(s)
- Xiang-Xu Wang
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Shi-Zhou Deng
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Li-Hong Wu
- Xijing
986 Hospital Department, Fourth Military
Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Qing-Qing Liu
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Gaozan Zheng
- Division
of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Kunli Du
- Division
of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Qiong-Yi Dou
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Jianyong Zheng
- Division
of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Hong-Mei Zhang
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| |
Collapse
|
28
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
29
|
Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023; 22:46. [PMID: 36882769 PMCID: PMC9990368 DOI: 10.1186/s12943-023-01732-y] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
Collapse
Affiliation(s)
- Jiaming Xie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| |
Collapse
|
30
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
31
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15:174. [PMID: 36482419 PMCID: PMC9733270 DOI: 10.1186/s13045-022-01392-3] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Many types of human cells self-destruct to maintain biological homeostasis and defend the body against pathogenic substances. This process, called regulated cell death (RCD), is important for various biological activities, including the clearance of aberrant cells. Thus, RCD pathways represented by apoptosis have increased in importance as a target for the development of cancer medications in recent years. However, because tumor cells show avoidance to apoptosis, which causes treatment resistance and recurrence, numerous studies have been devoted to alternative cancer cell mortality processes, namely necroptosis, pyroptosis, ferroptosis, and cuproptosis; these RCD modalities have been extensively studied and shown to be crucial to cancer therapy effectiveness. Furthermore, evidence suggests that tumor cells undergoing regulated death may alter the immunogenicity of the tumor microenvironment (TME) to some extent, rendering it more suitable for inhibiting cancer progression and metastasis. In addition, other types of cells and components in the TME undergo the abovementioned forms of death and induce immune attacks on tumor cells, resulting in enhanced antitumor responses. Hence, this review discusses the molecular processes and features of necroptosis, pyroptosis, ferroptosis, and cuproptosis and the effects of these novel RCD modalities on tumor cell proliferation and cancer metastasis. Importantly, it introduces the complex effects of novel forms of tumor cell death on the TME and the regulated death of other cells in the TME that affect tumor biology. It also summarizes the potential agents and nanoparticles that induce or inhibit novel RCD pathways and their therapeutic effects on cancer based on evidence from in vivo and in vitro studies and reports clinical trials in which RCD inducers have been evaluated as treatments for cancer patients. Lastly, we also summarized the impact of modulating the RCD processes on cancer drug resistance and the advantages of adding RCD modulators to cancer treatment over conventional treatments.
Collapse
Affiliation(s)
- Xuhui Tong
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingming Xiao
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Xu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Zhang
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiang Liu
- grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
33
|
Tsymbal SA, Refeld AG, Kuchur OA. The p53 Tumor Suppressor and Copper Metabolism: An Unrevealed but Important Link. Mol Biol 2022. [DOI: 10.1134/s0026893322060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Tsymbal S, Li G, Agadzhanian N, Sun Y, Zhang J, Dukhinova M, Fedorov V, Shevtsov M. Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules 2022; 27:7066. [PMID: 36296659 PMCID: PMC9611640 DOI: 10.3390/molecules27207066] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 08/19/2023] Open
Abstract
Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches. Copper maintains the cell oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation. Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show specific activity against cancer cells according to preclinical studies. Herein, we summarize the major principles of copper metabolism in cancer cells and its potential in cancer theranostics.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Ge Li
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 Xiang’an Road East, Xiamen 361101, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Nikol Agadzhanian
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Yuhao Sun
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiazhennan Zhang
- Day-Care Department, Xinjiang Medical University, Urumqi 830011, China
| | - Marina Dukhinova
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
35
|
Wang T, Xiao Y, Zhang J, Jing F, Zeng G. Dynamic regulation of HIF-1 signaling in the rhesus monkey heart after ischemic injury. BMC Cardiovasc Disord 2022; 22:407. [PMID: 36089604 PMCID: PMC9464399 DOI: 10.1186/s12872-022-02841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Hypoxia inducible factor-1 (HIF-1) plays a key role in modulating post-infarct healing after myocardial ischemic injury through transcriptional regulation of hundreds of genes involved in diverse cardiac remodeling processes. However, the dynamic changes in HIF-1 target gene expression in the ischemic heart after myocardial infarction (MI) have not been well characterized. Methods We employed a rhesus monkey model of MI induced by left anterior descending artery ligation and examined the expression pattern of HIF-1 target genes in the ischemic heart at 1, 7, and 28 days after injury by bulk RNA-sequencing analysis. Results Myocardial transcriptomic analysis demonstrated a temporal-specific regulation of genes associated with the inflammatory response, cell proliferation, fibrosis and mitochondrial metabolism during the pathological progression of MI. HIF-1 target genes involved in processes related to glycolysis, angiogenesis, and extracellular matrix (ECM) remodeling also exhibited distinct expression patterns during MI progression. Copper concentrations were gradually decreased in the heart after ischemic injury, which was positively correlated with the expression of HIF-1-mediated angiogenic and glycolytic genes but negatively correlated with the expression of HIF-1-mediated ECM remodeling genes. Moreover, genes related to intracellular copper trafficking and storage were suppressed along with the loss of myocardial copper in the ischemic heart. Conclusions This study demonstrated a dynamic, functional-specific regulation of HIF-1 target gene expression during the progression of MI. The fine-tuning of HIF-1 signaling in the ischemic heart may be relate to the alteration in myocardial copper homeostasis. These findings provide transcriptomic insights into the distinct roles of HIF-1 signaling in the heart after ischemic injury, which will help determine the beneficial cutoff point for HIF-1 targeted therapy in ischemic heart diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02841-0.
Collapse
|
36
|
Ren P, Wang JY, Zeng ZR, Li NX, Chen HL, Peng XG, Bhawal UK, Guo WZ. A novel hypoxia-driven gene signature that can predict the prognosis and drug resistance of gliomas. Front Genet 2022; 13:976356. [PMID: 36118887 PMCID: PMC9478203 DOI: 10.3389/fgene.2022.976356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia spontaneously forms in the interior of glioma tissues and regulates the expression of various genes. However, the status of hypoxia-driven genes in glioma tissues is not completely known. In the current study, RNA-seq data of 695 glioma tissues in The Cancer Genome Atlas (TCGA) were set as a discovery cohort and were used to identify hypoxia-driven genes and construct a novel gene signature. The prognostic values of that signature were verified in data from the TCGA and the Chinese Glioma Genome Atlas (CGGA). The expression and diagnostic values of hypoxia-driven genes were analyzed using immunohistochemistry and receiver operator characteristic curves. Finally, the effects of hypoxia-driven genes on temozolomide (TMZ) resistance were analyzed by western blot, CCK-8 and colony formation assay. A total of 169 hypoxia-driven genes were identified, which were associated with a poor outcome in glioma patients. Among them, 22 genes had a degree score ≥10 and 6 genes (WT1, HOXA2, HOXC6, MMP9, SHOX2 and MYOD1) were selected to construct a signature to classify glioma patients into low- or high-risk groups. That signature had a remarkable prognostic value for glioma patients in TCGA and CGGA. The expression of HOXC6, MMP9, SHOX2 and MYOD1 was associated with hypoxia degree in glioma tissues and in recurrent cases, had a remarkable diagnostic value and a significant relationship with disease free survival in glioma patients. Moreover, SHOX2 was highly expressed in glioma tissues with O-6-methylguanine-DNA methyltransferase (MGMT)-unmethylation and temozolomide (TMZ) resistant glioma cell lines, and associated with MGMT expression. Knockdown the expression of SHOX2 significantly reduced the TMZ-resistance induced by hypoxia in glioma cells. Ultimately, we identified six novel hypoxia-driven genes for reliable prognostic prediction in gliomas and found that SHOX2 might be a potential target to overcome the TMZ resistance induced by hypoxia.
Collapse
Affiliation(s)
- Peng Ren
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing-Ya Wang
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
| | - Nan-Xi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Lei Chen
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xin-Ge Peng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- *Correspondence: Ujjal K. Bhawal, ; Wen-Zhi Guo,
| | - Wen-Zhi Guo
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ujjal K. Bhawal, ; Wen-Zhi Guo,
| |
Collapse
|
37
|
Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J. Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14091838. [PMID: 36145586 PMCID: PMC9503928 DOI: 10.3390/pharmaceutics14091838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic wounds are defined as wounds that do not heal in an orderly and timely manner through the various stages of the healing process. Copper nanoparticles are essential in dressings for wound healing because they promote angiogenesis and skin regeneration, which hasten the healing process. This systematic investigation sought to explain how copper nanoparticles affect chronic wound healing in vivo and in vitro. We realized a systematic review of original articles studying the effectiveness of copper nanoparticles in the healing process of chronic wounds. The protocol was registered in the PROSPERO database. Several databases were searched between 2012 and January 2022 for English-language papers using MeSH terms and text related to chronic wounds, copper nanoparticles, and wound healing. Quality was evaluated using National Institute for Health and Care Excellence methodology and PRISMA guidelines. We looked at a total of 12 primary studies. Quantitative data were gathered and presented in all studies. Our results suggest that copper nanoparticles could have an excellent healing property, facilitating the liberation of growth factors that help the anti-inflammatory process of the wound and significantly improving antibacterial and antioxidant activities. In addition, copper presents a higher biocompatibility than other metallic ions, promoting regeneration and increasing skin quality.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: (C.S.); (J.F.)
| | - Gemima Ríos
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Natalia Sepúlveda
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Jessica Salvo
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 22775-000, Brazil
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: (C.S.); (J.F.)
| |
Collapse
|
38
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
39
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
40
|
Sacco A, Martelli F, Pal A, Saraceno C, Benussi L, Ghidoni R, Rongioletti M, Squitti R. Regulatory miRNAs in Cardiovascular and Alzheimer's Disease: A Focus on Copper. Int J Mol Sci 2022; 23:3327. [PMID: 35328747 PMCID: PMC8948703 DOI: 10.3390/ijms23063327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are key regulators of differentiation and development. In the cell, transcription factors regulate the production of miRNA in response to different external stimuli. Copper (Cu) is a heavy metal and an essential micronutrient with widespread industrial applications. It is involved in a number of vital biological processes encompassing respiration, blood cell line maturation, and immune responses. In recent years, the link between deregulation of miRNAs' functionality and the development of various pathologies as well as cardiovascular diseases (CVDs) has been extensively studied. Alzheimer's disease (AD) is the most common cause of dementia in the elderly with a complex disease etiology, and its link with Cu abnormalities is being increasingly studied. A direct interaction between COMMD1, a regulator of the Cu pathway, and hypoxia-inducible factor (HIF) HIF-1a does exist in ischemic injury, but little information has been collected on the role of Cu in hypoxia associated with AD thus far. The current review deals with this matter in an attempt to structurally discuss the link between miRNA expression and Cu dysregulation in AD and CVDs.
Collapse
Affiliation(s)
- Anna Sacco
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, India;
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (L.B.); (R.G.)
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (L.B.); (R.G.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (L.B.); (R.G.)
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (L.B.); (R.G.)
| |
Collapse
|
41
|
Yang R, Zheng Y, Zhang Y, Li G, Xu Y, Zhang Y, Xu Y, Zhuang C, Yu P, Deng L, Cui W, Chen Y, Wang L. Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal-Organic Framework for Gradient Healing of Tendon-to-Bone Interface Regeneration. Adv Healthc Mater 2022; 11:e2200072. [PMID: 35286782 DOI: 10.1002/adhm.202200072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
Metal ions play a significant role in tissue repair, with widely application in clinical treatment. However, the therapeutic effect of metal ions is always limited due to metabolization and narrow repair capability. Here, a bipolar metal flexible electrospun fibrous membrane based on a metal-organic framework (MOF), which is bioinspired by the gradient structure of the tendon-to-bone interface, with a combination of regulating osteoblasts differentiation and angiogenesis properties, is constructed successfully by a continuous electrospinning technique and matching the longitudinal space morphology for synchronous regeneration. Furthermore, the MOF, acting as carriers, can not only achieve the sustainable release of metal ions, but promote the osteogenesis and tenogenesis on the scaffold. The in vitro data show that this novel hierarchical structure can accelerate the tenogenesis, the biomineralization, and angiogenesis. Moreover, in the in vivo experiment, the flexible fibrous membrane can promote tendon and bone tissue repair, and fibrocartilage reconstruction, to realize the multiple tissue synchronous regeneration at the damaged tendon-to-bone interface. Altogether, this newly developed bipolar metal flexible electrospun fibrous membrane based on a MOF, as a new biomimetic flexible scaffold, has great potential in reconstruct the tissue damage, especially gradient tissue damage.
Collapse
Affiliation(s)
- Renhao Yang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Gen Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yidong Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yang Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengyu Zhuang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Pei Yu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Lei Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
42
|
Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review. BURNS & TRAUMA 2022; 10:tkab047. [PMID: 35071652 PMCID: PMC8778594 DOI: 10.1093/burnst/tkab047] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing in an orderly and timely manner. The most common and inevitable impairment to wound healing is the installation of an infection, usually in the case of chronic wounds. Therefore, the objective of the present review was to identify the importance of copper nanoparticles in dressings for wound healing. Nanoparticles such as silver, gold and copper combat infectious processes through the inhibition of protein synthesis, peroxidation of the cell membrane and destroying the nucleic acids of bacteria and viruses. Among bioactive nanoparticles, copper plays a complex role in various cells, it modulates several cytokines and growth factor mechanisms of action and is essentially involved in all stages of the wound healing process. More importantly, copper plays a key role in skin regeneration and angiogenesis and accelerates the healing process through induction of vascular endothelial growth factor (VEGF) and angiogenesis by hypoxia-induced factor-1-alpha (HIF-1α) action where copper enhances HIF-1α expression and HIF-1α binding to the critical motifs in the promoter and putative enhancer regions of HIF-1-regulated genes.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Ciencias, Universidad Mayor, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, 5310431, Osorno, Chile
| |
Collapse
|
43
|
Angiogenin and Copper Crossing in Wound Healing. Int J Mol Sci 2021; 22:ijms221910704. [PMID: 34639045 PMCID: PMC8509573 DOI: 10.3390/ijms221910704] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a key role in the wound healing process, involving the migration, growth, and differentiation of endothelial cells. Angiogenesis is controlled by a strict balance of different factors, and among these, the angiogenin protein plays a relevant role. Angiogenin is a secreted protein member of the ribonuclease superfamily that is taken up by cells and translocated to the nucleus when the process of blood vessel formation has to be promoted. However, the chemical signaling that activates the protein, normally present in the plasma, and the transport pathways through which the protein enters the cell are still largely unclear. Copper is also an angiogenic factor that regulates angiogenin expression and participates in the activation of common signaling pathways. The interaction between angiogenin and copper could be a relevant mechanism in regulating the formation of new blood vessel pathways and paving the way to the development of new drugs for chronic non-healing wounds.
Collapse
|
44
|
Li B, Lei Y, Hu Q, Li D, Zhao H, Kang P. Porous copper- and lithium-doped nano-hydroxyapatite composite scaffold promotes angiogenesis and bone regeneration in the repair of glucocorticoids-induced osteonecrosis of the femoral head. Biomed Mater 2021; 16. [PMID: 34492640 DOI: 10.1088/1748-605x/ac246e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Glucocorticoids-induced osteonecrosis of the femoral head (GIONFH) is a common refractory disease. In the present study, we aimed to synthesize the nano-hydroxyapatite-copper-lithium (Cu-Li-nHA) composite porous scaffold to promote osteogenesis and angiogenesis functions to repair GIONFH by regulating the Wnt/β-catenin and HIF-1α/VEGF pathways. The physicochemical property of the scaffold was characterized and their osteogenic and angiogenic effects were tested through a serial of experimentsin vitroandin vivo. Results showed that 0.25% Cu-Li-nHA scaffolds possessed the highest mechanical and biocompatibilityin vitro. Then the 0.25% Cu-Li-nHA scaffolds significantly enhanced the new bone formation on defects in GIONFH rabbitsin vivo. Moreover, the scaffold could increase the expression of osteogenic and angiogenic factors along with the activation of factors in Wnt/β-catenin and HIF-1α/VEGF pathwaysin vitroandin vivo. In conclusion, the 0.25% Cu-Li-nHA scaffold could improve the osteogenesis and angiogenesis by upregulating the Wnt/β-catenin and HIF-1α/VEGF pathways which benefited to repair the GIONFH in rabbit models.
Collapse
Affiliation(s)
- Bohua Li
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Yan Lei
- Arts College of Sichuan University, Chengdu 610041, People's Republic of China
| | - Qinsheng Hu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Donghai Li
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Haiyan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, 1# West Donggang Road, Lanzhou 730000, People's Republic of China
| | - Pengde Kang
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
45
|
Mitroshina EV, Savyuk MO, Ponimaskin E, Vedunova MV. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front Cell Dev Biol 2021; 9:703084. [PMID: 34395432 PMCID: PMC8355741 DOI: 10.3389/fcell.2021.703084] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is one of the most common pathological conditions, which can be induced by multiple events, including ischemic injury, trauma, inflammation, tumors, etc. The body's adaptation to hypoxia is a highly important phenomenon in both health and disease. Most cellular responses to hypoxia are associated with a family of transcription factors called hypoxia-inducible factors (HIFs), which induce the expression of a wide range of genes that help cells adapt to a hypoxic environment. Basic mechanisms of adaptation to hypoxia, and particularly HIF functions, have being extensively studied over recent decades, leading to the 2019 Nobel Prize in Physiology or Medicine. Based on their pivotal physiological importance, HIFs are attracting increasing attention as a new potential target for treating a large number of hypoxia-associated diseases. Most of the experimental work related to HIFs has focused on roles in the liver and kidney. However, increasing evidence clearly demonstrates that HIF-based responses represent an universal adaptation mechanism in all tissue types, including the central nervous system (CNS). In the CNS, HIFs are critically involved in the regulation of neurogenesis, nerve cell differentiation, and neuronal apoptosis. In this mini-review, we provide an overview of the complex role of HIF-1 in the adaptation of neurons and glia cells to hypoxia, with a focus on its potential involvement into various neuronal pathologies and on its possible role as a novel therapeutic target.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Savyuk
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Evgeni Ponimaskin
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
- Department of Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Maria V. Vedunova
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
46
|
Zeng G, Wang T, Zhang J, Kang YJ, Feng L. FLI1 mediates the selective expression of hypoxia-inducible factor 1 target genes in endothelial cells under hypoxic conditions. FEBS Open Bio 2021. [PMID: 34102031 PMCID: PMC8329784 DOI: 10.1002/2211-5463.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
The selective expression of hypoxia‐inducible factor (HIF) target genes in different physiological and pathological environments forms the basis for cellular adaptation to hypoxia in development and disease. Several E26 transformation‐specific (ETS) transcription factors have been shown to specifically regulate the expression of a subset of HIF‐2 target genes. However, it is unknown whether there are ETS factors that specifically regulate hypoxia‐induced HIF‐1 target genes. The present study was undertaken to explore whether friend leukemia integration 1 (FLI1), an ETS transcription factor, regulates the expression of HIF‐1 target genes. To investigate this possibility, EA.hy926 cells were exposed to 20% O2 (normoxia) or 1% O2 (hypoxia). Western blotting, immunofluorescence staining, and RT‐qPCR revealed that FLI1 mRNA and protein levels increased slightly and that the FLI1 protein co‐localized with HIF‐1α in the nucleus under hypoxic conditions. Further analysis showed that, in the absence of FLI1, the hypoxia‐mediated induction of HIF‐1 target genes was selectively inhibited. The results from immunoprecipitation and luciferase reporter assays indicated that FLI1 cooperates with HIF‐1α and is required for the transcriptional activation of a subset of HIF‐1 target genes with a core promoter region containing FBS in proximity to a functional hypoxia response element (HRE). Furthermore, ChIP analysis further confirmed the direct interaction between FLI1 and the promoter region of FLI1‐dependent HIF‐1 target genes under hypoxia. Together, this study demonstrates that FLI1 is involved in the transactivation of certain HIF‐1 target genes in endothelial cells under hypoxic conditions.
Collapse
Affiliation(s)
- Guodan Zeng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Li Feng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
48
|
Copper Preserves Vasculature Structure and Function by Protecting Endothelial Cells from Apoptosis in Ischemic Myocardium. J Cardiovasc Transl Res 2021; 14:1146-1155. [PMID: 33999373 DOI: 10.1007/s12265-021-10128-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
The present study was undertaken to investigate whether Cu protects vasculatures from ischemic injury in the heart. C57/B6 mice were introduced to myocardial ischemia (MI) by permanent ligation of the left anterior descending (LAD) coronary artery. Two hours post-LAD ligation, mice were intravenously injected with a Cu-albumin (Cu-alb) solution, or saline as control. At 1, 4, or 7 days post-MI, hearts were collected for further analysis. A dramatic decrease in CD31-positive endothelial cells concomitantly with abundant apoptosis, along with obstruction of blood flow, was observed in ischemic myocardium 1 day post-MI. The early Cu-alb treatment protected CD31-positive cells from apoptosis, along with a preservation of micro-vessels and a decrease in infarct size. This early vasculature preservation ensured myocardial blood perfusion and protected cardiac contractile function until 28 days post-MI. This strategy of Cu-alb treatment immediately following MI would help develop a therapeutic approach for acute heart attack patients in a clinical setting.
Collapse
|
49
|
Healing of Chronic Wounds by Copper Oxide-Impregnated Wound Dressings-Case Series. ACTA ACUST UNITED AC 2021; 57:medicina57030296. [PMID: 33809898 PMCID: PMC8004176 DOI: 10.3390/medicina57030296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/13/2023]
Abstract
Novel antimicrobial wound dressings impregnated with copper oxide micro-particles have been cleared for treatment of acute and chronic wounds. Our objective is to provide preliminary data regarding the potential benefit of using these novel wound dressings including in non-infected wounds. Methods involved the treatment of wounds that responded partially or poorly to conventional wound healing treatments with copper oxide impregnated wound dressings in patients with a range of etiologies. Ten cases of patients with etiologies such as diabetes mellitus, sickle cell disease, renal failure, and necrotizing fasciitis, in which the application of copper oxide impregnated wound dressings in infected and non-infected wounds, which resulted in significant enhanced wound healing, are presented. This was exemplified by clearing of the wound infections, reduction of the fibrous and/or necrotic tissue and by intense granulation, epithelialization, and wound closure. The described 10 case reports support our hypothesis that the copper oxide-containing wound dressing not only confers protection to the wound and the dressing from microbial contamination, and in some cases may help clear the wound infections, but in addition and more importantly, stimulate skin regeneration and wound healing. Our findings are in line with previous animal and in vitro studies showing that copper plays a key role in angiogenesis and skin regeneration. These case reports support the notion that the use of copper oxide impregnated wound dressings may be an important intervention in the arsenal of wound treatment modalities, especially in hard to heal wounds.
Collapse
|
50
|
Li C, Wang T, Xiao Y, Li K, Meng X, James Kang Y. COMMD1 upregulation is involved in copper efflux from ischemic hearts. Exp Biol Med (Maywood) 2021; 246:607-616. [PMID: 33653183 PMCID: PMC7934151 DOI: 10.1177/1535370220969844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
Copper depletion is associated with myocardial ischemic infarction, in which copper metabolism MURR domain 1 (COMMD1) is increased. The present study was undertaken to test the hypothesis that the elevated COMMD1 is responsible for copper loss from the ischemic myocardium, thus worsening myocardial ischemic injury. Mice (C57BL/6J) were subjected to left anterior descending coronary artery permanent ligation to induce myocardial ischemic infarction. In the ischemic myocardium, copper reduction was associated with a significant increase in the protein level of COMMD1. A tamoxifen-inducible, cardiomyocyte -specific Commd1 knockout mouse (C57BL/6J) model (COMMD1CMC▲/▲) was generated using the Cre-LoxP recombination system. COMMD1CMC▲/▲ and wild-type littermates were subjected to the same permanent ligation of left anterior descending coronary artery. At the 7th day after ischemic insult, COMMD1 deficiency suppressed copper loss in the heart, along with preservation of vascular endothelial growth factor and vascular endothelial growth factor receptor 1 expression and the integrity of the vascular system in the ischemic myocardium. Corresponding to this change, infarct size of ischemic heart was reduced and myocardial contractile function was well preserved in COMMD1CMC▲/▲ mice. These results thus demonstrate that upregulation of COMMD1 is at least partially responsible for copper efflux from the ischemic heart. Cardiomyocyte-specific deletion of COMMD1 helps preserve the availability of copper for angiogenesis, thus suppressing myocardial ischemic dysfunction.
Collapse
Affiliation(s)
- Chen Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|