1
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
2
|
Xia D, Shi X, Chen K, Hao A, Iseri Y. Understanding the mechanisms behind the antibacterial activity of magnesium hydroxide nanoparticles against sulfate-reducing bacteria in sediments. Sci Rep 2024; 14:21831. [PMID: 39294256 PMCID: PMC11411076 DOI: 10.1038/s41598-024-72516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Nanomaterials, with their small size, surface characteristics, and antibacterial properties, are extensively employed across environmental, energy, biomedical, agricultural, and other industries. This study examined the antibacterial efficacy of magnesium hydroxide (Mg(OH)2) nanoparticles (NPs) against sulfate-reducing bacteria (SRB) within sediments. The inhibitory effects of two types of Mg(OH)2 NPs with distinct particle sizes (20.3 and 29.6 nm) and concentrations (0-10.0 mg/mL) were examined under optimal treatment conditions. The antibacterial mechanisms of Mg(OH)2 NPs through direct contact and dissolution effects were determined. The results revealed a correlation between the concentration, particle size, and inhibitory activity, with the smallest NPs (20.3 nm) at the highest concentration (10.0 mg/mL) substantially reducing SRB counts from 8.77 ± 0.18 to 6.48 ± 0.13 log10 colony forming units/mL after 6 h treatment. Treatment with high concentrations of Mg(OH)2 NPs induced cellular damage, reduced intracellular lactate dehydrogenase activity, and elevated intracellular catalase activity and H2O2 content, suggesting that the contact effect of NPs stimulated SRB. This leads to oxidative stress response and structural damage to the cell membrane, which has emerged as the primary driver of the antibacterial action of Mg(OH)2 NPs. This study presents a novel nanomaterial that can inhibit and control SRB in natural sedimentary environments.
Collapse
Affiliation(s)
- Dong Xia
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaoyu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Kai Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Aimin Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Yasushi Iseri
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| |
Collapse
|
3
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Hu J, Chi M, He R, Fan J, Gao H, Xie W, Dai K, Sun S, Hu S. Multi-responsive Pickering emulsifiers: a comprehensive study on the emulsification-demulsification behavior of modified chitosan-coated Fe 3O 4 nanocomposites. Phys Chem Chem Phys 2024; 26:20009-20021. [PMID: 39005229 DOI: 10.1039/d4cp01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The surface characteristics of stimuli-responsive Pickering emulsifiers can be modified by external environmental triggers, making them highly versatile in various applications. In this study, we report three novel organic-inorganic composite structure emulsifiers. These emulsifiers were designed with a core of magnetic Fe3O4 particles, surrounded by a protective silica layer, and coated on the exterior with three distinct types of modified chitosan (CS). Experimental results demonstrate that these emulsifiers can stabilize emulsion systems consisting of liquid paraffin and deionized water at a concentration of 0.5 wt%. The unique properties of the modified CS coatings allowed for the controlled demulsification of two types of emulsions by adjusting the proton concentration. Additionally, these emulsifiers exhibited magnetic-responsive demulsification under the control of an external magnetic field. The findings of this study provide valuable insights into the design and construction of multi-responsive chitosan-based magnetic Pickering emulsifiers with controllable properties.
Collapse
Affiliation(s)
- Jianwen Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Mingshuo Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Runna He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Junjie Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Haotian Gao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wenqing Xie
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Kunxiu Dai
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
5
|
Jaisankar E, Azarudeen RS, Thirumarimurugan M. Nanofibers Embedded with Nanoparticles as Carriers for the Controlled Release of Anticancer Drug: Promoting the Apoptosis of Breast Cancer Cell Line and Growth Inhibition of Microbial Strains. ACS APPLIED BIO MATERIALS 2024; 7:4323-4338. [PMID: 38867473 DOI: 10.1021/acsabm.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.
Collapse
Affiliation(s)
- Edumpan Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | - Raja Sulaiman Azarudeen
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | | |
Collapse
|
6
|
Aljohani NB, Qusti SY, Alsiny M, Aljoud F, Aljohani NB, Alsolami ES, Alamry KA, Hussein MA. Carboxymethylcellulose encapsulated fingolimod, siRNA@ZnO hybrid nanocomposite as a new anti-Alzheimer's material. RSC Adv 2024; 14:22044-22055. [PMID: 39006767 PMCID: PMC11240087 DOI: 10.1039/d4ra01965b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurological disorder that causes cognitive and memory function to deteriorate. A critical pathogenic event that speeds up the development of AD is the interaction between dysfunctional microglia and amyloid-β (Aβ). We have developed a hybrid nanocomposite material to treat AD by normalizing the dysfunctional microglia. The material is based on carboxymethylcellulose (CMC) encapsulated fingolimod, siRNA, and zinc oxide (ZnO) with variable loading (CMC-Fi-siRNA@ZnO a-d ). The material was characterized using different techniques including FTIR, XRD, thermal analysis, SEM with EDX, and TEM micrographs. The chemical structure was confirmed by FTIR and XRD analyses, which indicated the successful integration of ZnO nanoparticles (NPs) into the polymer matrix, signifying a well-formed composite structure. The thermal stability order at 10% weight loss was CMC-Fi-siRNA@ZnO c > CMC-Fi-siRNA@ZnO b > CMC-Fi-siRNA@ZnO d > CMC-Fi-siRNA@ZnO a . The CMC-Fi-siRNA@ZnO d dramatically alleviates the priming of microglia by lowering the level of proinflammatory mediators and increasing the secretion of BDNF. This considerably improves the phagocytosis of Aβ. In the cell viability test in immortalized microglia cells (IMG), the hybrid nanocomposite (NP) exhibited no significant effect on cell survival after 48 hours of incubation. The NP also decreased the cytotoxicity caused by Aβ. Therefore, the CMC-hybrid NP has high potential as a drug delivery system in the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Nuha B Aljohani
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
- Biochemistry Department, Faculty of Science, University of Tabuk Tabuk Kingdom of Saudi Arabia
| | - Safaa Y Qusti
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
| | - Madeeha Alsiny
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdul Aziz University Jeddah 21589 Saudi Arabia
| | | | - Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
7
|
Hermosillo-Abundis C, Méndez-Rojas MA, Arias-Carrión O. Implications of environmental nanoparticles on neurodegeneration. J Neurosci Res 2024; 102:e25340. [PMID: 38745527 DOI: 10.1002/jnr.25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.
Collapse
Affiliation(s)
| | - Miguel A Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla City, Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| |
Collapse
|
8
|
Swarupa S, Thareja P. Techniques, applications and prospects of polysaccharide and protein based biopolymer coatings: A review. Int J Biol Macromol 2024; 266:131104. [PMID: 38522703 DOI: 10.1016/j.ijbiomac.2024.131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The growing relevance of sustainable materials has recently led to the exploration of naturally derived biopolymeric hydrogels as coating materials due to their biodegradability, biocompatibility, ease of fabrication and modification. Although many review articles exist on biopolymeric coatings, they mainly focus on a specific polysaccharide, protein biopolymer, or a particular application- biomedical engineering or food preservation. The current review first summarizes the commonly used polysaccharide and protein-based biopolymers like chitosan, alginate, carrageenan, pectin, cellulose, starch, pullulan, agarose and silk fibroin, gelatin, respectively, with a systematic description of the techniques widely used for physical coating on substrates. Then, broad applications of these biopolymeric coatings on various substrates in biomedical engineering- 3D scaffolds, biomedical implants, and nanoparticles are described in detail. It also entails the application of biopolymeric coatings for food preservation in the form of food packaging and edible coatings. A brief discussion on the newly discovered interest in exploring biopolymers for anticorrosive coating applications is also included. Finally, concluding remarks on the role of biopolymer microstructures in forming homogeneous coatings, prospective alternatives to the currently used biopolymers as coating material and the advent of computer-aided technologies to expedite experimental findings are presented.
Collapse
Affiliation(s)
- Sanchari Swarupa
- Biological Sciences and Engineering, IIT Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Chemical Engineering, Dr. Kiran C. Patel Centre for Sustainable Development, IIT Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
9
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Salatin S, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J. Magnetic hybrid nanovesicles for the precise diagnosis and treatment of central nervous system disorders. Expert Opin Drug Deliv 2024; 21:521-535. [PMID: 38555483 DOI: 10.1080/17425247.2024.2336496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Central nervous system (CNS)-related disorders are increasingly being recognized as a global health challenge worldwide. There are significant challenges for effective diagnosis and treatment due to the presence of the CNS barriers which impede the management of neurological diseases. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred to as magnetic nanovesicles (MNVs), is now well suggested as a potential theranostic option for improving the management of neurological disorders with increased targeting efficiency and minimized side effects. AREAS COVERED This review provides a summary of major CNS disorders and the physical barriers limiting the access of imaging/therapeutic agents to the CNS environment. A special focus on the unique features of MNPs and NV is discussed which make them attractive candidates for neuro-nanomedicine. Furthermore, a deeper understanding of MNVs as a promising combined strategy for diagnostic and/or therapeutic purposes in neurological disorders is provided. EXPERT OPINION The multifunctionality of MNVs offers the ability to overcome the CNS barriers and can be used to monitor the effectiveness of treatment. The insights provided will guide future research toward better outcomes and facilitate the development of next-generation, innovative treatments for CNS disorders.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
McCright J, Yarmovsky J, Maisel K. Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells. Mol Pharm 2024; 21:1160-1169. [PMID: 37851841 PMCID: PMC10923144 DOI: 10.1021/acs.molpharmaceut.3c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Lymphatic vessels have received significant attention as drug delivery targets, as they shuttle materials from peripheral tissues to the lymph nodes, where adaptive immunity is formed. Delivery of immune modulatory materials to the lymph nodes via lymphatic vessels has been shown to enhance their efficacy and also improve the bioavailability of drugs when delivered to intestinal lymphatic vessels. In this study, we generated a three-compartment model of a lymphatic vessel with a set of kinematic differential equations to describe the transport of nanoparticles from the surrounding tissues into lymphatic vessels. We used previously published data and collected additional experimental parameters, including the transport efficiency of nanoparticles over time, and also examined how nanoparticle formulation affected the cellular transport mechanisms using small molecule inhibitors. These experimental data were incorporated into a system of kinematic differential equations, and nonlinear, least-squares curve fitting algorithms were employed to extrapolate transport coefficients within our model. The subsequent computational framework produced some of the first parameters to describe transport kinetics across lymphatic endothelial cells and allowed for the quantitative analysis of the driving mechanisms of transport into lymphatic vessels. Our model indicates that transcellular mechanisms, such as micro- and macropinocytosis, drive transport into lymphatics. This information is crucial to further design strategies that will modulate lymphatic transport for drug delivery, particularly in diseases like lymphedema, where normal lymphatic functions are impaired.
Collapse
Affiliation(s)
- Jacob McCright
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Jenny Yarmovsky
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
14
|
He R, Sun S, Cui J, Chi M, Wang Z, Hu S. pH/magnetic dual responsive Pickering emulsion stabilized by Fe 3O 4@SiO 2@chitosan nanoparticles. Phys Chem Chem Phys 2023; 25:25780-25788. [PMID: 37724345 DOI: 10.1039/d3cp03400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In recent years, Pickering emulsifiers have been widely used in various production fields due to their excellent structural stability, biocompatibility and environmental friendliness. For some applications, it is required that the emulsifier can quickly respond to environmental stimuli and control the transition between stable and unstable emulsions. In this paper, we report a novel composite Pickering emulsifier with Fe3O4 as the core and magnetic response recognition body, silica as the intermediate protective layer, and chitosan (CS) of different molecular weights to endow solid particles with surface activity and pH-responsive properties. This emulsifier can stabilize the emulsion in the emulsion system with deionized water as the aqueous phase and liquid paraffin as the oil phase and can control the demulsification of the formed emulsion under the dual pH/magnetic stimulation. The experimental results show that Fe3O4@SiO2@CS has good paramagnetism and pH responsiveness. The particle size of the composite emulsifier nanoparticles is between 90 nm and 120 nm, and the best stabilizing effect of the emulsion is achieved when the dosage is 0.5 wt%. In the pH range of 3-11, the emulsifier can rapidly demulsify a stable paraffin oil-water emulsion system under the action of a magnetic field of strength 0.4 T. The pH response of the emulsifier is as follows: when pH ≤ 2, the system can form a stable emulsion, which is composed of fully protonated chitosan as a free chain segment and Fe3O4@SiO2. Emulsion stabilization was achieved with monolithic Fe3O4@SiO2@CS as an emulsifier at pH > 2, and demulsification was achieved at pH ≈ pKb (CS) at 298 K. The research in this paper can provide a feasible idea and synthesis method for the preparation of organic-inorganic composite structure emulsifier.
Collapse
Affiliation(s)
- Runna He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianpeng Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingshuo Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
15
|
Salahuddin N, Gaber M, Mousa M, Elfiky M. Dopamine / Artesunate loaded polyhydroxybutyrate-g-cellulose- magnetite zinc oxide core shell nanocomposites: Synergistic antimicrobial and anticancer efficacy. Int J Biol Macromol 2023; 248:125348. [PMID: 37330083 DOI: 10.1016/j.ijbiomac.2023.125348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
In this study, polyhydroxybutyrate-g-cellulose - Fe3O4/ZnO (PHB-g-cell- Fe3O4/ZnO) nanocomposites (NCs) was synthesized and used as a delivery system for Dopamine (DO) /Artesunate (ART) drugs. Different types of cells (Ccell, Scell, Pcell) grafted with PHB were designed and mixed with different contents of Fe3O4/ZnO. Physical and chemical features of PHB-g-cell-Fe3O4/ZnO NCs were detected by FTIR, XRD, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy. ART/DO drugs were loaded into PHB-g-cell- Fe3O4/ZnO NCs by single emulsion technique. The rate of drugs release was studied at different pHs (5.4, 7.4). Owing to the overlap between the absorption bands of both drugs, differential pulse adsorptive cathodic stripping voltammetry (DP-AdCSV) was used for the estimation of ART. To study the mechanism of ART and DO release, zero-order, first order, Hixon Crowell, Higuchi and Korsmeyer-Peppas models were applied to the experiment results. The results showed that Ic50 of ART @PHB-g-Ccell-10% DO@ Fe3O4/ZnO, ART @PHB-g-Pcell-10% DO@ Fe3O4/ZnO and ART @PHB-g-Scell-10% DO@ Fe3O4/ZnO were 21.22, 12.3, and 18.11 μg/mL, respectively. The results revealed that ART @PHB-g-Pcell-10% DO@ Fe3O4/ZnO was more effective against HCT-116 than the carriers loaded by a single drug. The antimicrobial efficacy of the nano-loaded drugs was considerably improved compared with free drugs.
Collapse
Affiliation(s)
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta 31527, Egypt
| | - Maie Mousa
- Chemistry Department, Faculty of Science, Tanta 31527, Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science, Tanta 31527, Egypt
| |
Collapse
|
16
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
17
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
18
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
19
|
Gareev K, Tagaeva R, Bobkov D, Yudintceva N, Goncharova D, Combs SE, Ten A, Samochernych K, Shevtsov M. Passing of Nanocarriers across the Histohematic Barriers: Current Approaches for Tumor Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1140. [PMID: 37049234 PMCID: PMC10096980 DOI: 10.3390/nano13071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials. However, the practical application of nanoparticle-based medicine in living organisms is limited by physiological barriers (blood-tissue barriers), which significantly hampers the transport of nanoparticles from the blood into the tumor tissue. This review focuses on several approaches that facilitate the translocation of nanoparticles across blood-tissue barriers (BTBs) to efficiently accumulate in the tumor. To overcome the challenge of BTBs, several methods have been proposed, including the functionalization of particle surfaces with cell-penetrating peptides (e.g., TAT, SynB1, penetratin, R8, RGD, angiopep-2), which increases the passing of particles across tissue barriers. Another promising strategy could be based either on the application of various chemical agents (e.g., efflux pump inhibitors, disruptors of tight junctions, etc.) or physical methods (e.g., magnetic field, electroporation, photoacoustic cavitation, etc.), which have been shown to further increase the permeability of barriers.
Collapse
Affiliation(s)
- Kamil Gareev
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Ruslana Tagaeva
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Danila Bobkov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Daria Goncharova
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Artem Ten
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Konstantin Samochernych
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
20
|
Setia A, Mehata AK, Vikas, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
21
|
Vassallo M, Martella D, Barrera G, Celegato F, Coïsson M, Ferrero R, Olivetti ES, Troia A, Sözeri H, Parmeggiani C, Wiersma DS, Tiberto P, Manzin A. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating. ACS OMEGA 2023; 8:2143-2154. [PMID: 36687092 PMCID: PMC9850460 DOI: 10.1021/acsomega.2c06244] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, Fe3O4 nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field.
Collapse
Affiliation(s)
- Marta Vassallo
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
- Dipartimento
di Elettronica e Telecomunicazioni, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129Torino, Italy
| | - Daniele Martella
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
| | - Gabriele Barrera
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Federica Celegato
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Marco Coïsson
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Riccardo Ferrero
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Elena S. Olivetti
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Adriano Troia
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Hüseyin Sözeri
- Magnetics
Laboratory, TÜBİTAK Ulusal
Metroloji Enstitüsü (UME), Gebze Yerleşkesi, 41470Kocaeli, Turkey
| | - Camilla Parmeggiani
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019Sesto Fiorentino, Italy
| | - Diederik S. Wiersma
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
- Department
of Physics and Astronomy, University of
Florence, Via Giovanni
Sansone, 1, 50019Sesto Fiorentino, Italy
| | - Paola Tiberto
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Alessandra Manzin
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| |
Collapse
|
22
|
Gupta R, Chauhan A, Kaur T, Kuanr BK, Sharma D. Transmigration of magnetite nanoparticles across the blood-brain barrier in a rodent model: influence of external and alternating magnetic fields. NANOSCALE 2022; 14:17589-17606. [PMID: 36409463 DOI: 10.1039/d2nr02210a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite advances in neurology, drug delivery to the central nervous system is considered a challenge due to the presence of the blood brain barrier (BBB). In this study, the role of magnetic hyperthermia induced by exposure of magnetic nanoparticles (MNPs) to an alternating magnetic field (AMF) in synergy with an external magnetic field (EMF) was investigated to transiently increase the permeability of the MNPs across the BBB. A dual magnetic targeting approach was employed by first dragging the MNPs by an EMF for an intended enhanced cellular association with the brain endothelial cells and then activating the MNPs by an AMF for the temporary disruption of the tight junctions of BBB. The efficacy of the BBB permeability for the MNPs under the influence of dual magnetic targeting was evaluated in vitro using transwell models developed by co-culturing murine brain endothelial cells with astrocytes, as well as in vivo in mouse models. The in vitro results revealed that the exposure to AMF transiently opened the tight junctions at the BBB, which, after 3 h of treatment, were observed to recover back to their comparable control levels. A biodistribution analysis of nanoparticles confirmed targeted accumulation of MNPs in the brain following dual targeting. This dual targeting approach was observed to open the tight junctions, thus increasing the transport of MNPs into the brain with higher specificity as compared to using EMF targeting alone, suggesting that a dual magnetic targeting-induced transport of MNPs across the BBB is an effective measure for delivery of therapeutics.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| | - Anjali Chauhan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India
| | - Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| |
Collapse
|
23
|
Nanotechnology and quantum science enabled advances in neurological medical applications: diagnostics and treatments. Med Biol Eng Comput 2022; 60:3341-3356. [DOI: 10.1007/s11517-022-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
|
24
|
Gupta R, Kaur T, Chauhan A, Kumar R, Kuanr BK, Sharma D. Tailoring nanoparticles design for enhanced heating efficiency and improved magneto-chemo therapy for glioblastoma. BIOMATERIALS ADVANCES 2022; 139:213021. [PMID: 35882116 DOI: 10.1016/j.bioadv.2022.213021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Development of multifunctional magnetic nanomaterials (MNPs) with improved heat-generating capabilities and effective combination with localized chemotherapy has emerged as a promising therapeutic regime for solid tumors like glioblastoma. In this regard, the shape-dependent hyperthermic and chemo-therapeutic potential of nanomaterials, has not been extensively explored. Here we present, development of various morphological designs of MNPs including spherical, clusters, rods and cubic; to compare the effect of shape on tuning the properties of MNPs that are relevant to many potential biomedical applications like drug delivery, cellular uptake and heat generation. The study includes extensive comparison of morpho-structural characteristics, size distributions, chemical composition, surface area measurements and magnetic properties of the variable shaped MNPs. Further the heating efficiencies in aqueous and cellular environments and heat triggered drug release profiles for successful magneto-chemotherapy were compared among all in-house synthesized MNPs. Under biosafety limit considerations given by Hergt's limit (H*f value <5 × 109 Am-1 s-1), cuboidal shaped MNPs demonstrated highest heating efficiency owing to magnetosome-like chain formation along with sustained drug release profile as compared to other synthesized MNPs. The mechanism of cancer cell death mediated via magneto-chemotherapy was elucidated to be the oxidative stress-mediated apoptotic cell death pathway. In vivo studies further demonstrated complete tumor regression only in the magneto-chemotherapy treated group. These findings suggest the potential of combinatorial therapy to overcome the clinical limitations of the independent therapies for advanced thermotherapy of glioblastoma.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Anjali Chauhan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India; Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
25
|
Shahriari M, Liu S, Ebrahimi Z, Cao L. A strategy for the treatment of lung carcinoma by in situ immobilization of Ag nanoparticles on the surface of Fe3O4 nanoparticles that modified by lignin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Meng L, Li S, Wanyan C. Design and evaluation of a novel nano copper/chitosan–starch bio-composite on antimicrobial property and wound-healing efficacy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
McCright J, Skeen C, Yarmovsky J, Maisel K. Nanoparticles with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes. Acta Biomater 2022; 145:146-158. [PMID: 35381399 PMCID: PMC9133124 DOI: 10.1016/j.actbio.2022.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
Lymphatic vessels have recently been shown to effectively deliver immune modulatory therapies to the lymph nodes, which enhances their therapeutic efficacy. Prior work has shown that lymphatics transport 10-250 nm nanoparticles from peripheral tissues to the lymph node. However, the surface chemistry required to maximize this transport is poorly understood. Here, we determined the effect of surface poly(ethylene glycol) (PEG) density and size on nanoparticle transport across lymphatic endothelial cells (LECs) by differentially PEGylated model polystyrene nanoparticles. Using an established in-vitro lymphatic transport model, we found PEGylation improved the transport of 100 and 40 nm nanoparticles across LECs 50-fold compared to the unmodified nanoparticles and that transport is maximized when the PEG is in a dense brush conformation or high grafting density (Rf/D = 4.9). We also determined that these trends are not size-dependent. PEGylating 40 nm nanoparticles improved transport efficiency across LECs 68-fold compared to unmodified nanoparticles. We also found that PEGylated 100 nm and 40 nm nanoparticles accumulate in lymph nodes within 4 h after intradermal injection, while unmodified nanoparticles accumulated minimally. Densely PEGylated nanoparticles traveled the furthest distance from the injection site and densely PEGylated 40 nm nanoparticles had maximum accumulation in the lymph nodes compared to low density PEGylated and unmodified nanoparticles. Finally, we determined that nanoparticles are transported via both paracellular and transcellular mechanisms, and that PEG conformation modulates the cellular transport mechanisms. Our results suggest that PEG conformation is crucial to maximize nanoparticle transport across LECs and into lymphatic vessels, making PEG density a crucial design. Optimizing PEG density on nanoparticle formulations has the potential to enhance immunotherapeutic and vaccine outcomes. STATEMENT OF SIGNIFICANCE: Lymphatic vessels are an emerging target for drug delivery both in the context of modulating immune responses and enhancing bioavailability by avoiding first pass hepatic metabolism after oral delivery. Lymphatic vessels are the natural conduits from peripheral tissues to the lymph nodes, where the adaptive immune response is shaped, and eventually to systemic circulation via the thoracic duct. Lymphatics can be targeted via nanoparticles, but the surface chemistry required to maximize nanoparticle transport by lymphatics vessels remains poorly understood. Here, we demonstrate that coating nanoparticles with hydrophilic polyethylene glycol (PEG) effectively enhances their transport across lymphatic endothelial cells in vitro and in vivo and that both paracellular and micropinocytosis mechanisms underly this transport. We found that dense PEG coatings maximize lymphatic transport of nanoparticles, thus providing new material design criteria for lymphatic targeted drug delivery.
Collapse
Affiliation(s)
- Jacob McCright
- Department of Bioengineering, University of Maryland College Park, College Park, 8278 Paint Branch Drive, MD 20742, USA
| | - Colin Skeen
- Department of Bioengineering, University of Maryland College Park, College Park, 8278 Paint Branch Drive, MD 20742, USA
| | - Jenny Yarmovsky
- Department of Bioengineering, University of Maryland College Park, College Park, 8278 Paint Branch Drive, MD 20742, USA
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, 8278 Paint Branch Drive, MD 20742, USA.
| |
Collapse
|
28
|
Wang C, Karmakar B, Awwad NS, Ibrahium HA, El-kott AF, Abdel-Daim MM, Oyouni AAA, Al-Amer O, El-Saber Batiha G. Bio-supported of Cu nanoparticles on the surface of Fe3O4 magnetic nanoparticles mediated by Hibiscus sabdariffa extract: Evaluation of its catalytic activity for synthesis of pyrano[3,2-c]chromenes and study of its anti-colon cancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
29
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
30
|
Cai Y, Karmakar B, Salem MA, Alzahrani AY, Bani-Fwaz MZ, Oyouni AAA, Al-Amer O, Batiha GES. Ag NPs supported chitosan-agarose modified Fe 3O 4 nanocomposite catalyzed synthesis of indazolo[2,1-b]phthalazines and anticancer studies against liver and lung cancer cells. Int J Biol Macromol 2022; 208:20-28. [PMID: 35259437 DOI: 10.1016/j.ijbiomac.2022.02.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
In this article we report a novel Ag NPs fabricated chitosan-agarose composite functionalized core-shell type Fe3O4 nanoparticle (Ag/CS-Agar@Fe3O4). The biogenic material was analyzed over a number of physicochemical methods like, FT-IR, FE-SEM, TEM, EDX, XRD, VSM and ICP-OES. In catalytic exploration we aimed the synthesis of diverse 2H-indazolo0-b]phthalazine-trione derivatives via one-pot three component coupling of phathalalhydrazide, dimedone and different aldehydes. It afforded good to excellent yields under solvent-less conditions. Robustness of the catalyst was justified by catalyst recyclability for consecutive 10 times, hot filtration and leaching tests. Again, biological activity of the material was evaluated by studying the antioxidant and cytotoxicity properties over lung and liver cancer cell lines. Antioxidant potential of Ag/CS-Agar@Fe3O4 was assessed by DPPH radical scavenging studies and the corresponding IC50 was found to be 96.57 μg/mL. Liver and lung cancer studies over Ag/CS-Agar@Fe3O4 was carried out by MTT assay against HepG2 and A549 cell lines. The corresponding IC50 values were found as 192.35 and 365.28 μg/mL respectively. % Cell viability of the nanomaterial decreased dose dependently over both the cell lines without any cytotoxicity on normal cell line. The results demonstrates Ag/CS-Agar@Fe3O4 nanocomposite to be an efficient chemotherapeutic drug against the lung and hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yi Cai
- Department of Medical Oncology, Chinese PLA General Hospital & Medical School, Beijing, 100853, China
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, India.
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail, Assir, Saudi Arabia; Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Mutasem Z Bani-Fwaz
- Department of Chemistry, Faculty of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
31
|
Caldera F, Nisticò R, Magnacca G, Matencio A, Khazaei Monfared Y, Trotta F. Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:754. [PMID: 35269242 PMCID: PMC8911700 DOI: 10.3390/nano12050754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Magnetically driven nanosponges with potential application as targeted drug delivery systems were prepared via the addition of magnetite nanoparticles to the synthesis of cyclodextrin and maltodextrin polymers crosslinked with 1,1'-carbonyldiimidazole. The magnetic nanoparticles were obtained separately via a coprecipitation mechanism involving inorganic iron salts in an alkaline environment. Four composite nanosponges were prepared by varying the content of magnetic nanoparticles (5 wt% and 10 wt%) in the cyclodextrin- and maltodextrin-based polymer matrix. The magnetic nanosponges were then characterised by FTIR, TGA, XRD, FESEM, and HRTEM analysis. The magnetic properties of the nanosponges were investigated via magnetisation curves collected at RT. Finally, the magnetic nanosponges were loaded with doxorubicin and tested as a drug delivery system. The nanosponges exhibited a loading capacity of approximately 3 wt%. Doxorubicin was released by the loaded nanosponges with sustained kinetics over a prolonged period of time.
Collapse
Affiliation(s)
- Fabrizio Caldera
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Roberto Nisticò
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giuliana Magnacca
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Adrián Matencio
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Yousef Khazaei Monfared
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Francesco Trotta
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| |
Collapse
|
32
|
Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S. Preparation and applications of chitosan and cellulose composite materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113850. [PMID: 34619590 DOI: 10.1016/j.jenvman.2021.113850] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
33
|
Rajalakshmi A, Ramesh M, Divya E, Kavitha K, Puvanakrishnan R, Ramesh B. Production and characterization of naturally occurring antibacterial magnetite nanoparticles from magnetotactic Bacillus sp. MTB17. J Appl Microbiol 2021; 132:2683-2693. [PMID: 34859544 DOI: 10.1111/jam.15395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
AIMS This study envisaged the isolation and characterization of magnetite nanoparticles (MNPs) from magnetotactic bacteria (MTB) and the evaluation of their antibacterial efficacy. METHODS AND RESULTS MNPs were extracted from 20 motile but morphologically different MTB, and they were subjected to antibacterial activity assay. These MNPs were found to be highly effective against Vibrio cholerae. MTB17 was considered as the potent MTB strain based on the antibacterial activity. The MNPs of MTB17 were isolated and validated by UV-Visible spectroscopy, particle size analysis, FTIR analysis, and PXRD. CONCLUSIONS Isolation and characterization of ~85 nm MNPs from MTB is reported, and it is highly active against all the gram-positive and gram-negative strains tested. SIGNIFICANCE AND IMPACT OF THE STUDY This study focuses on a novel use of biogenic magnetite MNPs as an antibacterial agent, which can be further explored using in vivo studies.
Collapse
Affiliation(s)
- Arumugam Rajalakshmi
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Manickam Ramesh
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Ellappan Divya
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Kuppuswamy Kavitha
- Research Department of Microbiology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Rengarajulu Puvanakrishnan
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Balasubramanian Ramesh
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
34
|
Gum Arabic-Magnetite Nanocomposite as an Eco-Friendly Adsorbent for Removal of Lead(II) Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. SEPARATIONS 2021. [DOI: 10.3390/separations8110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a gum Arabic-magnetite nanocomposite (GA/MNPs) was synthesized using the solution method. The prepared nanocomposite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). The prepared composite was evaluated for the adsorption of lead(II) ions from aqueous solutions. The controlling factors such as pH, contact time, adsorbent dose, initial ion concentration, and temperature were investigated. The optimum adsorption conditions were found to be 0.3 g/50 mL, pH = 6.00, and contact time of 30 min. The experimental data well fitted the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity was determined as 50.5 mg/g. Thermodynamic parameters were calculated postulating an endothermic and spontaneous process and a physio-sorption pathway.
Collapse
|
35
|
Marandi A, Nasiri E, Koukabi N, Seidi F. The Fe 3O 4@apple seed starch core-shell structure decorated In(III): A green biocatalyst for the one-pot multicomponent synthesis of pyrazole-fused isocoumarins derivatives under solvent-free conditions. Int J Biol Macromol 2021; 190:61-71. [PMID: 34411618 DOI: 10.1016/j.ijbiomac.2021.08.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023]
Abstract
In current decades, the fabrication and design of magnetic biocatalysts have been advancing as green catalysts. Hence, in this paper, we use the apple seed starch to create indium(III) immobilized on Fe3O4@apple seed starch core-shell magnetic nanocatalyst (Fe3O4@apple seed starch-In(III)). The prepared catalyst was identified and evaluated with several analysis techniques. The application of this catalyst in the synthesis of isochromeno[4,3-c]pyrazole-5(1H)-one derivates under solvent-free conditions was a new approach with high efficiency. Due to the magnetic nature of the catalyst, the catalyst separation from the reaction medium is easy, and it is reusable for five runs without significant change in catalytic activity. The fabrication of this catalyst is based on green chemistry principles and is more economical and stable than other catalysts in the synthesis of pyrazole-fused isocoumarins heterocyclic compounds.
Collapse
Affiliation(s)
- Alireza Marandi
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Erfan Nasiri
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Nadiya Koukabi
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
36
|
Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci 2021; 4:645-675. [PMID: 33320185 DOI: 10.1042/etls20190141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.
Collapse
|
37
|
Zarei F, Soleimani-Amiri S, Azizi Z. Heterogeneously Catalyzed Pechmann Condensation Employing the HFe(SO4)2.4H2O-Chitosan Nano-Composite: Ultrasound-Accelerated Green Synthesis of Coumarins. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1973520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Forough Zarei
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Zahra Azizi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
38
|
Tang T, Xia Q, Guo J, Chinnathambi A, Alrashood ST, Alharbi SA, Zhang J. In situ supported of silver nanoparticles on Thymbra spicata extract coated magnetic nanoparticles under the ultrasonic condition: Its catalytic activity in the synthesis of Propargylamines and their anti-human colorectal properties in the in vitro condition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Sustainable synthesis of Cu NPs decorated on pectin modified Fe3O4 nanocomposite: Catalytic synthesis of 1-substituted-1H-tetrazoles and in-vitro studies on its cytotoxicity and anti-colorectal adenocarcinoma effects on HT-29 cell lines. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
40
|
K. RB, J. JK, G. SB, Singh J, Reddy V. Carboxymethyl cellulose stabilized lead sulfide nanocrystals: Synthesis, characterization and catalytic applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Kermanian M, Sadighian S, Naghibi M, Khoshkam M. PVP Surface-protected silica coated iron oxide nanoparticles for MR imaging application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1356-1369. [PMID: 33882784 DOI: 10.1080/09205063.2021.1916869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper proposed an engineered mesoporous silica-coated Fe3O4 nanoparticle, PVPMSFe, prepared by a sol-gel/surface-protected etching mechanism as an MRI T2 contrast agent. To this end, the structural characterization of the nanocomposite was performed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, VSM, thermogravimetric analysis (TGA), TEM, FESEM, and energy-dispersive X-ray scanning electron microscopy (EDS). The findings show that the synthesized nanocomposite has a mesoporous structure with an average particle size of 11.8 nm and excellent magnetization properties. The biocompatibility of PVPMSFe was investigated by MTT assay and hemolysis assay of red blood cells and the results indicate that PVPMSFe has favorable biocompatibility. Besides, the effect of PVPMSFe was assessed with MRI relaxivity measurement (T2 signal). Regarding the in vitro MRI relaxivity measurements outputs (r2=144.4), PVPMSFe can attenuate the T2 signal of MRI, perfectly which makes it an efficient T2 contrast agent.
Collapse
Affiliation(s)
- Mehraneh Kermanian
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Sadighian
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Naghibi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoshkam
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
42
|
Kermanian M, Sadighian S, Ramazani A, Naghibi M, Khoshkam M, Ghezelbash P. Inulin-Coated Iron Oxide Nanoparticles: A Theranostic Platform for Contrast-Enhanced MR Imaging of Acute Hepatic Failure. ACS Biomater Sci Eng 2021; 7:2701-2715. [PMID: 34061500 DOI: 10.1021/acsbiomaterials.0c01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study introduces a superparamagnetic nanocomposite, Fe-Si-In, as a T2 magnetic resonance imaging (MRI) contrast agent with a core of iron oxide nanoparticles and a nonporous silica inner shell/carboxymethyl inulin outer shell. Due to its core/shell properties, the structure characterization, biocompatibility, and performance in MRI, as well as its potential as a drug delivery system, were thoroughly evaluated. The results have shown that the synthesized nanocomposite possesses excellent biocompatibility and acceptable magnetization (Ms = 20 emu g-1). It also has the potential to be a nanocarrier for drug delivery purposes, as evidenced by the results of curcumin administration studies. The developed nanocomposite has shown excellent performance in MRI, while the in vitro relaxivity measurements reveal a stronger T2 relaxivity (r2 = 223.2 ms) compared to the commercial samples available in the market. Furthermore, the in vivo MRI studies demonstrate an excellent contrast between injured livers and normal ones in rats which again upholds the high performance of Fe-Si-In in MRI diagnostics.
Collapse
Affiliation(s)
- Mehraneh Kermanian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Mehran Naghibi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Maryam Khoshkam
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil 1136756199, Iran
| | - Parviz Ghezelbash
- Department of Radiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| |
Collapse
|
43
|
García-Pardo J, Novio F, Nador F, Cavaliere I, Suárez-García S, Lope-Piedrafita S, Candiota AP, Romero-Gimenez J, Rodríguez-Galván B, Bové J, Vila M, Lorenzo J, Ruiz-Molina D. Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson's Disease. ACS NANO 2021; 15:8592-8609. [PMID: 33885286 PMCID: PMC8558863 DOI: 10.1021/acsnano.1c00453] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is one of the main neurotransmitters found in the central nervous system and has a vital role in the function of dopaminergic (DArgic) neurons. A progressive loss of this specific subset of cells is one of the hallmarks of age-related neurodegenerative disorders such as Parkinson's disease (PD). Symptomatic therapy for PD has been centered in the precursor l-DOPA administration, an amino acid precursor of DA that crosses the blood-brain barrier (BBB) while DA does not, although this approach presents medium- to long-term side effects. To overcome this limitation, DA-nanoencapsulation therapies are actively being searched as an alternative for DA replacement. However, overcoming the low yield of encapsulation and/or poor biodistribution/bioavailability of DA is still a current challenge. Herein, we report the synthesis of a family of neuromelanin bioinspired polymeric nanoparticles. Our system is based on the encapsulation of DA within nanoparticles through its reversible coordination complexation to iron metal nodes polymerized with a bis-imidazol ligand. Our methodology, in addition to being simple and inexpensive, results in DA loading efficiencies of up to 60%. In vitro, DA nanoscale coordination polymers (DA-NCPs) exhibited lower toxicity, degradation kinetics, and enhanced uptake by BE(2)-M17 DArgic cells compared to free DA. Direct infusion of the particles in the ventricle of rats in vivo showed a rapid distribution within the brain of healthy rats, leading to an increase in striatal DA levels. More importantly, after 4 days of nasal administrations with DA-NCPs equivalent to 200 μg of the free drug per day, the number and duration of apomorphine-induced rotations was significantly lower from that in either vehicle or DA-treated rats performed for comparison purposes. Overall, this study demonstrates the advantages of using nanostructured DA for DA-replacement therapy.
Collapse
Affiliation(s)
- Javier García-Pardo
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Fabiana Nador
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ivana Cavaliere
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Salvio Suárez-García
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Silvia Lope-Piedrafita
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
| | - Ana Paula Candiota
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
| | - Jordi Romero-Gimenez
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Miquel Vila
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Julia Lorenzo
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
44
|
Xie C, Guo B, You H, Wang Z, Leng Q, Ding L, Wang Q. Synthesis and surface modification of mesoporous metal-organic framework (UiO-66) for efficient pH-responsive drug delivery and lung cancer treatment. NANOTECHNOLOGY 2021; 32:295704. [PMID: 33853047 DOI: 10.1088/1361-6528/abf7ea] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
This paper applied mesoporous metal-organic frameworks (MOFs) of UiO-66 particles for pH-responsive doxorubicin (DOX) delivery and cancer treatment. Mesoporous structured UiO-66 MOFs were synthesized, and carboxymethylcellulose (CMC) was loaded for sensitive pH response and also as a linker to encapsulate the chemotherapeutic drug of DOX. The composite of UiO-66/CMC@DOX was synthesized, and the loading capacity was as high as 45μg DOX per mg of the carrier. The structure and crystalization of the UiO-66 MOFs were determined by the Transmitting Electron Microscope (TEM) and x-ray diffraction methods, while the loading of CMC and DOX was inspected by Fourier Transform InfraRed (FT-IR) and UV-vis spectroscopy. The DOX release from UiO-66/CMC@DOX was tested under different pH at 37 °C. The DOX accumulative release could reach 78% under the pH of 5. A lower pH was more favorable for DOX release due to the CMC shrinking and higher DOX solubility in an acidic environment. The cytotoxicity study indicated that, under the DOX concentration of 4μg ml-1, the A549 cell (Lung Carcinoma Cell Line) viability of UiO-66/CMC was 28%, which was lower than that from free DOX solution (47%). UiO-66 MOFs were demonstrated to be an efficient drug delivery carrier for chemotherapeutic drug and release.
Collapse
Affiliation(s)
- Canguo Xie
- Department of Respiratory and Critical Care Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| | - Bitao Guo
- Department of Respiratory and Critical Care Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| | - Hua You
- Department of Anesthesia and Perioperative Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| | - Zhengyan Wang
- Department of Respiratory and Critical Care Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| | - Qiqi Leng
- Department of Internal Medicine, Jiefang Road, Zengdu Hospital, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| | - Lijun Ding
- Department of Pharmacy Clinical Pharmacy, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, People's Republic of China
| |
Collapse
|
45
|
Flood-Garibay JA, Méndez-Rojas MA. Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Gebre SH. Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: A green approach. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1900257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shushay Hagos Gebre
- Department of Chemistry, College of Natural and Computational Science, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
47
|
Leonel AG, Mansur AAP, Carvalho SM, Outon LEF, Ardisson JD, Krambrock K, Mansur HS. Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. NANOSCALE ADVANCES 2021; 3:1029-1046. [PMID: 36133299 PMCID: PMC9416810 DOI: 10.1039/d0na00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.
Collapse
Affiliation(s)
- Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Luis Eugenio F Outon
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - José Domingos Ardisson
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN Av. Antônio Carlos 6627 - Belo Horizonte MG Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| |
Collapse
|
48
|
Veisi H, Joshani Z, Karmakar B, Tamoradi T, Heravi MM, Gholami J. Ultrasound assisted synthesis of Pd NPs decorated chitosan-starch functionalized Fe 3O 4 nanocomposite catalyst towards Suzuki-Miyaura coupling and reduction of 4-nitrophenol. Int J Biol Macromol 2021; 172:104-113. [PMID: 33444655 DOI: 10.1016/j.ijbiomac.2021.01.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
In recent days the nanomagnetic biocomposites have been evolved as sustainable green catalysts. In that context, we are prompted to design and synthesize a novel Pd NP adorned chitosan-starch dual biopolymer encapsulated core-shell type magnetic nanocomposite (Fe3O4@CS-Starch/Pd) in an eco-friendly pathway applying ultrasound irradiations. The morphological and physicochemical features of the material were determined using several advanced techniques like FT-IR, FESEM, HRTEM, EDX, atomic mapping, VSM, XRD and ICP-OES. Catalytic efficiency of the material was investigated in the ultrasound assisted classical Suzuki-Miyaura coupling towards the synthesis of diverse range of biaryl derivatives and in the catalytic reduction of 4-Nitrophenol.In both the protocols the catalyst exhibited excellent performances. Sonication had a significant role in enhancing the catalytic performances in both the reactions as compared to conventional heating. Due to super-paramagnetism, the catalyst was easily magnetically isolable and reused in 11 cycles without considerable leaching and change in reactivity.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.
| | - Zeinab Joshani
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India.
| | - Taiebeh Tamoradi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Javad Gholami
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
| |
Collapse
|
49
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
50
|
Curcio M, Cirillo G, Rouaen JRC, Saletta F, Nicoletta FP, Vittorio O, Iemma F. Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics 2020; 12:E1183. [PMID: 33291284 PMCID: PMC7762150 DOI: 10.3390/pharmaceutics12121183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Jourdin R. C. Rouaen
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| |
Collapse
|