1
|
Yang Z, Shi A, Zhang R, Ji Z, Li J, Lyu J, Qian J, Chen T, Wang X, You F, Xie J. When Metal Nanoclusters Meet Smart Synthesis. ACS NANO 2024; 18:27138-27166. [PMID: 39316700 DOI: 10.1021/acsnano.4c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) represent a fascinating class of ultrasmall nanoparticles with molecule-like properties, bridging conventional metal-ligand complexes and nanocrystals. Despite their potential for various applications, synthesis challenges such as a precise understanding of varied synthetic parameters and property-driven synthesis persist, hindering their full exploitation and wider application. Incorporating smart synthesis methodologies, including a closed-loop framework of automation, data interpretation, and feedback from AI, offers promising solutions to address these challenges. In this perspective, we summarize the closed-loop smart synthesis that has been demonstrated in various nanomaterials and explore the research frontiers of smart synthesis for MNCs. Moreover, the perspectives on the inherent challenges and opportunities of smart synthesis for MNCs are discussed, aiming to provide insights and directions for future advancements in this emerging field of AI for Science, while the integration of deep learning algorithms stands to substantially enrich research in smart synthesis by offering enhanced predictive capabilities, optimization strategies, and control mechanisms, thereby extending the potential of MNC synthesis.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Anye Shi
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zuowei Ji
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengqi You
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, New York 14853, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
2
|
Wolff N, Prymak O, Białas N, Schaller T, Loza K, Niemeyer F, Heggen M, Weidenthaler C, Oliveira CLP, Epple M. Conversion of Ultrasmall Glutathione-Coated Silver Nanoparticles during Dispersion in Water into Ultrasmall Silver Sulfide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1449. [PMID: 39269111 PMCID: PMC11397201 DOI: 10.3390/nano14171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ultrasmall silver nanoparticles (2 nm) were prepared by reduction with sodium borohydride (NaBH4) and stabilized by the ligand glutathione (a tripeptide: glycine-cysteine-glutamic acid). NMR spectroscopy and optical spectroscopy (UV and fluorescence) revealed that these particles initially consist of silver nanoparticles and fluorescing silver nanoclusters, both stabilized by glutathione. Over time, the silver nanoclusters disappear and only the silver nanoparticles remain. Furthermore, the capping ligand glutathione eliminates hydrogen sulfide (H2S) from the central cysteine and is released from the nanoparticle surface as tripeptide glycine-dehydroalanine-glutamic acid. Hydrogen sulfide reacts with the silver core to form silver sulfide. After four weeks in dispersion at 4 °C, this process is completed. These processes cannot be detected by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), or differential centrifugal sedimentation (DCS) as these methods cannot resolve the mixture of nanoparticles and nanoclusters or the nature of the nanoparticle core. X-ray photoelectron spectroscopy showed the mostly oxidized state of the silver nanoparticle core, Ag(+I), both in freshly prepared and in aged silver nanoparticles. These results demonstrate that ultrasmall nanoparticles can undergo unnoticed changes that considerably affect their chemical, physical, and biological properties. In particular, freshly prepared ultrasmall silver nanoparticles are much more toxic against cells and bacteria than aged particles because of the presence of the silver clusters.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Nataniel Białas
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
3
|
DeJesus JF, Jacob SI, Phung QM, Mimura K, Aramaki Y, Ooi T, Nambo M, Crudden CM. If the Crown Fits: Sterically Demanding N-Heterocyclic Carbene Promotes the Formation of Au 8Pt Nanoclusters. J Am Chem Soc 2024; 146:23806-23813. [PMID: 39141005 DOI: 10.1021/jacs.4c04873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
While N-heterocyclic carbenes (NHCs) have recently been shown to be effective ligands for gold nanoclusters, very few examples of heterometallic clusters incorporating nongroup 11 metals are known. We present herein an Au-Pt NHC cluster featuring a crown-shaped [Au8Pt(NHC)8]2+ core, produced in high yield without the need for chromatographic purification. The method was largely independent of the substitution pattern of the NHC backbone; however, bulky wingtip groups were needed for clean conversion to the Au8Pt cluster. Clusters were characterized using single crystal X-ray diffraction, multinuclear nuclear magnetic resonance, electrospray ionization mass spectroscopy, and ultraviolet-visible spectroscopy, and electrochemical features of the cluster are also presented. A detailed analysis of the in-progress reaction mixture by ESI-MS supports the direct involvement of Au-H species as intermediates in cluster formation. These studies further demonstrate that NHC wingtip sterics play a key part in determining the nature of the initial cluster species, providing critical information for the generation of new NHC-stabilized nanoclusters.
Collapse
Affiliation(s)
- Joseph F DeJesus
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Samuel I Jacob
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Koichi Mimura
- Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshitaka Aramaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
4
|
Wolff N, Beuck C, Schaller T, Epple M. Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles. NANOSCALE ADVANCES 2024; 6:3285-3298. [PMID: 38933863 PMCID: PMC11197423 DOI: 10.1039/d4na00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
5
|
Wagner LS, Prymak O, Schaller T, Beuck C, Loza K, Niemeyer F, Gumbiowski N, Kostka K, Bayer P, Heggen M, Oliveira CLP, Epple M. The Molecular Footprint of Peptides on the Surface of Ultrasmall Gold Nanoparticles (2 nm) Is Governed by Steric Demand. J Phys Chem B 2024; 128:4266-4281. [PMID: 38640461 DOI: 10.1021/acs.jpcb.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.
Collapse
Affiliation(s)
- Lisa-Sofie Wagner
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Christine Beuck
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Peter Bayer
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
6
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
7
|
Albright EL, Levchenko TI, Kulkarni VK, Sullivan AI, DeJesus JF, Malola S, Takano S, Nambo M, Stamplecoskie K, Häkkinen H, Tsukuda T, Crudden CM. N-Heterocyclic Carbene-Stabilized Atomically Precise Metal Nanoclusters. J Am Chem Soc 2024; 146:5759-5780. [PMID: 38373254 DOI: 10.1021/jacs.3c11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This perspective highlights advances in the preparation and understanding of metal nanoclusters stabilized by organic ligands with a focus on N-heterocyclic carbenes (NHCs). We demonstrate the need for a clear understanding of the relationship between NHC properties and their resulting metal nanocluster structure and properties. We emphasize the importance of balancing nanocluster stability with the introduction of reactive sites for catalytic applications and the importance of a better understanding of how these clusters interact with their environments for effective use in biological applications. The impact of atom-scale simulations, development of atomic interaction potentials suitable for large-scale molecular dynamics simulations, and a deeper understanding of the mechanisms behind synthetic methods and physical properties (e.g., the bright fluorescence displayed by many clusters) are emphasized.
Collapse
Affiliation(s)
- Emily L Albright
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tetyana I Levchenko
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Viveka K Kulkarni
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Angus I Sullivan
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Joseph F DeJesus
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
8
|
Epple M, Rotello VM, Dawson K. The Why and How of Ultrasmall Nanoparticles. Acc Chem Res 2023; 56:3369-3378. [PMID: 37966025 DOI: 10.1021/acs.accounts.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ConspectusIn this Account, we describe our research into ultrasmall nanoparticles, including their unique properties, and outline some of the new opportunities they offer. We will summarize our perspective on the current state of the field and highlight what we see as key questions that remain to be solved. First, there are several nanostructure size-scale regimes, with qualitatively distinct functional biological attributes. Broadly generalized, larger particles (e.g., larger than 300 nm) tend to be more efficiently swept away by the first line of the immune system (for example macrophages). In the "middle-sized" regime (20-300 nm), nanoparticle surfaces and shapes can be recognized by energy-dependent cellular reorganizations, then organized locally in a spatial and temporally coherent way. That energy is gated and made available by specific cellular recognition processes. The relationship between particle surface design, endogenously derived nonspecific biomolecular corona, and architectural features recognized by the cell is complex and only purposefully and very precisely designed nanoparticle architectures are able to navigate to specific targets. At sufficiently small sizes (<10 nm including the ligand shell, associated with a core diameter of a few nm at most) we enter the "quasi-molecular regime" in which the endogenous biomolecular environment exchanges so rapidly with the ultrasmall particle surface that larger scale cellular and immune recognition events are often greatly simplified. As an example, ultrasmall particles can penetrate cellular and biological barriers within tissue architectures via passive diffusion, in much the same way as small molecule drugs do. An intriguing question arises: what happens at the interface of cellular recognition and ultrasmall quasi-molecular size regimes? Succinctly put, ultrasmall conjugates can evade defense mechanisms driven by larger scale cellular nanoscale recognition, enabling them to flexibly exploit molecular interaction motifs to interact with specific targets. Numerous advances in control of architecture that take advantage of these phenomena have taken place or are underway. For instance, syntheses can now be sufficiently controlled that it is possible to make nanoparticles of a few hundreds of atoms or metalloid clusters of several tens of atoms that can be characterized by single crystal X-ray structure analysis. While the synthesis of atomically precise clusters in organic solvents presents challenges, water-based syntheses of ultrasmall nanoparticles can be upscaled and lead to well-defined particle populations. The surface of ultrasmall nanoparticles can be covalently modified with a wide variety of ligands to control the interactions of these particles with biosystems, as well as drugs and fluorophores. And, in contrast to larger particles, many advanced molecular analytical and separation tools can be applied to understand their structure. For example, NMR spectroscopy allows us to obtain a detailed image of the particle surface and the attached ligands. These are considerable advantages that allow further elaboration of the level of architectural control and characterization of the ultrasmall structures required to access novel functional regimes and outcomes. The ultrasmall nanoparticle regime has a unique status and provides a potentially very interesting direction for development.
Collapse
Affiliation(s)
- Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Vincent M Rotello
- Charles A. Goessmann Professor of Chemistry and University Distinguished Professor, Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01002, United States
| | - Kenneth Dawson
- UCD School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Wolff N, Loza K, Heggen M, Schaller T, Niemeyer F, Bayer P, Beuck C, Oliveira CLP, Prymak O, Weidenthaler C, Epple M. Ultrastructure and Surface Composition of Glutathione-Terminated Ultrasmall Silver, Gold, Platinum, and Alloyed Silver-Platinum Nanoparticles (2 nm). Inorg Chem 2023; 62:17470-17485. [PMID: 37820300 DOI: 10.1021/acs.inorgchem.3c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Essen 45117, Germany
| | | | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| |
Collapse
|
10
|
Wolff N, Kollenda S, Klein K, Loza K, Heggen M, Brochhagen L, Witzke O, Krawczyk A, Hilger I, Epple M. Silencing of proinflammatory NF-κB and inhibition of herpes simplex virus (HSV) replication by ultrasmall gold nanoparticles (2 nm) conjugated with small-interfering RNA. NANOSCALE ADVANCES 2022; 4:4502-4516. [PMID: 36341304 PMCID: PMC9595109 DOI: 10.1039/d2na00250g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/03/2022] [Indexed: 06/09/2023]
Abstract
Azide-terminated ultrasmall gold nanoparticles (2 nm gold core) were covalently functionalized with alkyne-terminated small-interfering siRNA duplexes by copper-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry). The nanoparticle core was visualized by transmission electron microscopy. The number of attached siRNA molecules per nanoparticle was determined by a combination of atomic absorption spectroscopy (AAS; for gold) and UV-Vis spectroscopy (for siRNA). Each nanoparticle carried between 6 and 10 siRNA duplex molecules which corresponds to a weight ratio of siRNA to gold of about 2.2 : 1. Different kinds of siRNA were conjugated to the nanoparticles, depending on the gene to be silenced. In general, the nanoparticles were readily taken up by cells and highly efficient in gene silencing, in contrast to free siRNA. This was demonstrated in HeLa-eGFP cells (silencing of eGFP) and in LPS-stimulated macrophages (silencing of NF-κB). Furthermore, we demonstrated that nanoparticles carrying antiviral siRNA potently inhibited the replication of Herpes simplex virus 2 (HSV-2) in vitro. This highlights the strong potential of siRNA-functionalized ultrasmall gold nanoparticles in a broad spectrum of applications, including gene silencing and treatment of viral infections, combined with a minimal dose of gold.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen Hufelandstr. 55 45147 Essen Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen Hufelandstr. 55 45147 Essen Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen Hufelandstr. 55 45147 Essen Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
11
|
Zhou C, Pan P, Wei X, Lin Z, Chen C, Kang X, Zhu M. Horizontal expansion of biicosahedral M 13-based nanoclusters: resolving decades-long questions. NANOSCALE HORIZONS 2022; 7:1397-1403. [PMID: 36196687 DOI: 10.1039/d2nh00321j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For metal nanoclusters with the "cluster of clusters" intramolecular evolution pattern, most efforts have been made towards the vertical superposition of icosahedral nanobuilding blocks (e.g., from mono-icosahedral Au13 to bi-icosahedral Au25 and tri-icosahedral Au37), while the horizontal expansion of these rod-shaped multi-icosahedral aggregates was largely neglected. We herein report the horizontal expansion of the biicosahedral M25 cluster framework, yielding an [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ nanocluster that contains an Au13Ag12 kernel and six Au1(DPPM)1(S-Adm)1 peripheral wings. The structural determination of [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ resolved a decades-long question towards rod-shaped multi-icosahedral aggregates: how to load bidentate phosphine and bulky thiol ligands onto the nanocluster framework? The structural comparison between [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ and previously reported [Au13Ag12(PPh3)10Cl8]2+ or [Au13Ag12(SR)5(PPh3)10Cl2]2+ rationalized the unique packing of Au1(DPPM)1(S-Adm)1 motif structures on the surface of the former nanocluster. Overall, this work presents the horizontal expansion of rod-shaped multi-icosahedral nanoclusters, which provides new insights into the preparation of novel icosahedron-based aggregates with both vertically and horizontally growing extensions.
Collapse
Affiliation(s)
- Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
12
|
Anderson ID, Wang Y, Aikens CM, Ackerson CJ. An ultrastable thiolate/diglyme ligated cluster: Au 20(PET) 15(DG) 2. NANOSCALE 2022; 14:9134-9141. [PMID: 35723454 DOI: 10.1039/d2nr02426h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The synthesis and characterization of an Au20(PET)15(DG)2 (PET = phenylethane thiol; DG = diglyme) cluster is reported. Mass spectrometry reveals this as the first diglyme ligated cluster where diglyme ligands survive ionization into the gas phase. Thermal analysis shows the cluster degrades at 156 °C, whereas the similar Au20(PET)16 cluster degrades at 125 °C, representing markedly increased thermal stability. A combination of NMR spectroscopy and computational modeling suggests that the diglyme molecules bind in a tridentate manner for this cluster, resulting in a binding energy of 35.2 kcal mol-1 for diglyme, which is comparable to the value of ∼40 kcal mol-1 for thiolates. IR and optical spectroscopies show no evidence of assembly of this cluster, in contrast to Au20(PET)15(DG), which readily assembles into dimeric species, which is consistent with a tridentate binding motif. Evidence for stacking among Au-bound and non-bound diglyme molecules is inferred from thermal and mass analysis.
Collapse
Affiliation(s)
- Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Yuchen Wang
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
13
|
Wetzel O, Prymak O, Loza K, Gumbiowski N, Heggen M, Bayer P, Beuck C, Weidenthaler C, Epple M. Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorg Chem 2022; 61:5133-5147. [PMID: 35285631 DOI: 10.1021/acs.inorgchem.2c00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
14
|
Klein K, Hayduk M, Kollenda S, Schmiedtchen M, Voskuhl J, Epple M. Covalent Attachment of Aggregation-Induced Emission Molecules to the Surface of Ultrasmall Gold Nanoparticles to Enhance Cell Penetration. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061788. [PMID: 35335152 PMCID: PMC8949416 DOI: 10.3390/molecules27061788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Three different alkyne-terminated aggregation-induced emission molecules based on a para-substituted di-thioether were attached to the surface of ultrasmall gold nanoparticles (2 nm) by copper-catalyzed azide–alkyne cycloaddition (click chemistry). They showed a strong fluorescence and were well water-dispersible, in contrast to the dissolved AIE molecules. The AIE-loaded nanoparticles were not cytotoxic and easily penetrated the membrane of HeLa cells, paving the way for an intracellular application of AIE molecules, e.g., for imaging.
Collapse
Affiliation(s)
- Kai Klein
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (K.K.); (S.K.)
| | - Matthias Hayduk
- Organic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (M.H.); (M.S.)
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (K.K.); (S.K.)
| | - Marco Schmiedtchen
- Organic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (M.H.); (M.S.)
| | - Jens Voskuhl
- Organic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (M.H.); (M.S.)
- Correspondence: (J.V.); (M.E.)
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (K.K.); (S.K.)
- Correspondence: (J.V.); (M.E.)
| |
Collapse
|
15
|
Krishnadas KR, Baghdasaryan A, Kazan R, Banach E, Teyssier J, Nicu VP, Buergi T. Raman Spectroscopic Fingerprints of Atomically Precise Ligand Protected Noble Metal Clusters: Au 38 (PET) 24 and Au 38-x Ag x (PET) 24. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101855. [PMID: 34405952 DOI: 10.1002/smll.202101855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Distinct Raman spectroscopic signatures of the metal core of atomically precise, ligand-protected noble metal nanoclusters are reported using Au38 (PET)24 and Au38-x Agx (PET)24 (PET = 2-phenylethanethiolate, -SC2 H4 C6 H5 ) as model systems. The fingerprint Raman features (occurring <200 cm-1 ) of these clusters arise due to the vibrations involving metal atoms of their Au23 or Au23-x Agx cores. A distinct core breathing vibrational mode of the Au23 core has been observed at 90 cm-1 . Whereas the breathing mode shifts to higher frequencies with increasing Ag content of the cluster, the vibrational signatures due to the outer metal-ligand staple motifs (between 200 and 500 cm-1 ) do not shift significantly. DFT calculations furthermore reveal weak Raman bands at higher frequencies compared to the breathing mode, which are associated mostly with the rattling of two central gold atoms of the bi-icosahedral Au23 core. These vibrations are also observed in the experimental spectrum. The study indicates that low-frequency Raman spectra are a characteristic fingerprint of atomically precise clusters, just as electronic absorption spectroscopy, in contrast to the spectrum associated with the ligand shell, which is observed at higher frequencies.
Collapse
Affiliation(s)
| | - Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet Geneva 4, Genève, 1211, Switzerland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet Geneva 4, Genève, 1211, Switzerland
| | - Ewa Banach
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet Geneva 4, Genève, 1211, Switzerland
| | - Jeremie Teyssier
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet Geneva 4, Genève, 1211, Switzerland
| | - Valentin Paul Nicu
- Lucian Blaga University of Sibiu, Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu Street 7-9, Sibiu, 550012, Romania
| | - Thomas Buergi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet Geneva 4, Genève, 1211, Switzerland
| |
Collapse
|
16
|
Hosseini S, Wetzel O, Kostka K, Heggen M, Loza K, Epple M. Pathways for Oral and Rectal Delivery of Gold Nanoparticles (1.7 nm) and Gold Nanoclusters into the Colon: Enteric-Coated Capsules and Suppositories. Molecules 2021; 26:5069. [PMID: 34443657 PMCID: PMC8401122 DOI: 10.3390/molecules26165069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Two ways to deliver ultrasmall gold nanoparticles and gold-bovine serum albumin (BSA) nanoclusters to the colon were developed. First, oral administration is possible by incorporation into gelatin capsules that were coated with an enteric polymer. These permit the transfer across the stomach whose acidic environment damages many drugs. The enteric coating dissolves due to the neutral pH of the colon and releases the capsule's cargo. Second, rectal administration is possible by incorporation into hard-fat suppositories that melt in the colon and then release the nanocarriers. The feasibility of the two concepts was demonstrated by in-vitro release studies and cell culture studies that showed the easy redispersibility after dissolution of the respective transport system. This clears a pathway for therapeutic applications of drug-loaded nanoparticles to address colon diseases, such as chronic inflammation and cancer.
Collapse
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Oliver Wetzel
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| |
Collapse
|
17
|
Oberhauser W, Evangelisti C, Capozzoli L, Manca G, Casaletto MP, Vizza F. Selectivity Switch in the Aerobic 1,2‐Propandiol Oxidation Catalyzed by Diamine‐Stabilized Palladium Nanoparticles. ChemCatChem 2021. [DOI: 10.1002/cctc.202100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Claudio Evangelisti
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) U.O.S. di Pisa Via G. Moruzzi 1 56124 Pisa Italy
| | - Laura Capozzoli
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Maria Pia Casaletto
- Istituto per lo Studio dei Materiali NanoStrutturati (CNR-ISMN) Via Ugo La Malfa 153 90146 Palermo Italy
| | - Francesco Vizza
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| |
Collapse
|
18
|
Wetzel O, Hosseini S, Loza K, Heggen M, Prymak O, Bayer P, Beuck C, Schaller T, Niemeyer F, Weidenthaler C, Epple M. Metal-Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm). J Phys Chem B 2021; 125:5645-5659. [PMID: 34029093 DOI: 10.1021/acs.jpcb.1c02512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Shabnam Hosseini
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
19
|
Shi Q, Qin Z, Sharma S, Li G. Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. CHEM REC 2021; 21:879-892. [DOI: 10.1002/tcr.202100001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Quanquan Shi
- College of Science College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot 010018 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
20
|
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021; 93:1889-1911. [PMID: 33434434 PMCID: PMC7941215 DOI: 10.1021/acs.analchem.0c05208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- H Surangi N Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
21
|
Ruks T, Loza K, Heggen M, Ottmann C, Bayer P, Beuck C, Epple M. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf. Chembiochem 2021; 22:1456-1463. [PMID: 33275809 PMCID: PMC8248332 DOI: 10.1002/cbic.202000761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 μM by ITC and 0.9 μM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.
Collapse
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| |
Collapse
|
22
|
van der Meer SB, Seiler T, Buchmann C, Partalidou G, Boden S, Loza K, Heggen M, Linders J, Prymak O, Oliveira CLP, Hartmann L, Epple M. Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence-Defined Macromolecules. Chemistry 2021; 27:1451-1464. [PMID: 32959929 PMCID: PMC7898849 DOI: 10.1002/chem.202003804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Theresa Seiler
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Christin Buchmann
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Georgia Partalidou
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophia Boden
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Marc Heggen
- Ernst Ruska-Center for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich GmbH52425JülichGermany
| | - Jürgen Linders
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | | | - Laura Hartmann
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| |
Collapse
|
23
|
Ruks T, Loza K, Heggen M, Prymak O, Sehnem AL, Oliveira CLP, Bayer P, Beuck C, Epple M. Peptide-Conjugated Ultrasmall Gold Nanoparticles (2 nm) for Selective Protein Targeting. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Andre Luiz Sehnem
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Cristiano L. P. Oliveira
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
24
|
van der Meer SB, Hadrovic I, Meiners A, Loza K, Heggen M, Knauer SK, Bayer P, Schrader T, Beuck C, Epple M. New Tools to Probe the Protein Surface: Ultrasmall Gold Nanoparticles Carry Amino Acid Binders. J Phys Chem B 2020; 125:115-127. [DOI: 10.1021/acs.jpcb.0c09846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Inesa Hadrovic
- Organic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Annika Meiners
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Shirley K. Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Thomas Schrader
- Organic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
25
|
Chen J, Wu XP, Hope MA, Qian K, Halat DM, Liu T, Li Y, Shen L, Ke X, Wen Y, Du JH, Magusin PCMM, Paul S, Ding W, Gong XQ, Grey CP, Peng L. Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy. Nat Commun 2019; 10:5420. [PMID: 31780658 PMCID: PMC6882792 DOI: 10.1038/s41467-019-13424-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
Compared to nanomaterials exposing nonpolar facets, polar-faceted nanocrystals often exhibit unexpected and interesting properties. The electrostatic instability arising from the intrinsic dipole moments of polar facets, however, leads to different surface configurations in many cases, making it challenging to extract detailed structural information and develop structure-property relations. The widely used electron microscopy techniques are limited because the volumes sampled may not be representative, and they provide little chemical bonding information with low contrast of light elements. With ceria nanocubes exposing (100) facets as an example, here we show that the polar surface structure of oxide nanocrystals can be investigated by applying 17O and 1H solid-state NMR spectroscopy and dynamic nuclear polarization, combined with DFT calculations. Both CeO4-termination reconstructions and hydroxyls are present for surface polarity compensation and their concentrations can be quantified. These results open up new possibilities for investigating the structure and properties of oxide nanostructures with polar facets.
Collapse
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455-0431, USA.
| | - Michael A Hope
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kun Qian
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - David M Halat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tao Liu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuhong Li
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Li Shen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Jia-Huan Du
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Pieter C M M Magusin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Subhradip Paul
- DNP MAS NMR Facility, Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
26
|
Riccardi L, De Biasi F, De Vivo M, Bürgi T, Rastrelli F, Salassa G. Dynamic Origin of Chirality Transfer between Chiral Surface and Achiral Ligand in Au 38 Clusters. ACS NANO 2019; 13:7127-7134. [PMID: 31199121 DOI: 10.1021/acsnano.9b02552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The transfer of chirality between nanomolecules is at the core of several applications in chiral technology such as sensing and catalysis. However, the origin of this phenomenon and how exactly nanoscale objects transfer chirality to molecules in their vicinity remain largely obscure. Here, we show that the transfer of chirality for the intrinsically chiral gold cluster Au38(SR)24 is site dependent; that is, it differs depending on the ligand-binding sites. This is closely related to the dynamic nature of the ligands on the cluster surface. Using a combination of NMR techniques and molecular dynamics simulations, we could assign the four symmetry-unique ligands on the cluster. The study reveals largely different conformational dynamics of the bound ligands, explaining the diverse diastereotopicities observed for the CH2 protons of the ligands. Although chirality is a structural property, our study reveals the importance of dynamics for the transfer of chirality.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Federico De Biasi
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Thomas Bürgi
- Department of Physical Chemistry , University of Geneva , 30 Quai Ernest-Ansermet , 1211 Geneva 4, Switzerland
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy
| | - Giovanni Salassa
- Department of Physical Chemistry , University of Geneva , 30 Quai Ernest-Ansermet , 1211 Geneva 4, Switzerland
| |
Collapse
|
27
|
Yang Y, Poss G, Weng Y, Qi R, Zheng H, Nianias N, Kay ER, Guldin S. Probing the interaction of nanoparticles with small molecules in real time via quartz crystal microbalance monitoring. NANOSCALE 2019; 11:11107-11113. [PMID: 31166356 DOI: 10.1039/c9nr03162f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite extensive advances in the field of molecular recognition, the real-time monitoring of small molecule binding to nanoparticles (NP) remains a challenge. To this end, we report on a versatile approach, based on quartz crystal microbalance with dissipation monitoring, for the stepwise in situ quantification of gold nanoparticle (AuNPs) immobilisation and subsequent uptake and release of binding partners. AuNPs stabilised by thiol-bound ligand shells of prescribed chemical composition were densely immobilised onto gold surfaces via dithiol linkers. The boronate ester formation between salicylic acid derivatives in solution and boronic acids in the AuNP ligand shell was then studied in real time, revealing a drastic effect of both ligand architecture and Lewis base concentration on the interaction strength. The binding kinetics were analysed with frequency response modelling for a thorough comparison of binding parameters including relaxation time as well as association rate constant. The results directly mirror those from previously reported in-depth studies using nuclear magnetic resonance spectroscopy. By achieving quantitative characterisation of selective binding of analytes with molecular weight below 300 Da, this new method enables rapid, low cost, rational screening of AuNP candidates for molecular recognition.
Collapse
Affiliation(s)
- Ye Yang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Guillaume Poss
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Yini Weng
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Runzhang Qi
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Hanrui Zheng
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Nikolaos Nianias
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
28
|
van der Meer SB, Loza K, Wey K, Heggen M, Beuck C, Bayer P, Epple M. Click Chemistry on the Surface of Ultrasmall Gold Nanoparticles (2 nm) for Covalent Ligand Attachment Followed by NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7191-7204. [PMID: 31039607 DOI: 10.1021/acs.langmuir.9b00295] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasmall gold nanoparticles (core diameter 2 nm) were surface-conjugated with azide groups by attaching the azide-functionalized tripeptide lysine(N3)-cysteine-asparagine with ∼117 molecules on each nanoparticle. A covalent surface modification with alkyne-containing molecules was then possible by copper-catalyzed click chemistry. The successful clicking to the nanoparticle surface was demonstrated with 13C-labeled propargyl alcohol. All steps of the nanoparticle surface conjugation were verified by extensive NMR spectroscopy on dispersed nanoparticles. The particle diameter and the dispersion state were assessed by high-resolution transmission electron microscopy (HRTEM), differential centrifugal sedimentation (DCS), and 1H-DOSY NMR spectroscopy. The clicking of fluorescein (FAM-alkyne) gave strongly fluorescing ultrasmall nanoparticles that were traced inside eukaryotic cells. The uptake of these nanoparticles after 24 h by HeLa cells was very efficient and showed that the nanoparticles even penetrated the nuclear membrane to a very high degree (in contrast to dissolved FAM-alkyne alone that did not enter the cell). About 8 fluorescein molecules were clicked to each nanoparticle.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| | - Karolin Wey
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| | - Marc Heggen
- Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB) , University of Duisburg-Essen , 45117 Essen , Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB) , University of Duisburg-Essen , 45117 Essen , Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| |
Collapse
|
29
|
Ruks T, Beuck C, Schaller T, Niemeyer F, Zähres M, Loza K, Heggen M, Hagemann U, Mayer C, Bayer P, Epple M. Solution NMR Spectroscopy with Isotope-Labeled Cysteine ( 13C and 15N) Reveals the Surface Structure of l-Cysteine-Coated Ultrasmall Gold Nanoparticles (1.8 nm). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:767-778. [PMID: 30576151 DOI: 10.1021/acs.langmuir.8b03840] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52428 Jülich , Germany
| | | | | | | | | |
Collapse
|
30
|
Sun X, Liu P, Mancin F. Sensor arrays made by self-organized nanoreceptors for detection and discrimination of carboxylate drugs. Analyst 2018; 143:5754-5763. [DOI: 10.1039/c8an01756e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An array of self-organized nanoreceptors based on monolayer-protected gold nanoparticles in combination with different commercially available fluorescent dyes can detect and discriminate nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaohuan Sun
- Dipartimento di Scienze Chimiche
- Università di Padova
- 35131 Padova
- Italy
| | - Ping Liu
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- China
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche
- Università di Padova
- 35131 Padova
- Italy
| |
Collapse
|