1
|
Cong Y, Liu J, Zhang J, Wang J, Wang X, Li L. Photofunctional Gold Nanocluster Composites for Bioapplications. ACS APPLIED BIO MATERIALS 2024; 7:2695-2703. [PMID: 38701372 DOI: 10.1021/acsabm.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Gold nanoclusters (AuNCs), with customized structures and diverse optical properties, are promising optical materials. Constructing composite systems by the assembly and incorporation of AuNCs can utilize their optical properties to achieve diagnostic and therapeutic applications in the biological field. Therefore, the exploration of the assembly behaviors of AuNCs and the enhancement of their performance has attracted widespread interest. In this review, we introduce multiple interactions and assembly modes that are prevalent in nanocomposites and microcomposites based on AuNCs. Then, the functions of AuNC composites for bioapplications are demonstrated in detail. These composite systems have inherited and enhanced the inherent optical performances of the AuNCs to meet diverse requirements for biological sensing and optical treatments. Finally, we discuss the prospects of AuNC composites and highlight the challenges and opportunities in biomedical applications.
Collapse
Affiliation(s)
- Yujie Cong
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jiaren Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jingkai Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jiaxi Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
2
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
3
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
4
|
Mordini D, Mavridi-Printezi A, Menichetti A, Cantelli A, Li X, Montalti M. Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040648. [PMID: 36839016 PMCID: PMC9960743 DOI: 10.3390/nano13040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure.
Collapse
|
5
|
Shen Y, Zheng C, Wu Q, Wu Q, Jin M, Jiang Y, Huang F, Lou Y, Zheng L. One-step synthesized antimicrobial peptide-functionalized gold nanoclusters for selective imaging and killing of pathogenic bacteria. Front Microbiol 2022; 13:1003359. [PMID: 36299723 PMCID: PMC9589054 DOI: 10.3389/fmicb.2022.1003359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
The development of multifunctional nanomaterials with bacterial imaging and killing activities is of great importance for the rapid diagnosis and timely treatment of bacterial infections. Herein, peptide-functionalized gold nanoclusters (CWR11-AuNCs) with high-intensity red fluorescence were successfully synthesized via a one-step method using CWR11 as a template and by optimizing the ratio of CWR11 to HAuCl4, reaction time, pH, and temperature. The CWR11-AuNCs bound to bacteria and exhibited selective fluorescence microscopy imaging properties, which is expected to provide a feasible method for locating and imaging bacteria in complex in vivo environments. In addition, CWR11-AuNCs not only retained the antibacterial and bactericidal activities of CWR11 but also exhibited certain inhibitory or killing effects on gram-negative and gram-positive bacteria and biofilms. The MICs of CWR11-AuNCs against Escherichia coli and Staphylococcus aureus were 178 and 89 μg/ml, respectively. Surprisingly, cell viability in the CWR11-AuNC-treated group was greater than that in the CWR11-treated group, and the low cytotoxicity exhibited by the CWR11-AuNCs make them more promising for clinical applications.
Collapse
|
6
|
Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial metal nanoclusters. J Nanobiotechnology 2022; 20:328. [PMID: 35842693 PMCID: PMC9287886 DOI: 10.1186/s12951-022-01538-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Combating bacterial infections is one of the most important applications of nanomedicine. In the past two decades, significant efforts have been committed to tune physicochemical properties of nanomaterials for the development of various novel nanoantibiotics. Among which, metal nanoclusters (NCs) with well-defined ultrasmall size and adjustable surface chemistry are emerging as the next-generation high performance nanoantibiotics. Metal NCs can penetrate bacterial cell envelope more easily than conventional nanomaterials due to their ultrasmall size. Meanwhile, the abundant active sites of the metal NCs help to catalyze the bacterial intracellular biochemical processes, resulting in enhanced antibacterial properties. In this review, we discuss the recent developments in metal NCs as a new generation of antimicrobial agents. Based on a brief introduction to the characteristics of metal NCs, we highlight the general working mechanisms by which metal NCs combating the bacterial infections. We also emphasize central roles of core size, element composition, oxidation state, and surface chemistry of metal NCs in their antimicrobial efficacy. Finally, we present a perspective on the remaining challenges and future developments of metal NCs for antibacterial therapeutics.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, 646000, Luzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
7
|
Wang Y, Hua Y, Shao ZH, Chen X, Zhao X, Zang SQ. Levonorgestrel-protected Au 8 and Au 10 clusters with different antimicrobial abilities. J Mater Chem B 2022; 10:5028-5034. [PMID: 35723599 DOI: 10.1039/d2tb00533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoclusters exhibit significant potential in antimicrobial applications due to their good stability and desirable biocompatibility in the mammalian cell model. However, most of the previously reported gold nanocluster antimicrobial agents do not have an atomic-precise structure, causing difficulties in understanding the structure-property correlation. In this study, structurally defined gold-levonorgestrel clusters, named Au8(C21H27O2)8 (Au8NCs) and Au10(C21H27O2)10 (Au10NCs), with the same ligand-to-metal ratio but different inner cores were prepared for antibacterial activity investigations, demonstrating that Au8NCs exhibited a stronger antibacterial activity owing to the more significant damage it causes on the bacteria wall and membrane, and a stronger inhibition of glutathione reductase activity in bacteria. The leakage of the intracellular components and enzyme inhibition caused an imbalance of the intracellular antioxidant defence system, and consequently killed bacteria. These results indicated that the structure of gold nanoclusters has an important effect on their biological activity, indicating that it as a key factor to consider in the future design of antimicrobial agents.
Collapse
Affiliation(s)
- Yuan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zi-Hui Shao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, National University of Singapore, Singapore, 117545, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Ndugire W, Raviranga NGH, Lao J, Ramström O, Yan M. Gold Nanoclusters as Nanoantibiotic Auranofin Analogues. Adv Healthc Mater 2022; 11:e2101032. [PMID: 34350709 PMCID: PMC8816973 DOI: 10.1002/adhm.202101032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Auranofin, a gold(I)-complex with tetraacetylated thioglucose (Ac4 GlcSH) and triethylphosphine ligands, is an FDA-approved drug used as an anti-inflammatory aid in the treatment of rheumatoid arthritis. In repurposing auranofin for other diseases, it was found that the drug showed significant activity against Gram-positive but was inactive against Gram-negative bacteria. Herein, the design and synthesis of gold nanoclusters (AuNCs) based on the structural motif of auranofin are reported. Phosphine-capped AuNCs are synthesized and glycosylated, yielding auranofin analogues with mixed triphenylphosphine monosulfonate (TPPMS)/Ac4 GlcSH ligand shells. These AuNCs are active against both Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Notably, an auranofin analogue, a mixed-ligand 1.6 nm AuNC 4b, is more active than auranofin against Pseudomonas aeruginosa, while exhibiting lower toxicity against human A549 cells. The enhanced antibacterial activity of these AuNCs is characterized by a greater uptake of Au by the bacteria compared to AuI complexes. Additional factors include increased oxidative stress, moderate inhibition of thioredoxin reductase (TrxR), and DNA damage. Most intriguingly, the uptake of AuNCs are not affected by the bacterial outer membrane (OM) barrier or by binding with the extracellular proteins. This contrasts with AuI complexes like auranofin that are susceptible to protein binding and hindered by the OM barrier.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Jingzhe Lao
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| |
Collapse
|
9
|
Chen Q, Xu C, Sun Z, Yang J, Chen F, Lin Z, Lin D, Jiang Y, Lin J. Development of S4A-BSA-Au NPs for enhanced anti-tumor therapy of canine breast cancer. NANOSCALE ADVANCES 2022; 4:1808-1814. [PMID: 36132165 PMCID: PMC9419510 DOI: 10.1039/d1na00640a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 06/15/2023]
Abstract
S4A ((1R,2R,3S)-1,2-propanediol acetal-zeylenone) is one of the derivatives of zeylenone and exhibits superior cytotoxicity against the canine breast cancer cell line CIPp. However, its poor aqueous solubility and toxicity to normal tissue limit its clinical application. Therefore, in order to enhance the anticancer effect of S4A, in this article, BSA/BSA-Au-nanocluster-aggregated core/shell nanoparticles (B-BANC-NPs) were prepared by using bovine serum albumin (BSA) and HAuCl4, and then we further synthesized S4A-BSA-Au NPs which were spherical, with a diameter of about 60 nm. In vitro cytotoxicity assessed by using CCK-8 assay demonstrated that the IC50 value of the S4A-BSA-Au NPs was 10.39 μg mL-1, which was not significantly different from that of S4A (10.45 μg mL-1). In vitro apoptosis assay showed that the apoptosis rate of cells treated with S4A-BSA-Au NPs was 20.12%, which was significantly higher than that of the control group treated with S4A (11.3%). Notably, S4A-BSA-Au NPs were shown to effectively accumulate at tumor sites with fluorescence tracing. Besides, the effect of S4A-BSA-Au NPs on SPARC expression was determined by western blotting, and the result showed that 24 h after applying S4A-BSA-Au NPs, SPARC expression in low, middle and high dosage groups was lower than that of the control group, and the tendency showed dose dependence. The results revealed that S4A-BSA-Au NPs could effectively improve the anti-tumor activity of S4A on canine breast cancer, which may be associated with their abilities to effectively accumulate within tumor and to reduce the expression of SPARC.
Collapse
Affiliation(s)
- Qi Chen
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine China
| | - Chengfang Xu
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine China
| | - Zhonghao Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Fan Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Zixiang Lin
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine China
| |
Collapse
|
10
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
11
|
Maysinger D, Sanader Maršić Ž, Gran ER, Shobo A, Macairan JR, Zhang I, Perić Bakulić M, Antoine R, Multhaup G, Bonačić-Kouteckỳ V. Insights into the Impact of Gold Nanoclusters Au 10SG 10 on Human Microglia. ACS Chem Neurosci 2022; 13:464-476. [PMID: 35080850 DOI: 10.1021/acschemneuro.1c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of the current study is to uncover the impact of small liganded gold nanoclusters with 10 gold atoms and 10 glutathione ligands (Au10SG10) on several biomarkers in human microglia. We established the links connecting the atomically precise structure of Au10SG10 with their properties and changes in several biomolecules under oxidative stress. Au10SG10 caused the loss of mitochondrial metabolic activity, increased lipid peroxidation and translocation of an alarmin molecule, high mobility group box 1 (HMGB1), from the nucleus to the cytosol. Molecular modeling provided an insight into the location of amino acid interaction sites with Au10SG10 and the nature of bonds participating in these interactions. We show that Au10SG10 can bind directly to the defined sites of reduced, oxidized, and acetylated HMGB1. Further studies with similar complementary approaches merging live-cell analyses, determination of biomarkers, and cell functions could lead to optimized gold nanoclusters best suited for diagnostic and bioimaging purposes in neuroscience.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Republic of Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Evan Rizzel Gran
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, H3A 0C5 Montréal, Canada
| | - Issan Zhang
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Vlasta Bonačić-Kouteckỳ
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
12
|
Yin M, Wang W, Wei J, Chen X, Chen Q, Chen X, Oyama M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem 2022; 368:130856. [PMID: 34425333 DOI: 10.1016/j.foodchem.2021.130856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
In this work, we present a novel dual-emissive fluoroimmunoassay for synchronous monitoring of okadaic acid (OA) and saxitoxin (STX) using multicolor fluorescent labels composed of sulfur, phosphorous co-doped graphene quantum dots (S, P-GQDs), and ovalbumin (OVA)-coated gold nanoparticles (OVA-AuNPs). The novel OVA-AuNPs were prepared by the reduction of chloroauric acid under alkaline conditions using OVA as a reducing agent. Both S, P-GQDs and OVA-AuNPs exhibit bright fluorescence, more importantly, a large emission wavelength difference (Δλ = 156 nm) under an excitation of 400 nm and relatively independent fluorescence behavior, which are essential to realizing the dual-signal marks in a directly mixing system. Using a competitive fluorescence-linked immunosorbent assay (cFLISA) format, the dual-emissive cFLISA was successfully utilized to measure OA and STX contents in Alectryonella plicatula (commonly named as fingerprint oyster) and the detection results were in good agreement with the commercial enzyme-linked immunosorbent assay (ELISA) kits.
Collapse
Affiliation(s)
- Mingming Yin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Weijie Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Xiaomei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
13
|
Chen X, Ren X, Gao X. Peptide or
Protein‐Protected
Metal Nanoclusters for Therapeutic Application. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaolei Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
14
|
Luo X, Liu J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103971. [PMID: 34796699 PMCID: PMC8787435 DOI: 10.1002/advs.202103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Indexed: 05/07/2023]
Abstract
In the past decade, ultrasmall luminescent metal nanoparticles (ULMNPs, d < 3 nm) have achieved rapid progress in addressing many challenges in the healthcare field because of their excellent physicochemical properties and biological behaviors. With the sharp shrinking size of large plasmonic metal nanoparticles (PMNPs), the contributions from the surface characteristics increase significantly, which brings both opportunities and challenges in the application-driven surface engineering of ULMNPs toward advanced biological applications. Here, the systematic advancements in the biological applications of ULMNPs from bioimaging to theranostics are summarized with emphasis on the versatile surface engineering strategies in the regulation of biological targeting and imaging performance. The efforts in the surface functionalization strategies of ULMNPs for enhanced disease targeting abilities are first discussed. Thereafter, self-assembly strategies of ULMNPs for fabricating multifunctional nanostructures for multimodal imaging and nanomedicine are discussed. Further, surface engineering strategies of ratiometric ULMNPs to enhance the imaging stability to address the imaging challenges in complicated bioenvironments are summarized. Finally, the phototoxicity of ULMNPs and future perspectives are also reviewed, which are expected to provide a fundamental understanding of the physicochemical properties and biological behaviors of ULMNPs to accelerate their future clinical applications in healthcare.
Collapse
Affiliation(s)
- Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
15
|
Ndugire W, Yan M. Synthesis and solution isomerization of water-soluble Au 9 nanoclusters prepared by nuclearity conversion of [Au 11(PPh 3) 8Cl 2]Cl. NANOSCALE 2021; 13:16809-16817. [PMID: 34605842 PMCID: PMC8545225 DOI: 10.1039/d1nr04401j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Water-soluble gold nanoclusters (AuNCs) are popular in biomedical applications such as bioimaging, labelling, drug delivery, and biosensing. Despite their widespread applications, the synthesis of water-soluble phosphine-capped AuNCs is not as straightforward as their organic-soluble equivalents. Organic soluble phosphine-passivated [Au9(L)8]3+ are 6-electron closed-shell AuNCs that are generally prepared via the reduction of a phosphine-Au(I) complex by NaBH4. A similar approach attempted for the water-soluble ligand triphenylphosphine monosulfonate (TPPMS) using [AuTPPMS]Cl resulted in a mixture of cluster sizes that required gel electrophoresis or fractional precipitation to isolate the Au9 product. In this work, we report the synthesis of water-soluble [Au9(L)8]3+ nanoclusters in high yield through the biphasic ligand exchange of [Au11(PPh3)8Cl2]Cl with water-soluble phosphines such as TPPMS and 4-(diphenylphosphino)benzoic acid (DPPBA). The small molecule byproducts can be completely removed by size-based separation methods, like size exclusion chromatography or dialysis, as confirmed by 31P and 1H nuclear magnetic resonance (NMR) as well as diffusion ordered spectroscopy (DOSY). Furthermore, [Au9(DPPBA)8]Cl3 underwent a visible pH- and temperature-induced isomerization in ethanol between the 'crown' and 'butterfly' isomers of [Au9(L)8]3+ which has not been previously reported. Cytotoxicity evaluation of these water-soluble nanoclusters gave CC50 values of 36 μg mL-1 and 70 μg mL-1 against A549 human alveolar epithelial cells, and 30 μg mL-1 and 40 μg mL-1 against NIH/3T3 mouse fibroblast cells for [Au9(TPPMS)8]Cl3 and [Au9(DPPBA)8]Cl3, respectively. For comparison, auranofin, an FDA-approved gold drug, is more than an order of magnitude more toxic with a CC50 value of 7.7 μg mL-1 against A549 cells.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA.
| |
Collapse
|
16
|
Zhang M, Shao S, Yue H, Wang X, Zhang W, Chen F, Zheng L, Xing J, Qin Y. High Stability Au NPs: From Design to Application in Nanomedicine. Int J Nanomedicine 2021; 16:6067-6094. [PMID: 34511906 PMCID: PMC8418318 DOI: 10.2147/ijn.s322900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, Au-based nanomaterials are widely used in nanomedicine and biosensors due to their excellent physical and chemical properties. However, these applications require Au NPs to have excellent stability in different environments, such as extreme pH, high temperature, high concentration ions, and various biomatrix. To meet the requirement of multiple applications, many synthetic substances and natural products are used to prepare highly stable Au NPs. Because of this, we aim at offering an update comprehensive summary of preparation high stability Au NPs. In addition, we discuss its application in nanomedicine. The contents of this review are based on a balanced combination of our studies and selected research studies done by worldwide academic groups. First, we address some critical methods for preparing highly stable Au NPs using polymers, including heterocyclic substances, polyethylene glycols, amines, and thiol, then pay attention to natural product progress Au NPs. Then, we sum up the stability of various Au NPs in different stored times, ions solution, pH, temperature, and biomatrix. Finally, the application of Au NPs in nanomedicine, such as drug delivery, bioimaging, photothermal therapy (PTT), clinical diagnosis, nanozyme, and radiotherapy (RT), was addressed concentratedly.
Collapse
Affiliation(s)
- Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Haitao Yue
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Xin Wang
- The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| | - Wenrui Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Fei Chen
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Li Zheng
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Jun Xing
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| |
Collapse
|
17
|
McCarrick S, Midander K, Krausová M, Carlander U, Karlsson HL. Gold Nanoparticles Dissolve Extracellularly in the Presence of Human Macrophages. Int J Nanomedicine 2021; 16:5895-5908. [PMID: 34475755 PMCID: PMC8405836 DOI: 10.2147/ijn.s314643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Gold nanoparticles (AuNPs) have the potential to be used in various biomedical applications, partly due to the inertness and stability of gold. Upon intravenous injection, the NPs interact with the mononuclear phagocyte system, first with monocytes in the blood and then with macrophages in tissue. The NP-macrophage interaction will likely affect the stability of the AuNPs, but this is seldom analyzed. This study aimed to elucidate the role of macrophages in the biodissolution of AuNPs and underlying mechanisms. METHODS With an in vitro dissolution assay, we used inductively coupled plasma mass spectrometry to quantitatively compare the dissolution of 5 and 20 nm AuNPs coated with citrate or PEG in cell medium alone or in the presence of THP1-derived macrophages at 24 hours. In addition, we analyzed the cell dose, compared extra- and intracellular dissolution, and explored the possible role of reactive nitrogen species. RESULTS The results showed a higher cellular dose of the citrate-coated AuNPs, but dissolution was mainly evident for those sized 5 nm, irrespective of coating. The macrophages clearly assisted the dissolution, which was approximately fivefold higher in the presence of macrophages. The dissolution, however, appeared to take place mainly extracellularly. Acellular experiments demonstrated that peroxynitrite can initiate oxidation of gold, but a ligand is required to keep the gold ions in solution. CONCLUSION This study suggests extracellular dissolution of AuNPs in the presence of macrophages, likely with the contribution of the release of reactive nitrogen species, and provides new insight into the fate of AuNPs in the body.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Klara Midander
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Magdaléna Krausová
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Ulrika Carlander
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, SE-171 77, Sweden
| |
Collapse
|
18
|
Kundu S, Ghosh M, Sarkar N. State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9281-9301. [PMID: 34297580 DOI: 10.1021/acs.langmuir.1c00732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interface of nanobio science and cancer nanomedicine is one of the most important current frontiers in research, being full of opportunities and challenges. Ultrasmall fluorescent metal nanoclusters (MNCs) and carbon quantum dots (CQDs) have emerged as promising fluorescent nanomaterials due to their unique physicochemical and optical properties, facile surface functionalization, good photostability, biocompatibility, and aqueous dispersity. These characteristics make them advantageous over conventional fluorophores such as organic dye molecules and semiconductor quantum dots (QDs) for the detection, diagnosis, and treatment of various diseases including cancer. Recently, researchers have focused on the biofunctionalization strategy of the MNCs and CQDs which can tailor their physicochemical and biological properties and, in turn, can empower these biofunctionalized nanoprobes for diverse applications including imaging, drug delivery, theranostics, and other biomedical applications. In this invited feature article, we first discuss some fundamental structural and physicochemical characteristics of the fluorescent biocompatible quantum-sized nanomaterials which have some outstanding features for the development of multiplexed imaging probes, delivery vehicles, and cancer nanomedicine. We then demonstrate the diverse surface engineering of these fluorescent nanomaterials with reactive target specific functional groups which can help to construct multifunctional nanoprobes with improved targeting capabilities having minimal toxicity. The promising future of the biofunctionalized fluorescent quantum-sized nanomaterials in the field of bioanalytical and biomedical research is elaborately demonstrated, showing selected recent works with relevant applications. This invited feature article finally ends with a short discussion of the current challenges and future prospects of the development of these bioconjugated/biofunctionalized nanomaterials to provide insight into this burgeoning field of MNC- and CQD-based diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| |
Collapse
|
19
|
|
20
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal-Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:11713-11717. [PMID: 33665956 DOI: 10.1002/anie.202017273] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Renal-clearable nanoparticles are typically fast eliminated through the free glomerular filtration, which show weak interaction with the renal compartments and negligible ultrasound signals, raising challenges in direct imaging of kidney diseases. Here, we report the ultrasmall renal-clearable luminescent gold nanoparticles (AuNPs) with both pH-induced charge reversal and aggregation properties, and discover that enhanced ultrasound contrast could be facilely acquired through the increased tubular reabsorption and in situ aggregation of AuNPs in renal tubule cells in injured kidneys. The tuning elimination pathway of the renal-clearable luminescent AuNPs is further demonstrated to provide a synergistical fluorescence and ultrasound imaging strategy for diagnosing early kidney injury with precise anatomical information.
Collapse
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Miaona Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
21
|
Yao Y, Lu C, Gao L, Cao K, Yuan H, Zhang X, Gao X, Yuan Q. Gold Cluster Capped with a BCL-2 Antagonistic Peptide Exerts Synergistic Antitumor Activity in Chronic Lymphocytic Leukemia Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21108-21118. [PMID: 33942607 DOI: 10.1021/acsami.1c05550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is still incurable by conventional chemotherapy due to the resistance to apoptosis. We have previously found that a peptide-capped gold cluster (Au25Sv9) can target on the aberrant oxidative stress in CLL cells to specially inhibit thioredoxin reductase (TrxR) activity, resulting in significant apoptosis. However, the required doses of the gold cluster for inducing apoptosis are high, restricting its potential for further applications. Notably, the most recent studies suggested that CLL cells overexpressed antiapoptotic BCL-2 protein to prevent chemotherapy-induced apoptosis, indicating that BCL-2 could be a promising target for CLL therapy. Regrettably, the nonmitochondrial-targeted Au25Sv9 has little effect on BCL-2. In this study, we successfully screened a modified BADBH3 peptide (B1P) that could antagonize BCL-2 protein in CLL cells. We found that B1P could effectively sensitize MEC-1 cells to a subliminal dose of Au25Sv9. To simplify the treatment regimen, we directly fabricated a gold cluster capped with the B1P peptides by one-step synthesis to integrate the BCL-2 antagonistic activity into the gold the cluster, named BGC. We already found that low doses of BGC could significantly induce more apoptosis in MEC-1 cells than equivalent doses of the Au25Sv9 cluster or B1P peptide alone. Mechanistically, in addition to the inherent inhibitory effect of gold clusters on TrxR activity, BGC could bind to BCL-2 on mitochondria and activate the BCL-2 family-mediated mitochondrial apoptosis cascade more effectively. These results demonstrated that antagonizing the overexpressed BCL-2 in CLL cells, together with inhibiting TrxR simultaneously by a single gold cluster, is a promising strategy for the treatment of CLL cells. This study will provide a paradigm and reference for the development of functionalized gold clusters with rationally designed peptides, and opens up a new opportunity for the treatment of CLL in clinical settings.
Collapse
MESH Headings
- Amino Acid Sequence
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Gold/chemistry
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Reactive Oxygen Species/metabolism
- Thioredoxin-Disulfide Reductase/antagonists & inhibitors
Collapse
Affiliation(s)
- Yawen Yao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cao Lu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hui Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal‐Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Miaona Chen
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Juefei Wu
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
23
|
Chakraborty S, Mukherjee S. Role of Small Moiety of a Large Ligand: Tyrosine Templated Copper Nanoclusters. J Phys Chem Lett 2021; 12:3266-3273. [PMID: 33764772 DOI: 10.1021/acs.jpclett.1c00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To explore the underlying formation mechanism of luminescent metal nanoclusters (NCs) using a small moiety such as amino acids (outside the milieu of a protein environment) as templates, herein we report blue-emitting copper nanoclusters (CuNCs) using l-tyrosine (l-Tyr) as a capping agent as well as a reducing agent. We also demonstrate the effect of an in situ fibrillation of Tyr on the luminescence and structural properties of NCs. Fluorescence studies along with microscopic imaging revealed the rapid formation of a dityrosine (di-Tyr) moiety in an alkaline medium followed by an aggregated "Tamarix dioica leaf"-like fibrillar pattern along with CuNCs. Our present investigation delineates the role played by π-π interactions in the formation of the fibrillar structures. We substantiated the fundamentals of using a small molecule of a large ligand that can serve as a template and also show how these NCs once formed destroy the fibrils of di-Tyr as a function of time.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
24
|
Shao C, Xiong S, Cao X, Zhang C, Luo T, Liu G. Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
26
|
Xiong Y, Shi C, Li L, Tang Y, Zhang X, Liao S, Zhang B, Sun C, Ren C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02230j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence is widely used to detect functional groups and ions, and peptides are used in various fields due to their excellent biological activity.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Sisi Liao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai 264000, China
| |
Collapse
|
27
|
Li D, Kumari B, Makabenta JM, Tao B, Qian K, Mei X, Rotello VM. Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. J Mater Chem B 2020; 8:9466-9480. [PMID: 32955539 PMCID: PMC7606613 DOI: 10.1039/d0tb00549e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infections from antibiotic-resistant bacteria have caused huge economic loss and numerous deaths over the past decades. Researchers are exploring multiple strategies to combat these bacterial infections. Metal nanomaterials have been explored as therapeutics against these infections owing to their relatively low toxicity, broad-spectrum activity, and low bacterial resistance development. Some coinage metal nanoclusters, such as gold, silver, and copper nanoclusters, can be readily synthesized. These nanoclusters can feature multiple useful properties, including ultra-small size, high catalytic activity, unique photoluminescent properties, and photothermal effect. Coinage metal nanoclusters have been investigated as antimicrobials, but more research is required to tap their full potential. In this review, we discuss multiple advantages and the prospect of using gold/silver/copper nanoclusters as antimicrobials.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medal University, 40 Songpo Road, Jinzhou 121001, China
| | - Beena Kumari
- Department of Chemistry, Indian Institute of Technology Gandhinagar, India
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Bailong Tao
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kun Qian
- Department of Basic Science, Jinzhou Medal University, 40 Songpo Road, Jinzhou 121001, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medal University, 40 Songpo Road, Jinzhou 121001, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
28
|
Liu C, Cai Y, Wang J, Liu X, Ren H, Yan L, Zhang Y, Yang S, Guo J, Liu A. Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42521-42530. [PMID: 32844641 DOI: 10.1021/acsami.0c11983] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanozymes are artificial enzymes, which can substitute traditional biological enzymes for multifield applications. However, to date, it remains challenging to search novel mimic enzymes or multienzyme mimics. Herein, a facile and green method for preparing monodisperse, homogeneous copper nanoclusters (Cu NCs) with smaller size was developed, which used cysteamine as a template and hydrazine hydrate as a reductant to reduce Cu2+. The as-prepared Cu NCs exhibited excellent tetraenzyme-like activities, including peroxidase (POD)-, catalase (CAT)-, superoxide dismutase (SOD)-, and ascorbic acid oxidase (AAO)-mimic activities. The mechanisms, kinetics, and catalytic performances of Cu NCs were systematically studied. Moreover, based on the POD-like activity of Cu NCs, sensitive and simple colorimetric sensing glutathione (GSH) was explored, with the low limit of detection of 0.89 μM GSH (S/N = 3). Additionally, a novel fluorimetric ascorbic acid (AA) sensor was developed with the linear range of 0.5-30 μM and limit of detection (LOD) of 0.144 μM, on the basis of the principle that AA is oxidized to dehydroascorbic acid (DHAA) specifically catalyzed by the AAO-like activity of Cu NCs, while DHAA can further react with o-phenylenediamine (OPDA) to generate a highly fluorescent quinoxaline (DFQ) derivative. The as-proposed colorimetric GSH sensor and the fluorimetric AA sensor were capable of detecting GSH and AA, respectively, in real samples accurately and reproducibly. Thus, the Cu NCs-based multienzyme mimic is a promising candidate for biocatalysis and biosensing.
Collapse
Affiliation(s)
- Chongyang Liu
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuanyuan Cai
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jin Wang
- Qingdao Institute for Food and Drug Control, 7 Longde Road, Qingdao 266073, China
| | - Xuan Liu
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Han Ren
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lu Yan
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yujiao Zhang
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shuqing Yang
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jing Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aihua Liu
- School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
29
|
Zou X, Jin S, Wei X, Li X, Zhou M, Wang S, Zhu M. Overall Structures of Two Metal Nanoclusters: Chloride as a Bridge Fills the Space between the Metal Core and the Metal Shell. Inorg Chem 2020; 59:11905-11909. [DOI: 10.1021/acs.inorgchem.0c01638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Xiaowu Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manman Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
30
|
Shao C, Li C, Zhang C, Ni Z, Liu X, Wang Y. Novel synthesis of orange-red emitting copper nanoclusters stabilized by methionine as a fluorescent probe for norfloxacin sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118334. [PMID: 32305833 DOI: 10.1016/j.saa.2020.118334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In the present work, we report a novel chemical approach for the synthesis of orange-red emitting copper nanoclusters (Cu NCs) using L-methionine as stabilizing agent at room temperature for the first time. The synthetic route is facile, economical and viable. The methionine stabilized copper nanoclusters (Cu NCs/Met) were thoroughly characterized by TEM, FT-IR, XPS, UV-Vis, steady state and transient fluorescence spectroscopy. The results show the synthesized Cu NCs/Met with a fluorescence quantum yield of 4.37% possessed high stability and excellent optical features such as large Stokes shift and long fluorescence lifetime (8.3 μs). Significantly, the fluorescence intensity of Cu NCs/Met could be efficiently quenched by norfloxacin (NOR) pharmaceutical. A fast and cost-effective NOR sensor was proposed employing Cu NCs/Met as the fluorescent nanoprobe, and the quenching mechanisms were attributed to inner filter effect and agglomeration-induced quenching. The developed sensor exhibited a high sensitivity and selectivity towards NOR in a wide linear range from 0.05 to 250 μM with a detection limit as low as 17 nM. Moreover, the practicability of the developed NOR sensor for real sample assay was validated with satisfactory recoveries, indicating this sensing platform with great potential for label-free pharmaceutical detection in complex systems.
Collapse
Affiliation(s)
- Congying Shao
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Chunbo Li
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Cheng Zhang
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Zheng Ni
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Xianhu Liu
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yongxiang Wang
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
31
|
Zheng K, Xie J. Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Negishi Y, Hashimoto S, Ebina A, Hamada K, Hossain S, Kawawaki T. Atomic-level separation of thiolate-protected metal clusters. NANOSCALE 2020; 12:8017-8039. [PMID: 32207494 DOI: 10.1039/d0nr00824a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fine metal clusters have attracted much attention from the viewpoints of both basic and applied science for many years because of their unique physical/chemical properties and functions, which differ from those of bulk metals. Among these materials, thiolate (SR)-protected gold clusters (Aun(SR)m clusters) have been the most studied metal clusters since 2000 because of their ease of synthesis and handling. However, in the early 2000s, it was not easy to isolate these metal clusters. Therefore, high-resolution separation methods were explored, and several atomic-level separation methods, including polyacrylamide gel electrophoresis (PAGE), high-performance liquid chromatography (HPLC), and thin-layer chromatography (TLC), were successively established. These techniques have made it possible to isolate a series of Aun(SR)m clusters, and much knowledge has been obtained on the correlation between the chemical composition and fundamental properties such as the stability, electronic structure, and physical properties of Aun(SR)m clusters. In addition, these high-resolution separation techniques are now also frequently used to evaluate the distribution of the product and to track the reaction process. In this way, high-resolution separation techniques have played an essential role in the study of Aun(SR)m clusters. However, only a few reviews have focused on this work. This review focuses on PAGE, HPLC, and TLC separation techniques, which offer high resolution and repeatability, and summarizes previous studies on the high-resolution separation of Aun(SR)m and related clusters with the purpose of promoting a better understanding of the features and the utility of these techniques.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Ding Y, Sun Z, Tong Z, Zhang S, Min J, Xu Q, Zhou L, Mao Z, Xia H, Wang W. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics 2020; 10:5195-5208. [PMID: 32373207 PMCID: PMC7196283 DOI: 10.7150/thno.45017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/22/2020] [Indexed: 11/05/2022] Open
Abstract
Two important features are required for promising radiosensitizers: one is selective tumor cell targeting to enhance the therapeutic outcome via lethal DNA damage and the other is rapid clearance to enable excellent biocompatibility for potential clinical application. Herein, ultrasmall gold nanoparticles (Au NPs) with diameter smaller than 5 nm were prepared and covered with a multifunctional peptide to endow them with selective tumor cell uptake capability. Combined with X-ray irradiation, the responsive Au NPs demonstrated superior radio-sensitizing toxicity and rapid renal clearance in vivo. Methods: A responsive peptide (Tat-R-EK) consists of three build blocks were used: a cell and even nuclear penetrating block derived from human immunodeficiency virus-1 transactivator of transcription protein (Tat), an cathepsin B cleavable linker, and a zwitterionic antifouling block. Ultrasmall Au NPs were prepared and then covered by the peptide via the Au-S bonds between gold and thiol groups from cysteine. The morphology, colloidal stability and the responsiveness of obtained Au@Tat-R-EK NPs were studied using transmittance electron microscopy and dynamic laser scattering. The selective cancer cell uptake and accumulation of Au@Tat-R-EK NPs in cancer tissue were studied via ICP-MS in vitro and in vivo, respectively. The cytotoxicity of Au@Tat-R-EK NPs on HepG2 cancer cells was evaluated in terms of cell viability, DNA damage, intracellular reactive oxygen species generation, and apoptosis analysis. Finally, the biocompatibility and tumor destruction ability against orthotopic LM3 liver cancers were verified in vivo. Results: Multifunctional peptide modified ultrasmall Au NPs were successfully prepared. The Au NPs exhibited enough colloidal stability and cathepsin B-responsive surface change, leading to selectively uptake by cancer cells in vitro and accumulation to tumor sites in vivo. Combined with X-ray irradiation, the responsive Au NPs demonstrated superior radio-sensitizing cytotoxicity in vitro and therapeutic outcome on mouse liver cancer in vivo. The ultrasmall size enables rapid clearance of the Au NPs, guarantees the biocompatibility in vivo for potential clinical applications. Conclusion: Some obstacles faced by the Au NPs-based radiotherapy, such as short circulation half-life, non-specific distribution, slow clearance and low radio-sensitizing effect, were effective solved through rational design of the smart nanomedicine. This work provides new insight in designing tumor microenvironment-responsive nanomedicine in cancer radiotherapy.
Collapse
|
34
|
Tang M, Zhang J, Yang C, Zheng Y, Jiang H. Gold Nanoclusters for Bacterial Detection and Infection Therapy. Front Chem 2020; 8:181. [PMID: 32266210 PMCID: PMC7105725 DOI: 10.3389/fchem.2020.00181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria have become one of the most serious global public health crises. Early detection and effective treatment can effectively prevent deterioration and further spreading of the bacterial infections. Therefore, there is an urgent need for time-saving diagnosis as well as therapeutically potent therapy approaches. Development of nanomedicine has provided more choices for detection and therapy of bacterial infections. Ultrasmall gold nanoclusters (Au NCs) are emerging as potential antibacterial agents and have drawn intense attention in the biomedical fields owing to their excellent biocompatibility and unusual physicochemical properties. Recent significant efforts have shown that these versatile Au NCs also have great application potential in the selective detection of bacteria and infection treatment. In this review, we will provide an overview of research progress on the development of versatile Au NCs for bacterial detection and infection treatment, and the mechanisms of action of designed diagnostic and therapeutic agents will be highlighted. Based on these cases, we have briefly discussed the current issues and perspective of Au NCs for bacterial detection and infection treatment applications.
Collapse
Affiliation(s)
- Mingxiu Tang
- The Second Affiliated Hospital, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhang
- The Second Affiliated Hospital, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chunyan Yang
- The Second Affiliated Hospital, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Youkun Zheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Zou X, Li Y, Jin S, Kang X, Wei X, Wang S, Meng X, Zhu M. Doping Copper Atoms into the Nanocluster Kernel: Total Structure Determination of [Cu 30Ag 61(SAdm) 38S 3](BPh 4). J Phys Chem Lett 2020; 11:2272-2276. [PMID: 32141753 DOI: 10.1021/acs.jpclett.0c00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Doping active metal (i.e., Cu) into the kernel of noble metal nanoclusters (i.e., Au/Ag nanocluster) remains challenging in the synthesis of alloy nanoclusters. Herein, we report the synthesis and the total structure determination of a bimetallic [Ag61Cu30(SAdm)38S3]BPh4 (Ag61Cu30) nanocluster. The Ag61Cu30 nanocluster is composed of an Ag13@Cu30 kernel which is further capped by a peripheral Ag48(SAdm)38S3 shell. The icosidodecahedron Cu30 middle layer connects the innermost icosahedral Ag13 core and Ag atoms at the outermost Ag48(SR)38S3 shell, demonstrating that the Cu atoms in the Cu30 layer are in a metallic state.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Yangfeng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Xiao Wei
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Xiangming Meng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
36
|
Chakraborty S, Nandi S, Bhattacharyya K, Mukherjee S. Probing Viscosity of Co‐Polymer Hydrogel and HeLa Cell Using Fluorescent Gold Nanoclusters: Fluorescence Correlation Spectroscopy and Anisotropy Decay. Chemphyschem 2020; 21:406-414. [DOI: 10.1002/cphc.201901161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066, Madhya Pradesh India
| | - Somen Nandi
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066, Madhya Pradesh India
| | - Kankan Bhattacharyya
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066, Madhya Pradesh India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066, Madhya Pradesh India
| |
Collapse
|
37
|
Sudheeshkumar V, Sulaiman KO, Scott RWJ. Activation of atom-precise clusters for catalysis. NANOSCALE ADVANCES 2020; 2:55-69. [PMID: 36133968 PMCID: PMC9417207 DOI: 10.1039/c9na00549h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 05/07/2023]
Abstract
The use of atom-precise, ligand-protected metal clusters has exceptional promise towards the fabrication of model supported-nanoparticle heterogeneous catalysts which have controlled sizes and compositions. One major challenge in the field involves the ease at which metallic clusters sinter upon removal of protected ligands, thus destroying the structural integrity of the model system. This review focuses on methods used to activate atom-precise thiolate-stabilized clusters for heterogeneous catalysis, and strategies that can be used to mitigate sintering. Thermal activation is the most commonly employed approach to activate atom-precise metal clusters, though a variety of chemical and photochemical activation strategies have also been reported. Material chemistry methods that can mitigate sintering are also explored, which include overcoating of clusters with metal oxide supports fabricated by sol-gel chemistry or atomic layer deposition of thin oxide films or encapsulating clusters within porous supports. In addition to focusing on the preservation of the size and morphology of deprotected metal clusters, the fate of the removed ligands is also explored, because detached and/or oxidized ligands can also greatly influence the overall properties of the catalyst systems. We also show that modern characterization techniques such as X-ray absorption spectroscopy and high-resolution electron microscopy have the capacity to enable careful monitoring of particle sintering upon activation of metal clusters.
Collapse
Affiliation(s)
- V Sudheeshkumar
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Kazeem O Sulaiman
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
38
|
|
39
|
Wang L, Zheng W, Jiang X. Benzeneselenol-modified gold nanoclusters for cancer therapy. Chem Commun (Camb) 2020; 56:6664-6667. [DOI: 10.1039/d0cc02077j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report that benzeneselenol-modified gold nanoclusters (Se_Au NCs) can induce autophagy and interfere with actin expressions in cancer cells.
Collapse
Affiliation(s)
- Le Wang
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Wenfu Zheng
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| |
Collapse
|
40
|
A New Lamellar Gold Thiolate Coordination Polymer, [Au( m-SPhCO 2H)] n, for the Formation of Luminescent Polymer Composites. NANOMATERIALS 2019; 9:nano9101408. [PMID: 31581749 PMCID: PMC6835532 DOI: 10.3390/nano9101408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
The photoluminescence of gold thiolate clusters brings about many potential applications, but its origin is still elusive because of its complexity. A strategy in understanding the structure–properties relationship is to study closely related neutral gold thiolate coordination polymers (CPs). Here, a new CP is reported, [Au(m-SPhCO2H)]n. Its structure is lamellar with an inorganic layer made of Au–S–Au–S helical chains, similar to the [Au(p-SPhCO2H)]n analog. An in-depth study of its photophysical properties revealed that it is a bright yellow phosphorescent emitter with a band centered at 615 nm and a quantum yield (QY) of 19% at room temperature and in a solid state. More importantly, a comparison to the para-analog, which has a weak emission, displayed a strong effect of the position of the electron withdrawing group (EWG) on the luminescent properties. In addition, [Au(m-SPhCO2H)]n CPs were mixed with organic polymers to generate transparent and flexible luminescent thin films. The ability to tune the emission position with the appropriate contents makes these nontoxic polymer composites promising materials for lighting devices.
Collapse
|
41
|
Wang Y, Ma S, Dai Z, Rong Z, Liu J. Facile in situ synthesis of ultrasmall near-infrared-emitting gold glyconanoparticles with enhanced cellular uptake and tumor targeting. NANOSCALE 2019; 11:16336-16341. [PMID: 31455962 DOI: 10.1039/c9nr03821c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The simultaneous possession of high tumor-targeting efficiency, long blood circulation, and low normal-tissue retention is critical for future clinically translatable nanomedicines. Herein, we reported a facile in situ glycoconjugation strategy for the synthesis of near-infrared (NIR)-emitting gold glyconanoparticles (AuGNPs, ∼2.4 nm) using 1-thio-β-d-glucose as both the surface ligand and the reducing agent in the presence of a gold precursor. The ultrasmall AuGNPs showed similar low healthy organ retention to that of the renal-clearable ultrasmall nonglyconanoparticles, but ∼10 and 2.5 times higher in vitro and in vivo tumor-targeting efficiencies, respectively, were observed. This facile glycoconjugation strategy of ultrasmall AuGNPs was found to show activity towards glucose transporters in the cancer cells and prolonged blood circulation with both renal and hepatobiliary clearance pathways, which synergistically enhanced the tumor targeting of the ultrasmall AuGNPs. This discovery provides a smart strategy for the improvement in tumor targeting by ultrasmall NPs and further strengthens our understanding of glycoconjugation in designing future clinically translatable nanomedicines.
Collapse
Affiliation(s)
- Yaping Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhiyi Dai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
42
|
Zeng C, Weitz A, Withers G, Higaki T, Zhao S, Chen Y, Gil RR, Hendrich M, Jin R. Controlling magnetism of Au 133(TBBT) 52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem Sci 2019; 10:9684-9691. [PMID: 32015802 PMCID: PMC6977549 DOI: 10.1039/c9sc02736j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The [Au133(SR)52]q nanocluster is discovered to possess one spin per particle when q = 0, but no unpaired electron when q = +1.
The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s1) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au133(TBBT)52]0 nanoclusters (where TBBT = 4-tert-butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au133(TBBT)52]0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au133(TBBT)52]0 to [Au133(TBBT)52]+ and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge and magnetic states of Au133(TBBT)52, and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au133(TBBT)52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi-D2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au133(TBBT)52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters.
Collapse
Affiliation(s)
- Chenjie Zeng
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Andrew Weitz
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Gayathri Withers
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Tatsuya Higaki
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Shuo Zhao
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Yuxiang Chen
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Roberto R Gil
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Michael Hendrich
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Rongchao Jin
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| |
Collapse
|
43
|
Pranantyo D, Liu P, Zhong W, Kang ET, Chan-Park MB. Antimicrobial Peptide-Reduced Gold Nanoclusters with Charge-Reversal Moieties for Bacterial Targeting and Imaging. Biomacromolecules 2019; 20:2922-2933. [DOI: 10.1021/acs.biomac.9b00392] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Peng Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Wenbin Zhong
- Centre of Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| |
Collapse
|
44
|
Qin Z, Zhao D, Zhao L, Xiao Q, Wu T, Zhang J, Wan C, Li G. Tailoring the stability, photocatalysis and photoluminescence properties of Au 11 nanoclusters via doping engineering. NANOSCALE ADVANCES 2019; 1:2529-2536. [PMID: 36132741 PMCID: PMC9417908 DOI: 10.1039/c9na00234k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 05/05/2023]
Abstract
Dopants in gold nanoclusters have been proved to mediate the intrinsic electronic properties of homo-clusters. In this work, we report the precise synthesis of atomically precise Au8Ag3(PPh3)7Cl3 alloy nanoclusters with multiple Ag dopants for the first time. Their structure was resolved by single-crystal X-ray crystallography. Au8Ag3(PPh3)7Cl3 nanoclusters possessed a similar structure topology to the well-known Au11(PPh3)7Cl3 nanoclusters. It is observed that the three Ag atoms were fixed at the cluster surface and bound selectively with the chlorine ligands in a C3-axis manner. The alloy nanoclusters exhibited a closed-shell electronic structure (i.e., 8(Au 6s1) + 3(Ag 5s1) - 3(Cl) = 8e), as evidenced by electrospray ionization-mass spectrometry (ESI-MS). The photothermodynamic stability of alloy clusters was remarkably improved (e.g., full decomposition after 7 days under sunlight irradiation vs. 3 days for Au11(PPh3)7Cl3 clusters). DFT calculations indicated that the Ag dopants in a C3-axis manner could obviously delocalize the electrons of Au to the orbitals of P atoms and then mediate the electronic property of the clusters. Shrinkage of the HOMO-LUMO gap to 1.67 eV of Au8Ag3(PPh3)7Cl3 was observed as compared with that of homo-nanoclusters of Au11(PPh3)7Cl3 (2.06 eV). The electrochemical gap of Au8Ag3(PPh3)7Cl3 alloy nanoclusters was 1.272 V, which was higher than that of Au11(PPh3)7Cl3 nanoclusters, which indicated higher electrochemical stability, as evidenced by the differential pulse voltammetry (DPV) method. Au8Ag3(PPh3)7Cl3 clusters exhibited three specific photoluminescence peaks at 405, 434 and 454 nm. AuAg alloy clusters exhibited twofold greater activity than homo gold clusters in the photooxidation of benzylamine, which was mainly due to the unique electronic properties of the alloy clusters. Controllable heteroatom doping engineering is a powerful method to tune the electronic properties of clusters, and then improve their photothermodynamic and electrochemical stability simultaneously for potential photocatalytic applications.
Collapse
Affiliation(s)
- Zhaoxian Qin
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China https://publons.com/a/1297379
| | - Dan Zhao
- School of Marine Technology and Environment, Dalian Ocean University Dalian 116023 P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Li Zhao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Qian Xiao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Tingting Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China https://publons.com/a/1297379
- School of Marine Technology and Environment, Dalian Ocean University Dalian 116023 P. R. China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China https://publons.com/a/1297379
| | - Chongqing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China https://publons.com/a/1297379
| |
Collapse
|
45
|
Weng S, Lv Y, Yu H, Zhu M. The Ligand-Exchange Reactions of Rod-Like Au 25-n M n (M=Au, Ag, Cu, Pd, Pt) Nanoclusters with Cysteine - A Density Functional Theory Study. Chemphyschem 2019; 20:1822-1829. [PMID: 31070285 DOI: 10.1002/cphc.201900439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Indexed: 11/06/2022]
Abstract
The atomic precision of ultrasmall noble-metal nanoclusters (NMNs) is fundamental for elucidating structure-property relationships and probing their practical applications. So far, the atomic structure of NMNs protected by organic ligands has been widely elucidated, whereas the precise atomic structure of NMNs protected by water-soluble ligands (such as peptides and nucleic acid), has been rarely reported. With the concept of "precision to precision", density functional theory (DFT) calculations were performed to probe the thermodynamic plausibility and inherent determinants for synthesizing atomically precise, water-soluble NMNs via the framework-maintained two-phase ligand-exchange method. A series of rod-like Au25-n Mn (M=Au, Ag, Cu, Pd, Pt) NMNs with the same framework but varied ligands and metal compositions was chosen as the modeling reactants, and cysteine was used as the modeling water-soluble ligand. It was found that the acidity of the reaction remarkably affects the thermodynamic facility of the ligand exchange reactions. Ligand effects (structural distortion and acidity) dominate the overall thermodynamic facility of the ligand-exchange reaction, while the number and type of doped metal atom(s) has little influence.
Collapse
Affiliation(s)
- Shiyin Weng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
46
|
Yougbare S, Chang TK, Tan SH, Kuo JC, Hsu PH, Su CY, Kuo TR. Antimicrobial Gold Nanoclusters: Recent Developments and Future Perspectives. Int J Mol Sci 2019; 20:E2924. [PMID: 31208013 PMCID: PMC6627976 DOI: 10.3390/ijms20122924] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/01/2022] Open
Abstract
Bacterial infections have caused serious threats to public health due to the antimicrobial resistance in bacteria. Recently, gold nanoclusters (AuNCs) have been extensively investigated for biomedical applications because of their superior structural and optical properties. Great efforts have demonstrated that AuNCs conjugated with various surface ligands are promising antimicrobial agents owing to their high biocompatibility, polyvalent effect, easy modification and photothermal stability. In this review, we have highlighted the recent achievements for the utilizations of AuNCs as the antimicrobial agents. We have classified the antimicrobial AuNCs by their surface ligands including small molecules (< 900 Daltons) and macromolecules (> 900 Daltons). Moreover, the antimicrobial activities and mechanisms of AuNCs have been introduced into two main categories of small molecules and macromolecules, respectively. In accordance with the advancements of antimicrobial AuNCs, we further provided conclusions of current challenges and recommendations of future perspectives of antimicrobial AuNCs for fundamental researches and clinical applications.
Collapse
Affiliation(s)
- Sibidou Yougbare
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ting-Kuang Chang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shih-Hua Tan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jui-Chi Kuo
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Po-Hsuan Hsu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chen-Yen Su
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
47
|
Liu X, Yu Y, Lin B, Cao Y, Guo M. A label-free fluorescent probe for the detection of adenosine 5'‑triphosphate via inhibiting the aggregation-induced emission enhancement of glutathione modified silver nanoclusters triggered by zinc ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:360-365. [PMID: 30802791 DOI: 10.1016/j.saa.2019.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/23/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
It is important to establish sensitive and simple analysis methods for adenosine 5'‑triphosphate (ATP). A label-free fluorescent probe for the determination of ATP was constructed based on glutathione modified silver nanoclusters (AgNCs/GSH). AgNCs/GSH showed aggregation-induced emission enhancement (AIEE) property in the organic solvent. The effects of metal ions on the fluorescence of AgNCs/GSH were also studied. Only zinc ion enhanced the fluorescence of AgNCs/GSH obviously. This was because Zn2+ coordinated with AgNCs/GSH to cause the aggregation of AgNCs/GSH, which was sufficiently proved by TEM. With the addition of ATP, Zn2+ bound with ATP through ZnOP bond and the binding between Zn2+ and AgNCs/GSH was inhibited. Hence the fluorescence of AgNCs/GSH was decreased with increasing the ATP concentration. The fluorescence response was linear in the ATP concentration range of 1-110 μM, and the detection limit was 0.8 μM. Then this method was successfully applied for determining ATP in the samples of human urine and rat serum, the recoveries were in the range of 97.6%-103%.
Collapse
Affiliation(s)
- Xiaojie Liu
- School of Chemistry and Environment, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Ying Yu
- School of Chemistry and Environment, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Bixia Lin
- School of Chemistry and Environment, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Yujuan Cao
- School of Chemistry and Environment, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Manli Guo
- School of Chemistry and Environment, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
48
|
Li YL, Wang ZY, Ma XH, Luo P, Du CX, Zang SQ. Distinct photophysical properties in atom-precise silver and copper nanocluster analogues. NANOSCALE 2019; 11:5151-5157. [PMID: 30848273 DOI: 10.1039/c9nr01058k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synthesis of atom-precise analogues of homometallic nanoclusters remains a great challenge. Herein we report the first pair of atom-precise copper/silver-thiolate halide cluster analogues, namely [Cu17/Ag17I3S(C2B10H10S2)6(CH3CN)11] (Cu17 and Ag17), obtained by bottom-up self-assembly and complete-metal-exchange-induced cluster-to-cluster transformation, respectively. The differences in optical absorption and emission of these analogues were fully elucidated by experimental and theoretical methods.
Collapse
Affiliation(s)
- Yan-Ling Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
49
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
50
|
Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev 2019; 48:2422-2457. [PMID: 30838373 DOI: 10.1039/c8cs00800k] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, China.
| | | |
Collapse
|