1
|
Wei Y, Liu H, Wang K. Magnetic anisotropy and phononic properties of two-dimensional ferromagnetic Fe 3GeS 2 monolayer. iScience 2024; 27:110781. [PMID: 39280621 PMCID: PMC11401159 DOI: 10.1016/j.isci.2024.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
In 2023, Fe3GeS2 monolayer with Curie temperature of 630 K is predicted, which is promising to be used in next-generation spintronic devices. However, its magnetic anisotropy and phononic properties are still unclear. In this paper, we implemented the first-principles calculations on Fe3GeS2 monolayer, and found its ferromagnetic ground state with robustness to the -1.5%-1.3% biaxial strain. Meanwhile, the out-of-plane magnetic anisotropy dominated by dipolar interaction is found in Fe3GeS2 monolayer. Finally, we studied the phononic properties to identify the dynamical stability of Fe3GeS2 monolayer and highlight the contribution from the anharmonic interaction of optical phonons to the thermal expansion coefficient. We also find two single-phonon modes can be used to design quantum mechanical resonators with a wide cool-temperature range. These results can provide a comprehensive understanding of the magnetism and phonon properties of two-dimensional (2D) Fe3GeS2, beneficial for the application of 2D Fe3GeS2 in spintronics.
Collapse
Affiliation(s)
- Yu Wei
- Xi'an University of Posts & Telecommunications, Shaanxi 710121, China
| | - Hui Liu
- Xi'an University of Posts & Telecommunications, Shaanxi 710121, China
| | - Ke Wang
- Xi'an University of Posts & Telecommunications, Shaanxi 710121, China
| |
Collapse
|
2
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
3
|
Yang J, Shi F, Zhao H, Chen L. Changing the spin disorder of two-dimensional magnetic Cr 2TiC 2T x to long-range order through noble metal adhesion. iScience 2024; 27:109227. [PMID: 38433897 PMCID: PMC10904981 DOI: 10.1016/j.isci.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
To enhance the use of Cr2TiC2Tx MXene in spin electronics, it is essential to transform its spin-disordered state into a long-range ordered spin state. In this study, first-principles calculations show that Rh layers adhered to the Cr2TiC2Tx surfaces can transform its spin disordered state into a long-range spin order by donating electrons to the O terminations, resulting in Cr2TiC2Tx becoming a single-layer A-type antiferromagnet. As the proportion of F termination increases from 0 to 100%, the exchange coupling constant J1 of the compound escalates from 0.5 to 15.9 meV. Concurrently, the Néel temperature experiences a significant rise from 8 K to 110 K. The analysis of the density of states reveals that the obtained Cr2TiC2Tx exhibits excellent conductivity with O termination and semiconductor characteristics with F termination. These unique features make Cr2TiC2Tx a promising magnetic material for application in spin electronics.
Collapse
Affiliation(s)
- Jianhui Yang
- Quzhou University, Quzhou 324000, P.R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
| | - Fei Shi
- Quzhou University, Quzhou 324000, P.R. China
| | | | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
| |
Collapse
|
4
|
Yang Y, Anayee M, Pattammattel A, Shekhirev M, Wang RJ, Huang X, Chu YS, Gogotsi Y, May SJ. Enhanced magnetic susceptibility in Ti 3C 2T x MXene with Co and Ni incorporation. NANOSCALE 2024. [PMID: 38412012 DOI: 10.1039/d3nr05685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Magnetic nanomaterials are sought to provide new functionalities for applications ranging from information processing and storage to energy generation and biomedical imaging. MXenes are a rapidly growing family of two-dimensional transition metal carbides and nitrides with versatile chemical and structural diversity, resulting in a variety of interesting electronic and optical properties. However, strategies for producing MXenes with tailored magnetic responses remain underdeveloped and challenging. Herein, we incorporate elemental Ni and Co into Ti3C2Tx MXene by mixing with dilute metal chloride solutions. We achieve a uniform distribution of Ni and Co, confirmed by X-ray fluorescence (XRF) mapping with nanometer resolution, with Ni and Co concentrations of approximately 2 and 7 at% relative to the Ti concentration. The magnetic susceptibility of these Ni- and Co-incorporated Ti3C2Tx MXenes is one to two orders of magnitude larger than pristine Ti3C2Tx, illustrating the potential for dilute metal incorporation to enhance linear magnetic responses at room temperature.
Collapse
Affiliation(s)
- Yizhou Yang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
| | - Mark Anayee
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ajith Pattammattel
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Mikhail Shekhirev
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ruocun John Wang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Xiaojing Huang
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Yong S Chu
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Yury Gogotsi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Steven J May
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
| |
Collapse
|
5
|
Luo Y, Li C, Zhong C, Li S. A novel 2D intrinsic metal-free ferromagnetic semiconductor Si 3C 8 monolayer. Phys Chem Chem Phys 2024; 26:1086-1093. [PMID: 38098345 DOI: 10.1039/d3cp05005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Metal-free magnets, a special kind of ferromagnetic (FM) material, have evolved into an important branch of magnetic materials for spintronic applications. We herein propose a silicon carbide (Si3C8) monolayer and investigate its geometric, electronic, and magnetic properties by using first-principles calculations. The thermal and dynamical stability of the Si3C8 monolayer was confirmed by ab initio molecular dynamics and phonon dispersion simulations. Our results show that the Si3C8 monolayer is a FM semiconductor with a band gap of 1.76 eV in the spin-down channel and a Curie temperature of 22 K. We demonstrate that the intrinsic magnetism of the Si3C8 monolayer is derived from pz orbitals of C atoms via superexchange interactions. Furthermore, the half-metallic state in the FM Si3C8 monolayer can be induced by electron doping. Our work not only illustrates that carrier doping could manipulate the magnetic states of the FM Si3C8 monolayer but also provides an idea to design two-dimensional metal-free magnetic materials for spintronic applications.
Collapse
Affiliation(s)
- Yangtong Luo
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China.
| | - Chen Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China.
| | - Chengyong Zhong
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, P. R. China.
| | - Shuo Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China.
| |
Collapse
|
6
|
Wang Z, Lou H, Yan X, Liu Y, Yang G. 2D antiferromagnetic semiconducting FeCN with interesting properties. Phys Chem Chem Phys 2023; 25:32416-32420. [PMID: 38010895 DOI: 10.1039/d3cp04820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Two-dimensional magnetic materials have demonstrated favorable properties (e.g., large spin polarization and net magnetization) for the development of next-generation spintronic devices. The discovery of such materials and insight into their magnetic coupling mechanism has become a research focus. Here, on the basis of first-principles structural search calculations, we have identified a fresh FeCN monolayer consisting of edge-sharing Fe triangle sublattices and FeC3N2 rings, which integrates antiferromagnetism, semiconductivity, and planarity. Interestingly, it possesses a large magnetic anisotropy energy (MAE) of 614 μeV per Fe atom, a narrow band gap (Eg) of 0.47 eV, a large magnetic moment of 3.15 μB, and a proper Néel temperature (TN) of 97 K. The direct exchange between the nearest-neighbor Fe atoms in the triangle sublattice is mainly responsible for the AFM ordering. Its high structural stability, stemming from the collective contribution of covalent C-C and C-N bonds, ionic Fe-N bonds, and metallic Fe-Fe bonds, provides a strong feasibility for experimental synthesis.
Collapse
Affiliation(s)
- Zhicui Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Huan Lou
- Department of Physics, College of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
7
|
García-Romeral N, Morales-García Á, Viñes F, de P R Moreira I, Illas F. The nature of the electronic ground state of M 2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Phys Chem Chem Phys 2023; 25:31153-31164. [PMID: 37953662 DOI: 10.1039/d3cp04402e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A systematic computational study is presented aimed at accurately describing the electronic ground state nature and properties of M2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Electronic band structure calculations in the framework of density functional theory (DFT), carried out with different types of basis sets and employing the generalized gradient approach (GGA) and hybrid functionals, provide strong evidence that Ti2C, Zr2C, Hf2C, and Cr2C MXenes exhibit an open-shell conducting ground state with localized spins on the metal atoms, while V2C, Nb2C, Mo2C, Ta2C, and W2C MXenes exhibit a diamagnetic conducting ground state. For Ti2C, Zr2C, Hf2C, and Cr2C, the analysis of the low-lying spin polarized solutions with different spin orderings indicates that their ground states are antiferromagnetic (AFM), consisting of two ferromagnetic (FM) metal layers coupled antiferromagnetically. For the diamagnetic MXenes, the converged spin polarized solutions are significantly less stable than the closed shell solution except for the case of V2C and Mo2C where those excited open shell solutions can be thermally accessible (less than 300 meV per formula unit). The analysis of charge and spin density distributions of the ground state of the MXenes reveals that, in all cases, the metal atoms have a net charge close to +1 e and C atoms close to -2 e. In the case of diamagnetic MXenes, the electronic structure of V2C, Nb2C, and Ta2C is consistent with metal atoms exhibiting a closed-shell s2d2 configuration whereas for Mo2C, and W2C is consistent with a low-spin s1d4 configuration although the FM solution is close in energy for V2C and Mo2C suggesting that they may play a role in their chemistry at high temperature. For the open shell MXenes, the spin density primarily located at the metal atoms showing one unpaired electron per Ti+, Zr+, and Hf+ magnetic center, consistent with s2d1 configuration of the metal atom, and of ∼3.5 unpaired electrons per Cr+ magnetic center interpreted as a mixture of s2d3 and high-spin s1d4 configuration. Finally, the analysis of the density of states reveals the metallic character of all these bare MXenes, irrespective of the nature of the ground state, with significant covalent contributions for Mo2C and W2C.
Collapse
Affiliation(s)
- Néstor García-Romeral
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Chen J, Wang X, An Y, Gong SJ. Recent progress in 2D bipolar magnetic semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:083001. [PMID: 37956444 DOI: 10.1088/1361-648x/ad0bff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Bipolar magnetic semiconductor (BMS) is a class of magnetic semiconductors, whose valence band maximum and conduction band minimum are fully spin-polarized with opposite spin directions. Due to the special energy band, half-metallicity can be easily obtained in BMS by gate voltage, and the spin polarization can be reversed between spin-up and down when the gate voltage switches from positive to negative. BMSs have great potential applications in spintronic devices, such as the field-effect spin valves, spin filters and spin transistors,etc. With the rapid progress of the two-dimensional (2D) magnetic materials, researchers have identified a series of potential intrinsic 2D BMS materials using high-throughput computational methods. Additionally, methods such as doping, application of external stress, introduction of external fields, stacking of interlayer antiferromagnetic semiconductors, and construction of Janus structures have endowed existing materials with BMS properties. This paper reviews the research progress of 2D BMS. These advancements provide crucial guidance for the design and synthesis of BMS materials and offer innovative pathways for the future development of spintronics.
Collapse
Affiliation(s)
- Ju Chen
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Xuening Wang
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yipeng An
- School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Shi-Jing Gong
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 30006, People's Republic of China
| |
Collapse
|
9
|
Wang K, Ren K, Hou Y, Cheng Y, Zhang G. Magnon-phonon coupling: from fundamental physics to applications. Phys Chem Chem Phys 2023; 25:21802-21815. [PMID: 37581291 DOI: 10.1039/d3cp02683c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent decades, there are immense applications for bulk and few-layer magnetic insulators in biomedicine, data storage, and signal transfer. In these applications, the interaction between spin and lattice vibration has significant impacts on the device performance. In this article, we systematically review the fundamental physical aspects of magnon-phonon coupling in magnetic insulators. We first introduce the fundamental physics of magnons and magnon-phonon coupling in magnetic insulators and then discuss the influence of magnon-phonon coupling on the properties of magnons and phonons. Finally, a summary is presented, and we also discuss the possible open problems in this field. This article presents the advanced understanding of magnon-phonon coupling in magnetic insulators, which provides new opportunities for improving various possible applications.
Collapse
Affiliation(s)
- Ke Wang
- School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi, 710121, China
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China.
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
| | - Yinlong Hou
- School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi, 710121, China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China.
- Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|
10
|
García-Romeral N, Morales-García Á, Viñes F, Moreira IDR, Illas F. Theoretical Analysis of Magnetic Coupling in the Ti 2C Bare MXene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3706-3714. [PMID: 36865991 PMCID: PMC9969871 DOI: 10.1021/acs.jpcc.2c07609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/26/2023] [Indexed: 06/13/2023]
Abstract
The nature of the electronic ground state of the Ti2C MXene is unambiguously determined by making use of density functional theory-based calculations including hybrid functionals together with a stringent computational setup providing numerically converged results up to 1 meV. All the explored density functionals (i.e., PBE, PBE0, and HSE06) consistently predict that the Ti2C MXene has a magnetic ground state corresponding to antiferromagnetic (AFM)-coupled ferromagnetic (FM) layers. A spin model, with one unpaired electron per Ti center, consistent with the nature of the chemical bond emerging from the calculations, is presented in which the relevant magnetic coupling constants are extracted from total energy differences of the involved magnetic solutions using an appropriate mapping approach. The use of different density functionals enables us to define a realistic range for the magnitude of each of the magnetic coupling constants. The intralayer FM interaction is the dominant term, but the other two AFM interlayer couplings are noticeable and cannot be neglected. Thus, the spin model cannot be reduced to include nearest-neighbor interactions only. The Néel temperature is roughly estimated to be in the 220 ± 30 K, suggesting that this material can be used in practical applications in spintronics and related fields.
Collapse
|
11
|
Özcan S, Biel B. Exploring a novel class of Janus MXenes by first principles calculations: structural, electronic and magnetic properties of Sc 2CXT, X = O, F, OH; T = C, S, N. Phys Chem Chem Phys 2023; 25:1881-1888. [PMID: 36541438 DOI: 10.1039/d2cp04713f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The already intriguing electronic and optical properties of the MXene Sc2C family can be further tuned through a wide range of possible functionalizations. Here, by means of density functional theory, we show that the 36 possible elements of the Janus MXT (M: Sc2C, X: O, F, OH, T: C, N, S) family, built by considering the four possible structural models (i) FCC, (ii) HCP, (iii) FCC + HCP, and (iv) HCP + FCC, are all potentially stable. The analysis of their mechanical properties shows the excellent mechanical flexibility of functionalized MXenes (f-MXenes) under large strain, making them more suitable for applications where stress could be an issue. Interestingly, while Sc2C presents a metallic character, Sc2COS, Sc2CFN and Sc2COHN are found to be semiconductors with bandgaps of 2.5 eV (indirect), 1.67 eV (indirect) and 1.1 eV (direct), respectively, which presents promising applications for nano- and optoelectronics. Moreover, Sc2CFC presents a ferromagnetic ground state with the 2 × 2 × 1 supercell magnetic moment of 3.99 μB, while the ground state of Sc2COHC might be antiferromagnetic with a magnetic moment of 3.98 μB, depending on the environment. Remarkably, the band structures of Sc2CFC and Sc2COHC present a half-metallic character with an HSE06 fundamental band gap of 0.60 eV and 0.48 eV, respectively. Our results confirm the extraordinary potential of the Janus MXT (M: Sc2C, X: O, F, OH, T: C, N, S) family for novel applications in 2D nano-,opto- and spintronics.
Collapse
Affiliation(s)
- S Özcan
- Department of Physics, Aksaray University, 68100 Aksaray, Turkey.
| | - B Biel
- Department of Atomic, Molecular and Nuclear Physics & Instituto Carlos I de Física Teórica y Computacional, Faculty of Science, Campus de Fuente Nueva, University of Granada, 18071 Granada, Spain
| |
Collapse
|
12
|
Lu Q, Zhao Y, Huang L, An J, Zheng Y, Yap EH. Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:373. [PMID: 36770333 PMCID: PMC9921566 DOI: 10.3390/nano13030373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
With the rapid development of artificial intelligence and the Internet of Things, there is an explosion of available data for processing and analysis in any domain. However, signal processing efficiency is limited by the Von Neumann structure for the conventional computing system. Therefore, the design and construction of artificial synapse, which is the basic unit for the hardware-based neural network, by mimicking the structure and working mechanisms of biological synapses, have attracted a great amount of attention to overcome this limitation. In addition, a revolution in healthcare monitoring, neuro-prosthetics, and human-machine interfaces can be further realized with a flexible device integrating sensing, memory, and processing functions by emulating the bionic sensory and perceptual functions of neural systems. Until now, flexible artificial synapses and related neuromorphic systems, which are capable of responding to external environmental stimuli and processing signals efficiently, have been extensively studied from material-selection, structure-design, and system-integration perspectives. Moreover, low-dimensional materials, which show distinct electrical properties and excellent mechanical properties, have been extensively employed in the fabrication of flexible electronics. In this review, recent progress in flexible artificial synapses and neuromorphic systems based on low-dimensional materials is discussed. The potential and the challenges of the devices and systems in the application of neuromorphic computing and sensory systems are also explored.
Collapse
Affiliation(s)
- Qifeng Lu
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Yinchao Zhao
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Long Huang
- School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Jiabao An
- School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Yufan Zheng
- School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Eng Hwa Yap
- School of Robotics, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| |
Collapse
|
13
|
Zhang S, Zhou Y, Liang X, Wang Y, Wang T, Yang J, Lv L. Tuning the Magnetic Properties of Cr 2TiC 2T x through Surface Terminations: A Theoretical Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4364. [PMID: 36558217 PMCID: PMC9781736 DOI: 10.3390/nano12244364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Recently, magnetic two-dimensional Cr2TiC2Tx MXenes with promising applications in spin electronics have been experimentally confirmed. However, the underlying magnetic mechanism needs to be further investigated. Along these lines, in this work, the magnetic properties of Cr2TiC2On/4F2-n/4 and Cr2TiC2On/4 structures were simulated through first-principle calculations using the GGA+U approach. The values of 4.1 and 3.1 eV were calculated for the Hubbard U of Cr and Ti, respectively, by applying the linear response method. Interestingly, the Cr2TiC2On/4F2-n/4-based configurations with low O content (n ≤ 4) exhibit antiferromagnetic behavior, while the majority of the respective configurations with high O content (n ≥ 5) are ferromagnetic. As far as the Cr2TiC2O5/4F3/4 structure (n = 5) is concerned, the value of about 2.64 μB was estimated for the magnetic moment of the Cr atom. On top of that, the Curie temperature lies within the range of 10~47 K. The extracted theoretical results are in good agreement with experimental outcomes of the Cr2TiC2O1.3F0.8-based structure. From the simulated results, it can be also argued that the magnetic moment of Cr atoms and the Neel temperature can be directly tuned by the active content of O atoms. The conductivity of both Cr2TiC2On/4F2-n/4 and Cr2TiC2On/4 configurations can be regulated by the externally applied magnetic field, while the density of states around the Fermi level shifted significantly between ferromagnetic and antiferromagnetic arrangements. The acquired results provide important theoretical insights to tuning the magnetic properties of Cr2TiC2Tx-based structures through surface termination mechanisms, which are quite significant for their potential applications in spin electronics.
Collapse
Affiliation(s)
- Shaozheng Zhang
- College of Teacher Education, Quzhou University, Quzhou 324000, China
| | - Yuanting Zhou
- College of Teacher Education, Quzhou University, Quzhou 324000, China
| | - Xing Liang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yulin Wang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tong Wang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jianhui Yang
- College of Teacher Education, Quzhou University, Quzhou 324000, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liang Lv
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
14
|
Wang Y, Jiang J, Mi W. Two-dimensional heterotriangulene-based manganese organic frameworks: bipolar magnetic and half semiconductors with perpendicular magnetocrystalline anisotropy. NANOSCALE 2022; 14:8865-8874. [PMID: 35697051 DOI: 10.1039/d2nr00398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) organic intrinsic magnetic semiconductors have potential applications in low-dimensional organic spintronic devices due to their remarkable physical properties. However, 2D metal-organic frameworks with magnetic and semiconducting properties are rare. In this work, the electronic and magnetic properties of 2D heterotriangulene-based manganese organic frameworks including triphenylamine (TPA) and triphenylborane (TPB) organic ligands with methylene (M), carbonyl (C) or oxygen (O) coordination groups were studied by first-principles calculations. XTPA-Mn (X = M and O) is a bipolar magnetic semiconductor with a large spin-flip band gap. CTPA-Mn and XTPB-Mn (X = M, C and O) are half semiconductors with perpendicular magnetocrystalline anisotropy. The electronic properties of materials ranging from half semiconductors to bipolar magnetic semiconductors appear in CTPA-Mn and XTPB-Mn (X = M and C) at biaxial strains. XTPA-Mn and XTPB-Mn with a frustrated antiferromagnetic configuration are semiconductors with good ductility and stability. These results enrich the diversity of 2D organic intrinsic magnetic semiconductors, which have potential applications in spintronic devices.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Jiawei Jiang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
15
|
Wang Y, Liu Q, Jiang X, Wang Y, Zhao J. Alloying two-dimensional NbSi 2N 4: a new strategy to realize half-metallic antiferromagnets. NANOSCALE 2022; 14:8078-8084. [PMID: 35608121 DOI: 10.1039/d2nr01728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Finding two-dimensional (2D) materials with both 100% spin polarization and zero net magnetic moment is essential for next-generation spintronics. Half-metallic antiferromagnets (HMAFs) are ideal materials to satisfy these exigent needs, but such a system has never been found among 2D inorganic materials. In this paper, we theoretically demonstrate that intrinsic 2D HMAFs can be realized by alloying Nb with Mn in 2D septuple-atomic-layer NbSi2N4. By continuously incorporating Mn, the stronger Mn-N hybridization relative to Nb-N induces a metal to half-metal to semiconductor transition. The competitive coupling between the Nb-d itinerant electron spin and the Nb-Mn d-d direct interaction drives the ferromagnetic to antiferromagnetic phase transition. For the first time in 2D inorganic materials, the exact cancellation of local magnetic moments and band gap opening in one spin channel is obtained simultaneously at a Nb/Mn ratio of 3 : 1, as demonstrated by our first-principles calculations. The present results would not only inspire materials design of more 2D HMAFs in the future but also impel the advancement of next-generation antiferromagnetic spintronic devices.
Collapse
Affiliation(s)
- Yanxia Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China.
| | - Qinxi Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China.
| | - Xue Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China.
| | - Yi Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China.
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China.
| |
Collapse
|
16
|
Wang P, Wu D, Zhang K, Wu X. Two-Dimensional Quaternary Transition Metal Sulfide CrMoA 2S 6 (A = C, Si, or Ge): A Bipolar Antiferromagnetic Semiconductor with a High Néel Temperature. J Phys Chem Lett 2022; 13:3850-3856. [PMID: 35467873 DOI: 10.1021/acs.jpclett.2c00836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bipolar antiferromagnetic semiconductors (BAFSs) make up a class of spintronic materials, holding great promise for the manipulation of spin-polarized currents simply upon application of a voltage gate, but only a few two-dimensional (2D) BAFSs with a high Néel temperature (TN) have been reported. Here, we report a family of magnetic quaternary MM'A2S6 (M = V, Cr, Mn, or Fe; M' = Nb, Mo, Tc, or Ru; A = C, Si, Ge, or Sn) nanosheets by isovalent alloying layered transitional metal trisulfides (MAS3) based on first-principles calculations. Our results show that 2D CrMoA2S6 (A = C, Si, or Ge) nanosheets are BAFSs with band gaps ranging from 1.89 to 2.23 eV. Among them, 2D CrMoC2S6 has the highest TN of 556 K with robust magnetism against carrier doping and external in-plane strain due to a strong delocalization superexchange interaction between the Cr3+ and Mo3+ cations. This study establishes that CrMoC2S6 is an ideal prototype platform for realizing electric control of spin polarization in 2D materials.
Collapse
Affiliation(s)
- Peng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Daoxiong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Kai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Kang B, Vincent JL, Lee Y, Ke L, Crozier PA, Zhu Q. Modeling surface spin polarization on ceria-supported Pt nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:255002. [PMID: 35354123 DOI: 10.1088/1361-648x/ac62a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO2-(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO2-(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory.
Collapse
Affiliation(s)
- Byungkyun Kang
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Joshua L Vincent
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Yongbin Lee
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Liqin Ke
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Qiang Zhu
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| |
Collapse
|
18
|
Zhang Y, Cui Z, Sa B, Miao N, Zhou J, Sun Z. Computational design of double transition metal MXenes with intrinsic magnetic properties. NANOSCALE HORIZONS 2022; 7:276-287. [PMID: 35108718 DOI: 10.1039/d1nh00621e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional transition metal carbides (MXenes) have great potential to achieve intrinsic magnetism due to their available chemical and structural diversity. In this work, by spin-polarized density functional theory calculations, we designed and comprehensively investigated 50 double transition metal (DTM) MXenes MCr2CTx (T = H, O, F, OH, or bare) based on the chemical formula of M2C (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W). We highlight that ferromagnetic half-metallicity, antiferromagnetic semiconduction, as well as antiferromagnetic half-metallicity have been achieved in the DTM MXenes. Herein, ferromagnetic half-metallic ScCr2C2, ScCr2C2H2, ScCr2C2F2, and YCr2C2H2 are characterized with wide band gaps and high Curie temperatures. Very interestingly, the ScCr2C2-based magnetic tunnel junction presents a tunnel magnetoresistance ratio as high as 176 000%. In addition, the antiferromagnetic semiconducting TiCr2C2, ZrCr2C2, and ZrCr2C2(OH)2, possessing moderate band gaps and high Néel temperatures, have been predicted. Especially, the Néel temperature of ZrCr2C2(OH)2 can reach 425 K. Moreover, the Dirac cone-like band structure feature is highlighted in antiferromagnetic half-metallic ZrCr2C2H2. Our study provides a new potential strategy for designing MXenes in spintronics.
Collapse
Affiliation(s)
- Yinggan Zhang
- College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
| | - Zhou Cui
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Naihua Miao
- School of Materials Science and Engineering and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| | - Jian Zhou
- School of Materials Science and Engineering and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| | - Zhimei Sun
- School of Materials Science and Engineering and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
19
|
Li D, Li S, Zhong C, He J. Tuning magnetism at the two-dimensional limit: a theoretical perspective. NANOSCALE 2021; 13:19812-19827. [PMID: 34825688 DOI: 10.1039/d1nr06835k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The discovery of two-dimensional (2D) magnetic materials provides an ideal testbed for manipulating the magnetic properties at the atomically thin and 2D limit. This review gives recent progress in the emergent 2D magnets and heterostructures, focusing on the theory side. We summarize different theoretical models, ranging from the atomic to micrometer-scale, used to describe magnetic orders. Then, the current strategies for tuning magnetism in 2D materials are further discussed, such as electric field, magnetic field, strain, optics, chemical functionalization, and spin-orbit engineering. Finally, we conclude with the future challenges and opportunities for 2D magnetism.
Collapse
Affiliation(s)
- Dongzhe Li
- Institute for Advanced Study, Chengdu University, Chengdu 610100, P. R. China.
| | - Shuo Li
- Institute for Advanced Study, Chengdu University, Chengdu 610100, P. R. China.
| | - Chengyong Zhong
- Institute for Advanced Study, Chengdu University, Chengdu 610100, P. R. China.
| | - Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
- Department of Physical and Macromolecular Chemistry & Charles University Centre of Advanced Materials, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, 128 43, Czech Republic.
| |
Collapse
|
20
|
Ren K, Zheng R, Yu J, Sun Q, Li J. Band Bending Mechanism in CdO/Arsenene Heterostructure: A Potential Direct Z-scheme Photocatalyst. Front Chem 2021; 9:788813. [PMID: 34869235 PMCID: PMC8641692 DOI: 10.3389/fchem.2021.788813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
For the few years, two-dimensional (2D) materials have aroused general focus. In order to expand the properties and application range of 2D materials, two different layered materials are usually combined into heterostructure through van der Waals (vdW) interaction. In this research, based on first-principles simulation, we propose CdO/Arsenene (CdO/As) vdW heterostructure as a semiconductor possessing a direct bandgap by 2.179 eV. Besides, the CdO/As vdW heterostructure presents type-II band alignment, which can be used as a remarkable photocatalyst. Importantly, the CdO/As heterostructure demonstrates a direct Z-type principle photocatalyst by exploring the band bending mechanism in the heterostructure. Furthermore, we calculated the light absorption characteristics of CdO/As vdW heterostructure by optical absorption spectrum and conversion efficiency of a novel solar-to-hydrogen efficiency (η STH) about 11.67%, which is much higher than that of other 2D photocatalysts. Our work can provide a theoretical guidance for the designing of Z-scheme photocatalyst.
Collapse
Affiliation(s)
- Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Ruxin Zheng
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Jin Yu
- School of Materials Science and Engineering, Southeast University, Nanjing, China
| | - Qingyun Sun
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianping Li
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
21
|
Wu Y, Sun W, Liu S, Wang B, Liu C, Yin H, Cheng Z. Ni(NCS) 2 monolayer: a robust bipolar magnetic semiconductor. NANOSCALE 2021; 13:16564-16570. [PMID: 34585189 DOI: 10.1039/d1nr04816c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Searching for experimentally feasible intrinsic two-dimensional ferromagnetic semiconductors is of great significance for applications of nanoscale spintronic devices. Here, based on the first-principles calculations, an Ni(NCS)2 monolayer was systematically investigated. The results showed that the Ni(NCS)2 monolayer was a robust bipolar ferromagnetic semiconductor with a moderate bandgap of ∼1.5 eV. Based on the Monte Carlo simulation, its Curie temperature was about 37 K. Interestingly, the Ni(NCS)2 monolayer remains ferromagnetic ordering when strain and electron doping were applied. However, ferromagnetic-to-antiferromagnetic phase transition occurred when high concentrations of holes were doped. Besides, the Ni(NCS)2 monolayer is confirmed to be potentially exfoliated from its bulk forms due to its small exfoliated energy. Finally, the Ni(NCS)2 monolayer's thermodynamic, dynamic, and mechanical stabilities were confirmed by the phonon spectrum calculation, ab initio molecular dynamics simulation and elastic constants calculation, respectively. The results showed that the Ni(NCS)2 monolayer, as a novel 2D ferromagnetic candidate material of new magnetic molecular framework materials, may have a promising potential for magnetic nanoelectronic devices.
Collapse
Affiliation(s)
- Yaxuan Wu
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, 475004, Kaifeng, People's Republic of China.
| | - Wei Sun
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, 475004, Kaifeng, People's Republic of China.
| | - Siyuan Liu
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, 475004, Kaifeng, People's Republic of China.
| | - Bing Wang
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, 475004, Kaifeng, People's Republic of China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, 475004, Kaifeng, People's Republic of China
| | - Chang Liu
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, 475004, Kaifeng, People's Republic of China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, 475004, Kaifeng, People's Republic of China
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, 475004, Kaifeng, People's Republic of China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, 475004, Kaifeng, People's Republic of China
| | - Zhenxiang Cheng
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation, Australia
| |
Collapse
|
22
|
Ren K, Zheng R, Xu P, Cheng D, Huo W, Yu J, Zhang Z, Sun Q. Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al, Ga): A DFT Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2236. [PMID: 34578552 PMCID: PMC8467826 DOI: 10.3390/nano11092236] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
After the discovery of graphene, a lot of research has been conducted on two-dimensional (2D) materials. In order to increase the performance of 2D materials and expand their applications, two different layered materials are usually combined by van der Waals (vdW) interactions to form a heterostructure. In this work, based on first-principles calculation, some charming properties of the heterostructure constructed by Hf2CO2, AlN and GaN are addressed. The results show that Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures can keep their original band structure shape and have strong thermal stability at 300 K. In addition, the Hf2CO2/MN heterostructure has I-type band alignment structure, which can be used as a promising light-emitting device material. The charge transfer between the Hf2CO2 and AlN (or GaN) monolayers is 0.1513 (or 0.0414) |e|. The potential of Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures decreases by 6.445 eV and 3.752 eV, respectively, across the interface. Furthermore, both Hf2CO2/AlN and Hf2CO2/GaN heterostructures have remarkable optical absorption capacity, which further shows the application prospect of the Hf2CO2/MN heterostructure. The study of this work provides theoretical guidance for the design of heterostructures for use as photocatalytic and photovoltaic devices.
Collapse
Affiliation(s)
- Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Z.); (P.X.); (D.C.); (W.H.)
| | - Ruxin Zheng
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Z.); (P.X.); (D.C.); (W.H.)
| | - Peng Xu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Z.); (P.X.); (D.C.); (W.H.)
| | - Dong Cheng
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Z.); (P.X.); (D.C.); (W.H.)
| | - Wenyi Huo
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Z.); (P.X.); (D.C.); (W.H.)
| | - Jin Yu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
| | - Zhuoran Zhang
- Center for More-Electric-Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
| | - Qingyun Sun
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (R.Z.); (P.X.); (D.C.); (W.H.)
| |
Collapse
|
23
|
Nemani SK, Zhang B, Wyatt BC, Hood ZD, Manna S, Khaledialidusti R, Hong W, Sternberg MG, Sankaranarayanan SKRS, Anasori B. High-Entropy 2D Carbide MXenes: TiVNbMoC 3 and TiVCrMoC 3. ACS NANO 2021; 15:12815-12825. [PMID: 34128649 DOI: 10.1021/acsnano.1c02775] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1-4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition metals. In this study, by implementing four transition metals, we report the synthesis of multi-principal-element high-entropy M4C3Tx MXenes. Specifically, we introduce two high-entropy MXenes, TiVNbMoC3Tx and TiVCrMoC3Tx, as well as their precursor TiVNbMoAlC3 and TiVCrMoAlC3 high-entropy MAX phases. We used a combination of real and reciprocal space characterization (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and scanning transmission electron microscopy) to establish the structure, phase purity, and equimolar distribution of the four transition metals in high-entropy MAX and MXene phases. We use first-principles calculations to compute the formation energies and explore synthesizability of these high-entropy MAX phases. We also show that when three transition metals are used instead of four, under similar synthesis conditions to those of the four-transition-metal MAX phase, two different MAX phases can be formed (i.e., no pure single-phase forms). This finding indicates the importance of configurational entropy in stabilizing the desired single-phase high-entropy MAX over multiphases of MAX, which is essential for the synthesis of phase-pure high-entropy MXenes. The synthesis of high-entropy MXenes significantly expands the compositional variety of the MXene family to further tune their properties, including electronic, magnetic, electrochemical, catalytic, high temperature stability, and mechanical behavior.
Collapse
Affiliation(s)
- Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Bowen Zhang
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian C Wyatt
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zachary D Hood
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sukriti Manna
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Rasoul Khaledialidusti
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Weichen Hong
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Michael G Sternberg
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Babak Anasori
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
24
|
Ponce-Pérez R, Gutierrez-Ojeda SJ, Guerrero-Sánchez J, Moreno-Armenta MG. A new family of copper-based MXenes. Sci Rep 2021; 11:12393. [PMID: 34117283 PMCID: PMC8196012 DOI: 10.1038/s41598-021-90628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
In this work, we demonstrate, through first-principles calculations, the existence of a new family of copper-based MXenes. These add up new structures to the previously reported universe and span the interest of such 2D materials for applications in heterogeneous catalysis, ion-based batteries, sensors, biomedical applications, and so on. First, we propose the MXene-like structures: Cu2N, Cu2C, and Cu2O. Phonon spectra calculations confirmed their dynamical stability by showing just positive frequencies all through the 2D Brillouin zone. The new MXenes family displays metallic characteristics, mainly induced by the Cu-3d orbitals. Bader charge analysis and charge density differences depict bonds with ionic character in which Cu is positively charged, and the non-metal atom gets an anionic character. Also, we investigate the functionalization of the proposed structures with Cl, F, O, and OH groups. Results show that the H3 site is the most favorable for functionalization. In all cases, the non-magnetic nature and metallic properties of the pristine MXenes remain. Our results lay the foundations for the experimental realization of a new MXenes family.
Collapse
Affiliation(s)
- R Ponce-Pérez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107, Apdo. 14 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico.
| | - S J Gutierrez-Ojeda
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107, Apdo. 14 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico
| | - J Guerrero-Sánchez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107, Apdo. 14 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico.
| | - María G Moreno-Armenta
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107, Apdo. 14 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
25
|
Han Y, Liu Y, Wang J, Yang T, Zhou F, Kuang M, Wang X, Zhang G. Strain-induced quantum phase transition in the C 3Sc 4 monolayer: towards multiple gapless fermions. NANOSCALE 2021; 13:9723-9731. [PMID: 34019045 DOI: 10.1039/d1nr00382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most two dimensional (2D) topological materials host only one kind of fermionic state. However, realizing multiple gapless fermions in a single 2D material is rarely reported. Furthermore, researchers face challenges in regulating various gapless fermion transitions using specific methods. Herein, we perform a study based on the first-principles calculation to investigate the electronic structures and the related fermionic states of strained 2D C3Sc4. C3Sc4 is an ideal system in the ground state with twelve Dirac points. The dynamical, mechanical, and thermal stabilities of the proposed C3Sc4 monolayer are demonstrated in detail. Interestingly, under the condition of 9.5% biaxial tensile strain, gapless and quadratic Weyl fermionic states are observed at the Γ point. A gapless and massless pseudospin-1 fermion appears at the Γ point in the 2D C3Sc4 system under 13% biaxial tensile strain and with hole doping. The Fermi velocity of this massless pseudospin-1 fermion is 2.1 × 105 m s-1, comparable to that of well-known 2D gapless topological materials. The results indicate that 2D C3Sc4 is an ideal playground to explore interesting behaviors of quantum phase transitions and rich gapless fermionic states and also reveal its potential applications in high-speed nano-devices.
Collapse
Affiliation(s)
- Yilin Han
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou F, Liu Y, Kuang M, Wang P, Wang J, Yang T, Wang X, Cheng Z, Zhang G. Time-reversal-breaking Weyl nodal lines in two-dimensional A 3C 2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature. NANOSCALE 2021; 13:8235-8241. [PMID: 33885113 DOI: 10.1039/d1nr00139f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most materials that feature nontrivial band topology are spin-degenerate and three dimensional, strongly restricting them from application in spintronic nanodevices. Hence, two-dimensional (2D) intrinsically spin-polarized systems with rich topological elements are still in extreme scarcity. Here, 2D A3C2 (A = Ti, Zr, and Hf) materials with the P6[combining macron]m2 type structure are reported as new ferromagnetic materials with intrinsic magnetism and good stability. Unlike the Weyl nodal lines existing in nonmagnetic 2D systems, A3C2 hosts time-reversal-breaking Weyl nodal rings (two Γ-centered, one K-centered, and one K'-centered) without spin-orbit coupling (SOC). These nodal rings still remained under SOC with magnetization along the z direction (easy magnetization axis). More interestingly, the Curie temperatures (TC) of A3C2 were determined based on the Monte Carlo simulation. Ti3C2 features an extraordinary TC (above 800 K), and those of Zr3C2 and Hf3C2 are above room temperature. Therefore, A3C2 materials are excellent platforms to study magnetic Weyl nodal lines in high TC ferromagnetic 2D materials.
Collapse
Affiliation(s)
- Feng Zhou
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
He J, Li S, Bandyopadhyay A, Frauenheim T. Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures. NANO LETTERS 2021; 21:3237-3244. [PMID: 33749285 DOI: 10.1021/acs.nanolett.1c00520] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although light is the fastest means to manipulate the interfacial spin injection and magnetic proximity related quantum properties of two-dimensional (2D) magnetic van der Waals (vdW) heterostructures, its potential remains mostly untapped. Here, inspired by the recent discovery of 2D ferromagnets Fe3GeTe2 (FGT), we applied the real-time density functional theory (rt-TDDFT) to study photoinduced interlayer spin transfer dynamics in 2D nonmagnetic-ferromagnetic (NM-FM) vdW heterostructures, including graphene-FGT, silicene-FGT, germanene-FGT, antimonene-FGT and h-BN-FGT interfaces. We observed that laser pulses induce significant large spin injection from FGT to nonmagnetic (NM) layers within a few femtoseconds. In addition, we identified an interfacial atom-mediated spin transfer pathway in heterostructures in which the photoexcited spin of Fe first transfers to intralayered Te atoms and then hops to interlayered NM layers. Interlayer hopping is approximately two times slower than intralayer spin transfer. Our results provide the microscopic understanding for optically control interlayer spin dynamics in 2D magnetic heterostructures.
Collapse
Affiliation(s)
- Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
- Department of Physical and Macromolecular Chemistry & Charles University Centre of Advanced Materials, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, 128 43, Czech Republic
| | - Shuo Li
- Department of Physical and Macromolecular Chemistry & Charles University Centre of Advanced Materials, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, 128 43, Czech Republic
| | - Arkamita Bandyopadhyay
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
- Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen 518110, China
| |
Collapse
|
28
|
Gao L, Bao W, Kuklin AV, Mei S, Zhang H, Ågren H. Hetero-MXenes: Theory, Synthesis, and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004129. [PMID: 33458878 DOI: 10.1002/adma.202004129] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Indexed: 05/27/2023]
Abstract
Since their discovery in 2011, MXenes (abbreviation for transition metal carbides, nitrides, and carbonitrides) have emerged as a rising star in the family of 2D materials owing to their unique properties. Although the primary research interest is still focused on pristine MXenes and their composites, much attention has in recent years been paid also to MXenes with diverse compositions. To this end, this work offers a comprehensive overview of the progress on compositional engineering of MXenes in terms of doping and substituting from theoretical predictions to experimental investigations. Synthesis and properties are briefly introduced for pristine MXenes and then reviewed for hetero-MXenes. Theoretical calculations regarding the doping/substituting at M, X, and T sites in MXenes and the role of vacancies are summarized. After discussing the synthesis of hetero-MXenes with metal/nonmetal (N, S, P) elements by in situ and ex situ strategies, the focus turns to their emerging applications in various fields such as energy storage, electrocatalysts, and sensors. Finally, challenges and prospects of hetero-MXenes are addressed. It is anticipated that this review will be beneficial to bridge the gap between predictions and experiments as well as to guide the future design of hetero-MXenes with high performance.
Collapse
Affiliation(s)
- Lingfeng Gao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenli Bao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
29
|
Sundaram A, Francis BM, Dhanabalan SC, Ponraj JS. Transition metal carbide—MXene. HANDBOOK OF CARBON-BASED NANOMATERIALS 2021:671-709. [DOI: 10.1016/b978-0-12-821996-6.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
30
|
Luo K, Zha XH, Huang Q, Lin CT, Yang M, Zhou S, Du S. First-principles study of magnetism in some novel MXene materials. RSC Adv 2020; 10:44430-44436. [PMID: 35517132 PMCID: PMC9058502 DOI: 10.1039/d0ra03643a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic two-dimensional materials have gained considerable attention in recent years due to their special topologies and promising applications in electronic and spintronic devices. As a new family of two-dimensional materials, MXene materials may have unusual magnetic properties. In this work, the structural stabilities and electronic properties of 1H and 1T type pristine M2C (M = Sc, Ti, Fe, Co, Ni, Cu, Zn) MXenes with different magnetic configurations were calculated and compared. The critical temperatures of the magnetic MXenes were evaluated through Monte Carlo simulations using the spin–exchange coupling parameters. The results suggest that the ground-state 1T-Ti2C and 1T-Fe2C, 1H-Co2C MXenes are antiferromagnetic or ferromagnetic materials with high Néel or Curie temperatures. Different from the other pristine M2C MXenes with metallic properties, indirect band gaps were found for the 1T-Ti2C and 1T-Ni2C MXenes, which may be useful for their application in information storage or sensors. The findings are expected to promote the development of novel devices based on MXenes and their magnetic properties. Magnetic two-dimensional materials have gained considerable attention due to their special topologies and promising applications in electronic and spintronic devices, and the critical temperature could be evaluated through Monte Carlo simulations.![]()
Collapse
Affiliation(s)
- Kan Luo
- School of Chemical Engineering, East China University of Science and Technology Shanghai China .,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang China
| | - Xian-Hu Zha
- Center for Quantum Computing, Peng Cheng Laboratory Shenzhen China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences Ningbo Zhejiang China
| | - Minghui Yang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang China
| | - Shenghu Zhou
- School of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang China
| |
Collapse
|
31
|
Hantanasirisakul K, Anasori B, Nemsak S, Hart JL, Wu J, Yang Y, Chopdekar RV, Shafer P, May AF, Moon EJ, Zhou J, Zhang Q, Taheri ML, May SJ, Gogotsi Y. Evidence of a magnetic transition in atomically thin Cr 2TiC 2T x MXene. NANOSCALE HORIZONS 2020; 5:1557-1565. [PMID: 33089267 DOI: 10.1039/d0nh00343c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides known as MXenes have shown attractive functionalities such as high electronic conductivity, a wide range of optical properties, versatile transition metal and surface chemistry, and solution processability. Although extensively studied computationally, the magnetic properties of this large family of 2D materials await experimental exploration. 2D magnetic materials have recently attracted significant interest as model systems to understand low-dimensional magnetism and for potential spintronic applications. Here, we report on synthesis of Cr2TiC2Tx MXene and a detailed study of its magnetic as well as electronic properties. Using a combination of magnetometry, synchrotron X-ray linear dichroism, and field- and angular-dependent magnetoresistance measurements, we find clear evidence of a magnetic transition in Cr2TiC2Tx at approximately 30 K, which is not present in its bulk layered carbide counterpart (Cr2TiAlC2 MAX phase). This work presents the first experimental evidence of a magnetic transition in a MXene material and provides an exciting opportunity to explore magnetism in this large family of 2D materials.
Collapse
|
32
|
Wang K, He J, Zhang M, Wang H, Zhang G. Magnon-phonon interaction in antiferromagnetic two-dimensional MXenes. NANOTECHNOLOGY 2020; 31:435705. [PMID: 32650317 DOI: 10.1088/1361-6528/aba4cf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antiferromagnetic material possesses excellent robustness to an external magnetic field perturbation, which makes it promising in application of spintronic devices. The magnon-phonon interaction plays a vital role in spintronic devices. In this work, we performed first-principles calculation to study the effect of magnon-phonon interaction on magnon spectra of the antiferromagnetic MXenes Cr2TiC2FCl, and calculated the phonon dominated magnon relaxation time based on the magnon spectra broadening. Due to the large exchange constants across Cr-Cr pairs, high magnon energy is found in Cr2TiC2FCl. We find that compared with the acoustic magnons, the optical magnons have stronger interaction with phonon modes. Moreover, relaxation time of optical magnons and acoustic magnons have quite different wavevector dependence. Our results about spin coupling to specific phonon polarizations can shed light on the understanding of magnon damping and energy dissipation in two-dimensional antiferromagnetic materials.
Collapse
Affiliation(s)
- Ke Wang
- Xidian University, Xi'an, Shanxi Province 710071, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
He J, Frauenheim T. Optically Driven Ultrafast Magnetic Order Transitions in Two-Dimensional Ferrimagnetic MXenes. J Phys Chem Lett 2020; 11:6219-6226. [PMID: 32663401 DOI: 10.1021/acs.jpclett.0c02007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laser-induced switching of spins in materials is of great interest to revolutionize future magnetic storage technology and spintronics, which is generally realized in multicomponent ferrimagnetic (FiM) compounds but rare in 2D magnets. Using density functional theory (DFT) calculations, we show that 2D MXenes, including Cr2VC2F2, Mo2VC2F2, Mo2VN2F2, Mo3C2F2, and Mo3N2F2, have unusual FiM order. Interestingly, our real-time time-dependent DFT simulations demonstrate that laser pulses can directly induce ultrafast spin-selective charge transfer between magnetic sublattices in a few femtoseconds and further generate dramatic changes in the magnetic structure of these MXenes, including a transition from FiM to transient ferromagnetism (FM). The microscopic mechanism behind this ultrafast switching of spin is governed by the optically induced intersite spin transfer (OISTR) effect, which theoretically enables the ultrafast optical manipulation of the magnetic state in MXenes. Our results open new opportunities for exploring the optical manipulation of spin in 2D magnets.
Collapse
Affiliation(s)
- Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
- Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen 518110, China
| |
Collapse
|
34
|
Wang X, Cheng Z, Zhang G, Kuang M, Wang XL, Chen H. Strain tuning of closed topological nodal lines and opposite pockets in quasi-two-dimensional α-phase FeSi 2. Phys Chem Chem Phys 2020; 22:13650-13658. [PMID: 32519682 DOI: 10.1039/d0cp02334e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following topological nodal point semimetals, topological nodal line semimetals with one dimensional (1D) topological elements have recently aroused great interest worldwide in the fields of quantum chemistry and condensed matter physics. In this study, by means of first-principles, we predict that quasi-two-dimensional (2D) α-FeSi2 with a P4/mmm space group is a topological nodal line semimetal with two nodal lines close to the Fermi level, in the kz = 0 and kz = π planes. Usually, topological nodal line semimetals can be classified into type I, type II, and hybrid-type categories, each type with different physical properties. Importantly, for the first time, we find that type I, type II, and hybrid-type nodal lines can be realized in a realistic material, i.e., quasi-2D α-FeSi2, by strain switching. The realization of tunable nodal line types occurs because quasi-2D α-FeSi2 has special opposite-pocket-behaving bands around the Fermi level. The results presented herein reflect that α-FeSi2 is a valuable candidate for spintronics application by utilization of type I, type II, and hybrid-type topological nodal line semimetals in a single material tuned by mechanical strain.
Collapse
Affiliation(s)
- Xiaotian Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| | - Gang Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 138632, Singapore.
| | - Minquan Kuang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xiao-Lin Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| | - Hong Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Wang X, Cheng Z, Zhang G, Wang B, Wang XL, Chen H. Rich novel zero-dimensional (0D), 1D, and 2D topological elements predicted in the P6 3/m type ternary boride HfIr 3B 4. NANOSCALE 2020; 12:8314-8319. [PMID: 32236236 DOI: 10.1039/d0nr00635a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Topological semimetals, including topological nodal point semimetals (TNPSs), topological nodal line state semimetals (TNLSs), and topological nodal surface semimetals (TNSSs), featuring zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) topological elements (TEs), respectively, have attracted widespread attention in recent years. In this work, based on first-principles calculations, we propose for the first time that three different (0D, 1D, and 2D) TEs are simultaneously present in a synthetic compound, HfIr3B4, with a P63/m type structure. In detail, HfIr3B4 hosts a Dirac point (DP) state at the K point, a TNL state in the kz = 0 plane, and a 2D TNS state in the kz = π plane, respectively. All sorts of topological elements, 0D, 1D, and 2D TEs, coexisting in the P63/m type HfIr3B4, provide an ideal platform to study the rich fermionic states and their related physical properties in this type of compound. In addition, because the 0D, 1D, and 2D TEs of HfIr3B4 are equally distributed in different energy ranges relative to the Fermi level, an approach is proposed to utilize individual TEs to build on-demand devices.
Collapse
Affiliation(s)
- Xiaotian Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Gao Q, Zhang H. Magnetic i-MXenes: a new class of multifunctional two-dimensional materials. NANOSCALE 2020; 12:5995-6001. [PMID: 32108839 DOI: 10.1039/c9nr10181k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Based on density functional theory calculations, we investigated two-dimensional in-plane ordered MXenes (i-MXenes), focusing particularly on their magnetic properties. It has been observed that robust two-dimensional magnetism can be achieved by alloying nonmagnetic MXenes with magnetic transition metal atoms. Moreover, both the magnetic ground states and the magnetocrystalline anisotropy energy of i-MXenes can be effectively manipulated by strain, indicating a strong piezomagnetic effect. Further studies on the transport properties reveal that i-MXenes provide an interesting platform to realize large thermoelectric response, antiferromagnetic topological insulators, and spin-gapless semiconductors. Thus, i-MXenes are a new class of multifunctional two-dimensional magnetic materials which are promising for future spintronic applications.
Collapse
Affiliation(s)
- Qiang Gao
- Institute of Material Science, TU Darmstadt, Otto-Berndt-Strasse 3, Darmstadt, Germany.
| | | |
Collapse
|
37
|
Wang X, Ding G, Cheng Z, Surucu G, Wang XL, Yang T. Novel topological nodal lines and exotic drum-head-like surface states in synthesized CsCl-type binary alloy TiOs. J Adv Res 2020; 22:137-144. [PMID: 31956448 PMCID: PMC6961224 DOI: 10.1016/j.jare.2019.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
Abstract
Very recently, searching for new topological nodal line semimetals (TNLSs) and drum-head-like (DHL) surface states has become a hot topic in the field of physical chemistry of materials. Via first principles, in this study, a synthesized CsCl type binary alloy, TiOs, was predicted to be a TNLS with three topological nodal lines (TNLs) centered at the X point in the kx/y/z = π plane, and these TNLs, which are protected by mirror, time reversal (T) and spatial inversion (P) symmetries, are perpendicular to one another. The exotic drum-head-like (DHL) surface states can be clearly observed inside and outside the crossing points (CPs) in the bulk system. The CPs, TNLs, and DHL surface states of TiOs are very robust under the influences of uniform strain, electron doping, and hole doping. Spin-orbit coupling (SOC)-induced gaps can be found in this TiOs system when the SOC is taken into consideration. When the SOC is involved, surface Dirac cones can be found in this system, indicating that the topological properties are still maintained. Similar to TiOs, ZrOs and HfOs alloys are TNLSs under the Perdew-Burke-Ernzerhof method. The CPs and the TNLs in both alloys disappear, however, under the Heyd-Scuseria-Ernzerhof method. It is hoped that the DHL surface property in TiOs can be detected by surface sensitive probes in the near future.
Collapse
Affiliation(s)
- Xiaotian Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia
| | - Guangqian Ding
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia
| | - Gokhan Surucu
- Department of Physics, Middle East Technical University, Turkey
- Department of Electric and Energy, Ahi Evran University, Turkey
| | - Xiao-Lin Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia
- ARC centre of Excellence in Future Low Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, NSW 2500, Australia
| | - Tie Yang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
38
|
Hu Y, Gong YH, Zeng HH, Wang JH, Fan XL. Two-dimensional stable Fe-based ferromagnetic semiconductors: FeI3 and FeI1.5Cl1.5 monolayers. Phys Chem Chem Phys 2020; 22:24506-24515. [DOI: 10.1039/d0cp03991h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two kinds of novel ferromagnetic semiconductors FeI3 and FeI1.5Cl1.5 have high Curie temperature (>77 K) and sizable MAE.
Collapse
Affiliation(s)
- Y. Hu
- State Key Laboratory of Solidification Processing
- Center for Advanced Lubrication and Seal Materials
- School of Material Science and Engineering
- Northwestern Polytechnical University
- Xi’an
| | - Y. H. Gong
- Queen Mary University of London Engineering School
- Northwestern Polytechnical University
- Xi’an
- China
| | - H. H. Zeng
- State Key Laboratory of Solidification Processing
- Center for Advanced Lubrication and Seal Materials
- School of Material Science and Engineering
- Northwestern Polytechnical University
- Xi’an
| | - J. H. Wang
- State Key Laboratory of Solidification Processing
- Center for Advanced Lubrication and Seal Materials
- School of Material Science and Engineering
- Northwestern Polytechnical University
- Xi’an
| | - X. L. Fan
- State Key Laboratory of Solidification Processing
- Center for Advanced Lubrication and Seal Materials
- School of Material Science and Engineering
- Northwestern Polytechnical University
- Xi’an
| |
Collapse
|
39
|
Wang G, Zhao W, Zhong M, Li Y, Xiao S, Dang S, Li C, Long X, Zhang W. Rotational design of BP/XY 2 (X = Mo, W; Y = S, Se) composites for overall photocatalytic water-splitting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:465002. [PMID: 31425148 DOI: 10.1088/1361-648x/ab33c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic water-splitting for hydrogen generation is a promising way to solve the energy crisis, yet the design of efficient photocatalysts is still a challenge. By utilization of first principles calculations, we predict the photocatalytic properties of monolayer boron phosphide (BP) based BP/XY2 (X = Mo, W; Y = S, Se) composites of different rotated configurations. Our results suggest that the BP/XY2 composites can be stably formed, and the narrowed bandgaps ensure these composites are suitable for absorbing visible light. The bandgaps and band edge positions are slightly affected by the rotation angles. The BP/MoS2, BP/MoSe2, and BP/WSe2 are type II heterostructures. Furthermore, the transferred charge from BP to XY2 layers leads to the formation of electric fields, which efficiently separate the photoinduced carriers. The band alignments of BP/MoS2, BP/MoS2, BP/MoSe2, and BP/WSe2 satisfy the requirements of overall water-splitting within the pH scope of 3.6-7.9, 6.8-7.9, 4.0-8.0, and 8.7-8.8. This work will provide valuable insight for designing efficient water-splitting photocatalysts.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fu Z, Wang N, Legut D, Si C, Zhang Q, Du S, Germann TC, Francisco JS, Zhang R. Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. Chem Rev 2019; 119:11980-12031. [DOI: 10.1021/acs.chemrev.9b00348] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhongheng Fu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Ning Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB—Technical University of Ostrava, CZ-708 00 Ostrava, Czech Republic
| | - Chen Si
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Timothy C. Germann
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph S. Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
41
|
Wang X, Ding G, Cheng Z, Yuan H, Wang XL, Yang T, Khenata R, Wang W. R3 c-type LnNiO 3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials. IUCRJ 2019; 6:990-995. [PMID: 31709054 PMCID: PMC6830210 DOI: 10.1107/s2052252519012570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R 3 c are potential DHMs with multiple Dirac cones.
Collapse
Affiliation(s)
- Xiaotian Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, North Wollongong NSW 2500, Australia
| | - Guangqian Ding
- Institute for Quantum Information and Spintronics (IQIS), School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People’s Republic of China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, North Wollongong NSW 2500, Australia
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiao-Lin Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, North Wollongong NSW 2500, Australia
| | - Tie Yang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People’s Republic of China
| | - Rabah Khenata
- Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000, Algeria
| | - Wenhong Wang
- State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
42
|
Wang X, Cheng Z, Khachai H, Khenata R, Yang T. Electronic, magnetic, and thermodynamic properties of rhombohedral Dysprosium Manganite and discussions of effects of uniform strain, spin-orbit coupling, hole and electron doping on its electronic structures. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Frey NC, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y, Shenoy VB. Surface-Engineered MXenes: Electric Field Control of Magnetism and Enhanced Magnetic Anisotropy. ACS NANO 2019; 13:2831-2839. [PMID: 30653916 DOI: 10.1021/acsnano.8b09201] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Controlling magnetism in two-dimensional (2D) materials via electric fields and doping enables robust long-range order by providing an external mechanism to modulate magnetic exchange interactions and anisotropy. In this report, we predict that transition metal carbide and nitride MXenes are promising candidates for controllable magnetic 2D materials. The surface terminations introduced during synthesis act as chemical dopants that influence the electronic structure, enabling controllable magnetic order. We show ground-state magnetic ordering in Janus M2XO xF2- x (M is an early transition metal, X is carbon or nitrogen, and x = 0.5, 1, or 1.5) with asymmetric surface functionalization, where local structural and chemical disorder induces magnetic ordering in some systems that are nonmagnetic or weakly magnetic in their pristine form. The resulting magnetic states of these noncentrosymmetric structures can be robustly switched and stabilized by tuning the interlayer exchange couplings with small applied electric fields. Furthermore, bond directionality is enhanced by Janus functionalization, resulting in improved magnetic anisotropy, which is essential to stable 2D magnetic ordering. The mixed termination-induced anisotropy leads to robust Ising ferromagnetism with an out-of-plane easy axis over the full range of relevant termination compositions for Janus Mn2N. Janus Cr2C, V2C, and Ti2C were found to be robustly antiferromagnetic. Our results provide a strategy for exploiting asymmetric surface functionalization to achieve room-temperature nanoscale magnetism under ambient conditions in MXenes with currently available synthesis techniques.
Collapse
Affiliation(s)
- Nathan C Frey
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Arkamita Bandyopadhyay
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Hemant Kumar
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Babak Anasori
- Department of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Yury Gogotsi
- Department of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Vivek B Shenoy
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
44
|
Wang G, Zhou F, Yuan B, Xiao S, Kuang A, Zhong M, Dang S, Long X, Zhang W. Strain-Tunable Visible-Light-Responsive Photocatalytic Properties of Two-Dimensional CdS/g-C₃N₄: A Hybrid Density Functional Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E244. [PMID: 30759762 PMCID: PMC6409938 DOI: 10.3390/nano9020244] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
By means of a hybrid density functional, we comprehensively investigate the energetic, electronic, optical properties, and band edge alignments of two-dimensional (2D) CdS/g-C 3 N 4 heterostructures by considering the effect of biaxial strain and pH value, so as to improve the photocatalytic activity. The results reveal that a CdS monolayer weakly contacts with g-C 3 N 4 , forming a type II van der Waals (vdW) heterostructure. The narrow bandgap makes CdS/g-C 3 N 4 suitable for absorbing visible light and the induced built-in electric field between the interface promotes the effective separation of photogenerated carriers. Through applying the biaxial strain, the interface adhesion energy, bandgap, and band edge positions, in contrast with water, redox levels of CdS/g-C 3 N 4 can be obviously adjusted. Especially, the pH of electrolyte also significantly influences the photocatalytic performance of CdS/g-C 3 N 4 . When pH is smaller than 6.5, the band edge alignments of CdS/g-C 3 N 4 are thermodynamically beneficial for oxygen and hydrogen generation. Our findings offer a theoretical basis to develop g-C 3 N 4 -based water-splitting photocatalysts.
Collapse
Affiliation(s)
- Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Feng Zhou
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Binfang Yuan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Shuyuan Xiao
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
| | - Anlong Kuang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Suihu Dang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Xiaojiang Long
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Wanli Zhang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
45
|
Bo M, Li J, Yao C, Huang Z, Li L, Sun CQ, Peng C. Electronic structure of two-dimensional In and Bi metal on BN nanosheets. RSC Adv 2019; 9:9342-9347. [PMID: 35520743 PMCID: PMC9062056 DOI: 10.1039/c9ra00673g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023] Open
Abstract
The electronic structures of two-dimensional (2D) indium (In) and bismuth (Bi) metal on BN nanosheets are systematically studied using hybrid density functional theory (DFT). We found that 2D In and Bi metal effectively modulate the band gap of a BN nanosheet. We also found that the indirect band gap of the 2D In and Bi metal electronic structures are 0.70 and 0.09 eV, respectively. This modulation originates from the charge transfer between the 2D metal and BN nanosheet interfaces, as well as from the electron redistribution of the In/BN and Bi/BN heterojunctions of the s and p orbitals. Our results provide an insight into 2D In/BN and Bi/BN heterojunctions, which should be useful in the design of 2D In and Bi metal–semiconductor-based devices. The electronic structures of two-dimensional (2D) indium (In) and bismuth (Bi) metal on BN nanosheets are systematically studied using hybrid density functional theory (DFT).![]()
Collapse
Affiliation(s)
- Maolin Bo
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
| | - Jibiao Li
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
| | - Zhongkai Huang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
| | - Lei Li
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
| | - Chang Q. Sun
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
- NOVITAS
| | - Cheng Peng
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing
- Yangtze Normal University
- Chongqing 408100
- China
| |
Collapse
|
46
|
Li S, He J, Nachtigall P, Grajciar L, Brivio F. Control of spintronic and electronic properties of bimetallic and vacancy-ordered vanadium carbide MXenes via surface functionalization. Phys Chem Chem Phys 2019; 21:25802-25808. [DOI: 10.1039/c9cp05638f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of spintronic and electronic properties of vanadium carbide i-MXenes via surface functionalization.
Collapse
Affiliation(s)
- Shuo Li
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Junjie He
- Bremen Center for Computational Materials Science
- University of Bremen
- 28359 Bremen
- Germany
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Federico Brivio
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| |
Collapse
|