1
|
Chaúque BJM, de Amorim Nascimento FL, Silva KJS, Hoff RB, Goldim JR, Rott MB, Zanette RA, Verruck S. Solar-based technologies for removing potentially toxic metals from water sources: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35897-4. [PMID: 39821874 DOI: 10.1007/s11356-025-35897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals. The performance and productivity of these methods in removing heavy metals such as arsenic (As), chromium (Cr), mercury (Hg), and uranium (U) from water still need to be comprehensively synthesized. Thus, this work aims to address that gap. The performance, potential, and challenges of real-world applications of conventional solar stills (CSS), membrane-based solar stills, and solar heterogeneous photocatalysis are concisely summarized and critically reviewed. CSS and membrane-based stills are highly effective (efficacy > 98%) in removing and capturing heavy metals from water. However, structural and functional improvements are needed to enhance productivity (especially for CSS) and usability in real-world environmental remediation and drinking water supply scenarios. Solar heterogeneous photocatalysis is highly effective in removing and/or converting As, Cr, Hg, and U into their non-toxic or less toxic forms, which subsequent processes can easily remove. Further research is necessary to evaluate the safety of photocatalytic materials, their integration into scalable solar reactors, and their usability in real-world environmental remediation applications.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Mestrado Profissional Em Pesquisa Clínica, Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa, Lichinga, Mozambique.
| | - Francisco Lucas de Amorim Nascimento
- Departamento de Zootecnia E Desenvolvimento Rural, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | | | - Rodrigo Barcellos Hoff
- Advanced Laboratory Section of Santa Catarina (SLAV/SC), Ministry of Agriculture and Livestock (MAPA), R. João Grumiche, 117 - Bloco T, São José, Santa Catarina, 88102-600, Brazil
| | - José Roberto Goldim
- Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande Do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande Do Sul, 90035-002, Brazil
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Silvani Verruck
- Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
| |
Collapse
|
2
|
Song Y, Miao K, Liu J, Kang Y, Zou D, Zhong Z. In Situ-Grown Al 2O 3 Nanoflowers and Hydrophobic Modification Enable Superhydrophobic SiC Ceramic Membranes for Membrane Distillation. MEMBRANES 2024; 14:117. [PMID: 38786951 PMCID: PMC11123319 DOI: 10.3390/membranes14050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Membrane distillation (MD) is considered a promising technology for desalination. In the MD process, membrane pores are easily contaminated and wetted, which will degrade the permeate flux and salt rejection of the membrane. In this work, SiC ceramic membranes were used as the supports, and an Al2O3 micro-nano structure was constructed on its surface. The surface energy of Al2O3@SiC micro-nano composite membranes was reduced by organosilane grafting modification. The effective deposition of Al2O3 nanoflowers on the membrane surface increased membrane roughness and enhanced the anti-fouling and anti-wetting properties of the membranes. Simultaneously, the presence of nanoflowers also regulated the pore structures and thus decreased the membrane pore size. In addition, the effects of Al2(SO4)3 concentration and sintering temperature on the surface morphology and performance of the membranes were investigated in detail. It was demonstrated that the water contact angle of the resulting membrane was 152.4°, which was higher than that of the pristine membrane (138.8°). In the treatment of saline water containing 35 g/L of NaCl, the permeate flux was about 11.1 kg⋅m-2⋅h-1 and the salt rejection was above 99.9%. Note that the pristine ceramic membrane cannot be employed for MD due to its larger membrane pore size. This work provides a new method for preparing superhydrophobic ceramic membranes for MD.
Collapse
Affiliation(s)
- Yuqi Song
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (K.M.); (J.L.); (Y.K.)
| | - Kai Miao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (K.M.); (J.L.); (Y.K.)
| | - Jinxin Liu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (K.M.); (J.L.); (Y.K.)
| | - Yutang Kang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (K.M.); (J.L.); (Y.K.)
| | - Dong Zou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (K.M.); (J.L.); (Y.K.)
| | - Zhaoxiang Zhong
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (K.M.); (J.L.); (Y.K.)
- National Engineering Research Center for Special Separation Membrane, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
4
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
5
|
Yusof NF, Raffi AA, Yahaya NZS, Abas KH, Othman MHD, Jaafar J, Rahman MA. Surface Modification of UiO-66 on Hollow Fibre Membrane for Membrane Distillation. MEMBRANES 2023; 13:253. [PMID: 36984640 PMCID: PMC10055739 DOI: 10.3390/membranes13030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The hydrophobicity of metal-organic frameworks (MOFs) is critical in enhancing the separation process in membrane distillation. Herein, a new superhydrophobic University of Oslo 66 (UiO-66) MOFs was successfully constructed on the top of alumina hollow fibre (AHF) membrane for desalination purposes. The fabrication methodology of the membrane involved in situ growth of pure crystalline UiO-66 on top of AHF and post-synthetic modification by fluorosilane grafting. The resultant membrane was characterised to study the physicochemical properties of the pristine and modified membrane. A superhydrophobic UiO-66 with a contact angle of 163.6° and high liquid entry pressure was obtained by introducing a highly branched fluorocarbon chain while maintaining its crystallinity. As a result, the modified membrane achieved 14.95 L/m2∙h water flux and 99.9% NaCl rejection with low energy consumption in the direct contact membrane distillation process. Furthermore, the high surface energy contributed by UiO-66 is maximised to produce the maximum number of accessible sites for the grafting process. The synergistic effect of surface hydrophobicity and porous UiO-66 membrane in trapping water vapour shows great potential for desalination application.
Collapse
Affiliation(s)
- Noor Fadilah Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Amirul Afiat Raffi
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Nur Zhatul Shima Yahaya
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Khairul Hamimah Abas
- Department of Control & Instrumentation Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Mukhlis A. Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
6
|
Zhang Y, Chong JY, Xu R, Wang R. Hydrophobic ceramic membranes fabricated via fatty acid chloride modification for solvent resistant membrane distillation (SR-MD). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Abd Aziz MH, Pauzan MAB, Mohd Hisam NAS, Othman MHD, Adam MR, Iwamoto Y, Hafiz Puteh M, Rahman MA, Jaafar J, Fauzi Ismail A, Agustiono Kurniawan T, Abu Bakar S. Superhydrophobic ball clay based ceramic hollow fibre membrane via universal spray coating method for membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Novel ceramic hollow fibre membranes contactor derived from kaolin and zirconia for ammonia removal and recovery from synthetic ammonia. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Arumugham T, Kaleekkal NJ, Gopal S, Nambikkattu J, K R, Aboulella AM, Ranil Wickramasinghe S, Banat F. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112925. [PMID: 34289593 DOI: 10.1016/j.jenvman.2021.112925] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 05/26/2023]
Abstract
The development of membrane technology has proved vital in providing a sustainable and affordable supply of clean water to address the ever-increasing demand. Though liquid separation applications have been still dominated by polymeric membranes, porous ceramic membranes have gained a commercial foothold in microfiltration (MF) and ultrafiltration (UF) applications due to their hydrophilic nature, lower fouling, ease of cleaning, reliable performance, robust performance with harsh feeds, relative insensitivity to temperature and pH, and stable long-term flux. The enrichment of research and development on porous ceramic membranes extends its focus into advanced membrane separation technologies. The latest emerging nanofiltration (NF) and membrane distillation (MD) applications have witnessed special interests in constructing porous membrane with hydrophilic/functional/hydrophobic properties. However, NF and MD are relatively new, and many shortcomings must be addressed to compete with their polymeric counterparts. For the last three years (2018-2020), state-of-the-art literature on porous ceramic membranes has been collected and critically reviewed. This review highlights the efficiency (permeability, selectivity, and antifouling) of hydrophilic porous ceramic membranes in a wide variety of wastewater treatment applications and hydrophobic porous ceramic membranes in membrane distillation-based desalination applications. A significant focus on pores characteristics, pore sieving phenomenon, nano functionalization, and synergic effect on fouling, the hydrophilic porous ceramic membrane has been discussed. In another part of this review, the role of surface hydrophobicity, water contact angle, liquid entry pressure (LEP), thermal properties, surface micro-roughness, etc., has been discussed for different types of hydrophobic porous ceramic membranes -(a) metal-based, (b) silica-based, (c) other ceramics. Also, this review highlights the potential benefits, drawbacks, and limitations of the porous membrane in applications. Moreover, the prospects are emphasized to overcome the challenges in the field.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, 673601, Kerala, India.
| | - Sruthi Gopal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, 673601, Kerala, India
| | - Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, 673601, Kerala, India
| | - Rambabu K
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Mamdouh Aboulella
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - S Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Wae AbdulKadir WAF, Ahmad AL, Seng OB, Che Lah NF. Biomimetic hydrophobic membrane: A review of anti-wetting properties as a potential factor in membrane development for membrane distillation (MD). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Ghadermazi M, Moradi S, Mozafari R. Rice husk-SiO 2 supported bimetallic Fe-Ni nanoparticles: as a new, powerful magnetic nanocomposite for the aqueous reduction of nitro compounds to amines. RSC Adv 2020; 10:33389-33400. [PMID: 35515044 PMCID: PMC9056718 DOI: 10.1039/d0ra05381c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
This paper reports a novel green procedure for immobilization of bimetallic Fe/Ni on amorphous silica nanoparticles extracted from rice husk (RH-SiO2). The heterogeneous nanocomposite (Fe/Ni@RH-SiO2) was identified using SEM, EDX, TEM, BET, H2-TPR, TGA, XRD, VSM, ICP-OES, and FT-IR analyses. The Fe/Ni@RH-SiO2 nanocomposite was applied as a powerful catalyst for the reduction of structurally diverse nitro compounds with sodium borohydride (NaBH4) in green conditions. This procedure suggests some benefits such as green chemistry-based properties, short reaction times, non-explosive materials, easy to handle, fast separation and simple work-up method. The catalyst was separated by an external magnet from the reaction mixture and was reused for 9 successive cycles with no detectable changes of its catalytic efficiency.
Collapse
Affiliation(s)
- Mohammad Ghadermazi
- Department of Chemistry, University of Kurdistan P.O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Setareh Moradi
- Department of Chemistry, University of Kurdistan P.O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Roya Mozafari
- Department of Chemistry, University of Kurdistan P.O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| |
Collapse
|
12
|
Enhanced omniphobicity of mullite hollow fiber membrane with organosilane-functionalized TiO2 micro-flowers and nanorods layer deposition for desalination using direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Lou XY, Xu Z, Bai AP, Resina-Gallego M, Ji ZG. Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization. MEMBRANES 2020; 10:E19. [PMID: 31968616 PMCID: PMC7022982 DOI: 10.3390/membranes10010019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/16/2023]
Abstract
Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in terms of membrane flux, permeate conductivity, crystal recovery rates, and crystal grades are investigated. Preferred crystallization and co-crystallization determinations were performed for mixed solutions. The results revealed that membrane fluxes remained at 2.61 kg·m-2·h-1 and showed a sharp decline until the saturation increased to 1.38. Water yield conductivity was below 10 μs·cm-1. High concentrated zinc and nickel did not have a particular effect on the rejection of the membrane process. For the mixed solutions, membrane flux showed a sharp decrease due to the high saturation, while the conductivity of permeate remained below 10 μs·cm-1 during the whole process. Co-crystallization has been proven to be a better method due to the existence of the SO42- common-ion effect. Membrane fouling studies have suggested that the membrane has excellent resistance to fouling from highly concentrated solutions. The MD integrated with crystallization proves to be a promising technology for treating highly concentrated heavy metal solutions.
Collapse
Affiliation(s)
- Xiang-Yang Lou
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Zheng Xu
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| | - An-Ping Bai
- Beijing Vocational College of Labor and Social Security, Beijing 102200, China;
| | - Montserrat Resina-Gallego
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
| | - Zhong-Guang Ji
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| |
Collapse
|