1
|
Fan ZX, Lian KT, Liao PY, Ruan ZY, Ni ZP, Tong ML. Synergetic spin crossover and fluorescence in a mononuclear iron(III) complex. Chem Commun (Camb) 2024; 60:13227-13230. [PMID: 39445391 DOI: 10.1039/d4cc05036c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Two mononuclear iron(III) complexes (XEA)[Fe(azp)2]·H2O (H2azp = 2,2'-azodiphenol, XEA = 2-fluoroethylammonium and 2-chloroethylammonium) are synthesized, which exhibit the counterion dependence of magnetic and fluorescent properties. The synergetic effect between abrupt spin crossover and fluorescence is observed in an iron(III) complex for the first time.
Collapse
Affiliation(s)
- Zi-Xuan Fan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Kai-Ting Lian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Peng G, Su Z, Hu F, Ji Z, Di Z, Li G, Gao T, Zhou G, Wu M. A 2-fold interpenetrating 3D pillar-layered MOF for the gas separation and detection of metal ions. Dalton Trans 2024; 53:16815-16820. [PMID: 39392402 DOI: 10.1039/d4dt02024c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A 2-fold interpenetrating 3D pillar-layered MOF, which was assembled from a mixed-linker and paddle-wheel cluster, was successfully synthesized. It possesses good thermal and water stability as well as high selectivity for C2H6 over CH4 and CO2 over N2 under ambient conditions, which was further proved by breakthrough experiments. Moreover, this porous material exhibits good detection of Cu2+, [Co(NH3)6]3+ and Fe3+ in an aqueous solution.
Collapse
Affiliation(s)
- Guoqiang Peng
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Zhibo Su
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Falu Hu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Zhenyu Ji
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
| | - Zhengyi Di
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Guihua Li
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Tingting Gao
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Mingyan Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
| |
Collapse
|
3
|
Wang X, Zhang N, Kou HZ. Substituent effects on spin-crossover Fe(II)N 4O 2 pyrenylhydrazone complexes. Dalton Trans 2024; 53:16592-16597. [PMID: 39101717 DOI: 10.1039/d4dt00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Multifunctional magnetic materials have broad application prospects in molecular switches and information storage. In this study, four mononuclear Fe(II) complexes are synthesized using a series of pyrenylhydrazone ligands HL1-4. Two deprotonated ligands are coordinated to the iron(II) ions in an enolic form, leading to neutral complexes FeII(Lx)2·xsol with a FeIIN4O2 octahedral coordination environment. Magnetic measurements suggest that complex Fe(L1)2·2ACE (1·2ACE, ACE = acetone) is mainly low spin below 300 K and complex Fe(L3)2·ACE (3·ACE) is high spin, whereas complexes Fe(L2)2 (2) and Fe(L4)2·6H2O (4·6H2O) exhibit gradual spin crossover behavior. The spin states of complexes 1-4 are confirmed by single-crystal X-ray diffraction analysis. The substituent effect on the magnetic properties of the complexes is significant in this system. Temperature-dependent fluorescence emission spectra show the coexistence but no coupling effect of spin crossover and fluorescence for complexes 2 and 4·6H2O.
Collapse
Affiliation(s)
- Xuan Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Nan Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Hui-Zhong Kou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
4
|
Orellana-Silla A, Turo-Cortés R, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Thermal and Light-Induced Spin Transitions in 3D Hofmann-type Frameworks Built on Nonlinear 3-Substituted Pyridine and Pyrimidine Pillaring Ligands. Inorg Chem 2024; 63:17305-17315. [PMID: 39235325 DOI: 10.1021/acs.inorgchem.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Integration of spin crossover (SCO) properties in 3D frameworks made up of cyano-bimetallic layers connected through pillaring organic ligands, the so-called Hofmann-type coordination polymers (HCPs)- represents an important source of multifunctional advanced materials. Typically, these 3D structures are constituted by 4-substituted pyridine-based linear pillars which afford HCPs with regular pcu topology. Here, we have investigated the suitability of the 3-substituted pyridine and pyrimidine bis-monodentate ligands 2,5-di(pyridin-3-yl)aniline (3-dpyan) and 2,5-di(pyrimidin-5-yl)aniline (bpmdan) as alternative building blocks to explore new structural topologies and functionalities. In this context, we have prepared the compounds Fe(3-dpyan)[Ag(CN)2]2·2MeOH (1Ag·2MeOH), Fe(3-dpyan)[Ag(CN)2]2···0.35NO2Bz·MeOH (1Ag·0.35NO2Bz·MeOH), Fe(3-dpyan)[Au(CN)2]2·NO2Bz (1Au·NO2Bz), and Fe(bpmdan)[Ag(CN)2]2·CH3Bz (2Ag·CH3Bz) (MeOH = methanol, NO2Bz = nitrobenzene, CH3Bz = toluene). Our structural studies have revealed that 1Ag·2MeOH and 1Ag·0.35NO2Bz·MeOH exhibit isomorphous doubly interpenetrated 3D structures strongly differing from the unusual noninterpenetrated ones exhibited by 1Au·NO2Bz and 2Ag·CH3Bz. Temperature-dependent magnetic susceptibility measurements have shown that all the reported compounds exhibit thermal-induced SCO properties, and moreover, three of them display Light Induced Excited Spin State Trapping at low temperatures (LIESST effect). The studied compounds show a wide diversity of SCO behaviors, ranging from abrupt complete one-step SCO centered at 253 K (1Au·NO2Bz) to gradual and incomplete multistepped SCO centered at 120 K (1Ag·0.35NO2Bz·MeOH). This assorted SCO properties are discussed and correlated to the acquired chemical and structural information.
Collapse
Affiliation(s)
- Alejandro Orellana-Silla
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - Rubén Turo-Cortés
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - Manuel Meneses-Sánchez
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - M Carmen Muñoz
- Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Carlos Bartual-Murgui
- Departamento de Química Física, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | - José Antonio Real
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| |
Collapse
|
5
|
Chen YR, Ying TT, Chen YC, Liao PY, Ni ZP, Tong ML. Bidirectional photomagnetism, exciplex fluorescence and dielectric anomalies in a spin crossover Hofmann-type coordination polymer. Chem Sci 2024; 15:9240-9248. [PMID: 38903231 PMCID: PMC11186333 DOI: 10.1039/d4sc00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Stepped spin crossover (SCO) complexes with three or more spin states have promising applications in high-order data storage, multi-switches and multi-sensors. Further synergy with other functionalities, such as luminescence and dielectric properties, will provide a good chance to develop novel multifunctional SCO materials. Here, a bent pillar ligand and luminescent pyrene guest are integrated into a three-dimensional (3D) Hofmann-type metal-organic framework (MOF) [Fe(dpoda){Au(CN)2}2]·pyrene (dpoda = 2,5-di-(pyridyl)-1,3,4-oxadiazole). The magnetic data show an incomplete and two-step SCO behavior with the sequence of 1 ↔ 1/2 ↔ 1/4. The rare bi-directional light-induced excited spin-state trapping (LIESST) effect and light-induced stepped thermal relaxation after LIESST are observed. The pyrene guests interact with dpoda ligands via offset face-to-face π⋯π interactions to form intermolecular exciplex emissions. The competition between thermal quenching and stepped SCO properties results in a complicated and stepped exciplex fluorescence. Moreover, the stepped dielectric property with higher dielectric permittivity at lower temperature may be related to the more frustrated octahedral distortion parameters in the intermediate spin states. Hence, a 3D Hofmann-type MOF with bent pillar ligands and fluorescent guests illustrates an effective way for the development of multifunctional switching materials.
Collapse
Affiliation(s)
- Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ting-Ting Ying
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Liu ZK, Sun K, Xue JP, Yao ZS, Tao J. Guest water-induced structural transformation and spin-crossover variation of a two-dimensional Hofmann-type compound. Dalton Trans 2024; 53:7522-7526. [PMID: 38597512 DOI: 10.1039/d4dt00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this paper, we report a two-dimensional (2D) Hofmann-type spin-crossover coordination polymer [FeII(o-NTrz)2PtII(CN)4]·H2O (o-NTrz = 4-(o-nitrobenzyl)imino-1,2,4-triazole). Due to the remarkable configurational flexibility of triazole-based ligand, the porous structure of this compound can be reversibly regulated by the loss of guest water molecules as a consequence of rotation of o-NTrz. The 180° reorientation of the o-nitrobenzyl moiety not only induces a response of gate-closing/opening of the porous framework but also significantly modulates the spin transition temperature. The present investigation highlights the potential of Hofmann-type SCO compounds with flexible ligands in exploring unusual physical and chemical phenomena.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jin-Peng Xue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| |
Collapse
|
8
|
Yan FF, Liu D, Cai R, Zhao L, Mao PD, Sun HY, Meng YS, Liu T. Simultaneous magneto-dielectric transitions in a fluorescent Hofmann-type coordination polymer. Dalton Trans 2023. [PMID: 38010925 DOI: 10.1039/d3dt03186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The design of magnetic molecular materials exhibiting multiple functions has garnered significant interest owing to their potential applications in molecular switches, sensors, and data storage devices. In this study, we synthesized a two-dimensional (2D) FeII-based Hofmann-type coordination polymer, namely {Fe(DPPE)2[Ag(CN)2]2}·2EtOH (1), using a luminescent ligand 1,1-diphenyl-2,2-di(4-pyridylbiphenyl)ethylene (DPPE). Single-crystal structural analyses and magnetic measurements revealed a thermally induced spin crossover (SCO) with the transition temperature T1/2 = 231 K. Variable-temperature fluorescence emission spectra indicated the coexistence of spin crossover and fluorescence properties. Moreover, a pronounced dielectric change (Δε' = 1.2 at 0.5 kHz) was observed during the SCO process, confirming the simultaneous magnetic and dielectric switching arising from the rearrangement of 3d electrons and deformation of the FeII-centered coordination sphere. This work provides an approach to explore the interplay between magnetic, dielectric, and fluorescence properties, and holds significance for developing multifunctional molecular materials.
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Dan Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Rui Cai
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
9
|
Yang G, Wu SG, Ruan ZY, Chen YC, Xie KP, Ni ZP, Tong ML. Single-Crystal Transformation Engineering the Spin Change of Metal-Organic Frameworks via Cluster Deconstruction. Angew Chem Int Ed Engl 2023; 62:e202312685. [PMID: 37779343 DOI: 10.1002/anie.202312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Yan FF, Jiang WJ, Yao NT, Mao PD, Zhao L, Sun HY, Meng YS, Liu T. Manipulating fluorescence by photo-switched spin-state conversions in an iron(ii)-based SCO-MOF. Chem Sci 2023; 14:6936-6942. [PMID: 37389243 PMCID: PMC10306093 DOI: 10.1039/d3sc01217d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Manipulating fluorescence by photo-switched spin-state conversions is an attractive prospect for applications in smart magneto-optical materials and devices. The challenge is how to modulate the energy transfer paths of the singlet excited state by light-induced spin-state conversions. In this work, a spin crossover (SCO) FeII-based fluorophore was embedded into a metal-organic framework (MOF) to tune the energy transfer paths. Compound 1 {Fe(TPA-diPy)[Ag(CN)2]2}·2EtOH (1) has an interpenetrated Hofmann-type structure, wherein the FeII ion is coordinated by a bidentate fluorophore ligand (TPA-diPy) and four cyanide nitrogen atoms and acts as the fluorescent-SCO unit. Magnetic susceptibility measurements revealed that 1 underwent an incomplete and gradual spin crossover with T1/2 = 161 K. Photomagnetic studies confirmed photo-induced spin state conversions between the low-spin (LS) and high-spin (HS) states, where the irradiation of 532 and 808 nm laser lights converted the LS and HS states to the HS and LS states, respectively. Variable-temperature fluorescence spectra study revealed an anomalous decrease in emission intensity upon the HS → LS transition, confirming the synergetic coupling between the fluorophore and SCO units. Alternating irradiation of 532 and 808 nm laser lights resulted in reversible fluorescence intensity changes, confirming spin state-controlled fluorescence in the SCO-MOF. Photo-monitored structural analyses and UV-vis spectroscopic studies demonstrated that the photo-induced spin state conversions changed energy transfer paths from the TPA fluorophore to the metal-centered charge transfer bands, ultimately leading to the switching of fluorescence intensities. This work represents a new prototype compound showing bidirectional photo-switched fluorescence by manipulating the spin states of iron(ii).
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
11
|
Wang J, Kong M, Song XJ, Jing Y, Zhao Y, Song Y. Synergetic Spin-Crossover and Luminescent Properties in a Multifunctional 2D Iron(II) Coordination Polymer. Inorg Chem 2022; 61:20923-20930. [PMID: 36510686 DOI: 10.1021/acs.inorgchem.2c03350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We designed and synthesized a strong fluorescent tetradentate pyridine ligand, 3,6,11,12-tetra(pyridin-4-yl)dibenzo[a,c]phenazine (TPDP), by covalently grafting pyridyl to fluorescent dye dbpz, which can react with the Fe(NCX)2 (X = S and Se) unit, obtaining two new 2D [4 × 4] square-grid compounds, namely, {FeII(TPDP)2(SCN)2·CHCl3·4CH3OH}n (1) and {[FeII(TPDP)2(SeCN)2]·CH2Cl2·4CH3OH}n (2). Both of them show expected one-step spin-crossover (SCO) properties, and complex 2vacuum exhibits a combination of the SCO phenomenon and fluorescence in a synergetic way. The energy transfer mechanism of 2vacuum is verified by the theoretical calculations and experimental results. This study provides an effective strategy to synthesize large conjugated fluorescent ligands using dyes to further form SCO-luminescent bifunctional materials.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Ming Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Xiao-Jiao Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China.,Key Laboratory of National Forestry and Grassland Administration on Wildlife Evidence Technology, School of Criminal Science and Technology, Nanjing Forest Police College, Nanjing210023, P. R. China
| | - Yu Jing
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
12
|
Javed MK, Sulaiman A, Yamashita M, Li ZY. Shedding light on bifunctional luminescent spin crossover materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Fluorescence emission modulation in cyanido-bridged Fe(II) spin crossover coordination polymers. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
15
|
Li Y, Javed MK, Wu SQ, Sulaiman A, Wu YY, Li ZY, Sato O, Bu XH. Aggregation-induced emission meets magnetic bistability: synergy between spin crossover and fluorescence in iron(ii) complexes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Mondal DJ, Mondal A, Paul A, Konar S. Guest-Induced Multistep-to-One-Step Reversible Spin Transition with Enhanced Hysteresis in a 2D Hofmann Framework. Inorg Chem 2022; 61:4572-4580. [PMID: 34994192 DOI: 10.1021/acs.inorgchem.1c03306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interplay of host-guest interactions and controlled modulation of spin-crossover (SCO) behavior is one of the most exploited topics regarding data storage, molecular sensing, and optical technologies. In this work, we demonstrate the experimental approach of tuning the SCO behavior via controlled modulation of the spin-state cooperativity in a 2D Hofmann coordination polymer, [FeIIPd(CN)4(L)2]·1.3MeOH (1·1.3MeOH; L = methyl isonicotinate). Removal of the solvent changes the four-step transition to a complete one-step spin transition with an enhanced hysteresis width (∼20 K). Structural analysis of solvated (1·1.3MeOH) and partially desolvated (1·0.3MeOH) compounds reveals that the crystal system changes from a monoclinic C2/c space group to an orthorhombic Imma space group, where the FeII sites are present in a more symmetrically equivalent environment. Consequently, the axial ligand-field (LF) strength and face-to-face interactions of the ligands were increased by removing the guest, which is reflected in the highly cooperative SCO in 1 (desolvated compound). Also, the shift of the CN bond stretching frequencies and decrease of their relative intensities from the variable-temperature Raman spectroscopic measurements further corroborate the SCO behavior. Besides, theoretical calculations reveal that the singlet (1Γ) LF terms decrease by removing guest molecules, enhancing the molecular population in the low-spin state at low temperature, as experimentally observed for 1. Notably, fine tuning of the SCO behavior via host-guests interactions provides a great opportunity to design potential chemosensors.
Collapse
Affiliation(s)
- Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Abhik Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
17
|
|
18
|
Xie K, Ruan Z, Lyu B, Chen X, Zhang X, Huang G, Chen Y, Ni Z, Tong M. Guest‐Driven Light‐Induced Spin Change in an Azobenzene Loaded Metal–Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai‐Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bang‐Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiao‐Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue‐Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guo‐Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan‐Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao‐Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
19
|
Díaz-Ortega IF, Fernández-Barbosa EL, Titos-Padilla S, Pope SJA, Jiménez JR, Colacio E, Herrera JM. Monitoring spin-crossover phenomena via Re(I) luminescence in hybrid Fe(II) silica coated nanoparticles. Dalton Trans 2021; 50:16176-16184. [PMID: 34718361 DOI: 10.1039/d1dt03334d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bare (1) and silica coated (1@SiO2) spin crossover (SCO) nanoparticles based on the polymer {[Fe(NH2Trz)3](BF4)2}n have been prepared following a water-in-oil synthetic procedure. For 1, the critical temperatures of the spin transition are TC↓ = 214.6 K and TC↑ = 220.9 K. For 1@SiO2, the abruptness of the transition is enhanced and the critical temperatures are centred at room temperature (TC↓ = 292.1 K and TC↑ = 296.3 K). An inert Re(I) complex of formula [Re(phen)(CO)3(PETES)](PF6) (phen = 1, 10-phenanthroline; PETES = 2(4-pyridylethyl)triethoxysilane) (Re) was also synthesized yielding intense green emission centred at λem = 560 nm. The grafting of this complex on the silica shell of 1@SiO2 led to a bifunctional SCO-luminescence composite (1@SiO2/Re) whose luminescence properties were tuned by the spin state switching. Temperature-variable photophysical studies showed that luminescence and spin transition were synchronized through a radiative (trivial) energy transfer mechanism between the Re(I) and the Fe(II)-LS (LS, Low Spin) centres.
Collapse
Affiliation(s)
- Ismael Francisco Díaz-Ortega
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain. .,Departamento de Química y Física-CIESOL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería
| | - Eva Luz Fernández-Barbosa
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Silvia Titos-Padilla
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Simon J A Pope
- Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Juan-Ramón Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Juan Manuel Herrera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
20
|
Xie KP, Ruan ZY, Lyu BH, Chen XX, Zhang XW, Huang GZ, Chen YC, Ni ZP, Tong ML. Guest-Driven Light-Induced Spin Change in an Azobenzene Loaded Metal-Organic Framework. Angew Chem Int Ed Engl 2021; 60:27144-27150. [PMID: 34676638 DOI: 10.1002/anie.202113294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive materials that can be reversibly switched by light are of immense interest. Among them, photo-responsive spin crossover (SCO) complexes have great promises to combine the photoactive inputs with multifaceted outputs into switchable materials and devices. However, the reversible control the spin-state change by photochromic guests is still challenging. Herein, we report an unprecedented guest-driven light-induced spin change (GD-LISC) in a Hofmann-type metal-organic framework (MOF), [Fe(bpn){Ag(CN)2 }2 ]⋅azobenzene. (1, bpn=1,4-bis(4-pyridyl)naphthalene). The reversible trans-cis photoisomerization of azobenzene guest upon UV/Vis irradiation in the solid-state results in the remarkable magnetic changes in a wide temperature range of 10-180 K. This finding not only establishes a new switching mechanism for SCO complexes, but also paves the way toward the development of new generation of photo-responsive magnetic materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiao-Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xue-Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
21
|
Capel Berdiell I, Davies DJ, Woodworth J, Kulmaczewski R, Cespedes O, Halcrow MA. Structures and Spin States of Iron(II) Complexes of Isomeric 2,6-Di(1,2,3-triazolyl)pyridine Ligands. Inorg Chem 2021; 60:14988-15000. [PMID: 34547208 DOI: 10.1021/acs.inorgchem.1c02404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O-H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(μ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects "spin-state frustration" of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1-L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Daniel J Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Jack Woodworth
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds LS2 9JT, U.K
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
22
|
Turo-Cortés R, Valverde-Muñoz FJ, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Bistable Hofmann-Type Fe II Spin-Crossover Two-Dimensional Polymers of 4-Alkyldisulfanylpyridine for Prospective Grafting of Monolayers on Metallic Surfaces. Inorg Chem 2021; 60:9040-9049. [PMID: 34047556 PMCID: PMC9129067 DOI: 10.1021/acs.inorgchem.1c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/02/2022]
Abstract
Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl derivative undergoes a much less cooperative multistep SCO. Excluding PtII-methyl, the remaining compounds display light-induced excited spin-state trapping at 10 K with TLIESST temperatures in the range of 50-70 K. Single-crystal studies performed in the temperature interval 100-250 K confirmed the layered structure and the occurrence of complete transformation between the high- and low-spin states of the FeII center for the four compounds. Strong positional disorder seems to be the source of elastic frustration driving the multistep SCO observed for the PdII-methyl derivative. It is expected that the peripheral disulfanyl groups will favor anchoring and growing of the monolayer on gold substrates and optimal electron transport in the device.
Collapse
Affiliation(s)
- Rubén Turo-Cortés
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - Francisco Javier Valverde-Muñoz
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - Manuel Meneses-Sánchez
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - M. Carmen Muñoz
- Departamento
de Física Aplicada, Universitat Politècnica
de València, Camino
de Vera S/N 46022 Valencia, Spain
| | - Carlos Bartual-Murgui
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - José Antonio Real
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| |
Collapse
|
23
|
Kucheriv OI, Fritsky IO, Gural'skiy IA. Spin crossover in FeII cyanometallic frameworks. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Merz V, Merz J, Kirchner M, Lenhart J, Marder TB, Krueger A. Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu 2+ , Pb 2+ and Hg 2+ Ions. Chemistry 2021; 27:8118-8126. [PMID: 33819362 PMCID: PMC8251986 DOI: 10.1002/chem.202100594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu2+ , Pb2+ and Hg2+ in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na+ , K+ , Ca2+ and Mg2+ . The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.
Collapse
Affiliation(s)
- Viktor Merz
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Julia Merz
- Institute for Inorganic ChemistryJulius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Kirchner
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Julian Lenhart
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| | - Anke Krueger
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
- Wilhelm Conrad Röntgen Center for Complex Materials Research (RCCM)Julius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
25
|
Kosone T, Okuda S, Kawata M, Arai S, Kosuge R, Kawasaki T. A New Systematic Construction of Novel Three-Dimensional Spin Crossover Coordination Polymers Based on the [Ag I 2(CN) 3] Building Unit. ACS OMEGA 2021; 6:12187-12193. [PMID: 34056372 PMCID: PMC8154166 DOI: 10.1021/acsomega.1c00892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
New three-dimensional spin crossover (SCO) coordination polymers systematically constructed by the novel building unit [AgI 2(CN)3], FeII(3-Br-5-CH3pyridine)2[AgI 2(CN)3][AgI(CN)2] (1), FeII(3-Br-5-Clpyridine)2[AgI 2(CN)3][AgI(CN)2] (2), and FeII(3,5-Brpyridine)2[AgI 2(CN)3][AgI(CN)2] (3), have been synthesized and characterized. The bismonodentate binuclear [Ag2(CN)3]- and mononuclear [AgI(CN)2]- units and FeII atoms assemble to form a 3D network structure. The structures of 1-3 are crystallographically identical, which made up the triply interpenetration combined with complicated intermolecular interactions including Ag···Ag, Ag···X (pyridine substituents) and π-stacking interactions. Magnetic and differential scanning calorimetry studies were performed for 1-3. These compounds display a similar SCO behavior, while the critical temperatures (T c) are shifted by the substituent effect. Due to the identical structures of 1-3, the order of T c clearly corresponds with the Hammett constant.
Collapse
Affiliation(s)
- Takashi Kosone
- Department
of Science and Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama 350-0394, Japan
| | - Syogo Okuda
- Department
of Materials Science and Technology, Nagaoka
University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 94-2188, Japan
| | - Masaya Kawata
- Department
of Science and Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama 350-0394, Japan
| | - Shunsuke Arai
- Department
of Science and Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama 350-0394, Japan
| | - Ryota Kosuge
- Department
of Science and Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama 350-0394, Japan
| | - Takeshi Kawasaki
- Department
of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
26
|
Xie KP, Wu SG, Wang LF, Huang GZ, Ni ZP, Tong ML. A spin-crossover phenomenon in a 2D heterometallic coordination polymer with [Pd(SCN) 4] 2- building blocks. Dalton Trans 2021; 50:4152-4158. [PMID: 33688869 DOI: 10.1039/d1dt00244a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 3-(9-anthracenyl)-pyridine (1) and L2 = 4-(9-anthracenyl)-pyridine (2)), were constructed by employing square-planar [Pd(SCN)4]2- building blocks. Compound 1 exhibits a complete spin-crossover (SCO) behaviour under normal atmospheric pressure, and represents the first SCO example in a 2D system containing [Pd(SCN)4]2- units. In contrast, compound 2 only shows paramagnetic behaviour at measured temperatures. It is clear that the fine-tuning of the monodentate ligand can modulate the ligand field and packing fashions, which sheds light on developing new SCO materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
28
|
Liberka M, Zakrzewski JJ, Heczko M, Reczyński M, Ohkoshi SI, Chorazy S. Solvent- and Temperature-Driven Photoluminescence Modulation in Porous Hofmann-Type Sr II-Re V Metal-Organic Frameworks. Inorg Chem 2021; 60:4093-4107. [PMID: 33656321 DOI: 10.1021/acs.inorgchem.1c00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A unique family of three-dimensional (3D) luminescent SrII-ReV metal-organic frameworks (MOFs), {[SrII(MeOH)5][ReV(CN)4(N)(bpen)0.5]·MeOH}n [1·MeOH; N3- = nitrido ligand, bpen = 1,2-bis(4-pyridyl)ethane, and MeOH = methanol], {[SrII(MeOH)4][ReV(CN)4(N)(bpee)0.5]·2MeOH}n [2·MeOH; bpee = 1,2-bis(4-pyridyl)ethylene], and {[SrII(bpy)0.5(MeOH)2][ReV(CN)4(N)(bpy)0.5]}n (3·MeOH; bpy = 4,4'-bipyridine), is reported. They are obtained by the molecular self-assembly of Sr2+ ions with tetracyanidonitridorhenate(V) metalloligands, [ReV(CN)4(N)]2-, and pyridine-based organic spacers (L = bpen, bpee, bpy). Such a combination of molecular precursors results in bimetallic SrII-ReV cyanido-bridged layers further bonded by organic ligands into pillared Hofmann-type coordination skeletons. Because of the formation of {ReV-(L)-ReV} moieties providing emissive metal-to-ligand charge-transfer states, 1·MeOH-3·MeOH exhibit solid-state room-temperature photoluminescence tunable from green to orange by the applied organic ligand. The most stable MOF of 3·MeOH, based on the alternating {ReV-(bpy)-ReV} and {SrII-(bpy)-SrII} linkages, exhibits three interconvertible, variously solvated phases, methanol-solvated 3·MeOH, hydrated {[SrII(bpy)0.5(H2O)2][ReV(CN)4(N)(bpy)0.5]·0.6H2O}n (3·H2O), and desolvated {[SrII(bpy)0.5][ReV(CN)4(N)(bpy)0.5]}n (3). Their formation was correlated with water and methanol vapor sorption properties investigated for 3·H2O. The solvent content affects the luminescence mainly by tuning the emission energy within the series of 3·MeOH, 3·H2O, and 3. All of the obtained compounds exhibit temperature-driven modulation of luminescence, including the shift of the emission maximum and lifetime. The thermochromic luminescent response was found to be sensitive to the presence and type of solvent in the crystal lattice. This work shows that the construction of [ReV(CN)4(N)]2--based MOFs is an efficient route toward advanced solid luminophores tunable by external stimuli such as solvent or temperature.
Collapse
Affiliation(s)
- Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Michal Heczko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.,Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
29
|
Jornet-Mollá V, Giménez-Saiz C, Vieira BJC, Waerenborgh JC, Romero FM. Temperature dependence of desolvation effects in hydrogen-bonded spin crossover complexes. Dalton Trans 2021; 50:2536-2544. [PMID: 33522546 DOI: 10.1039/d0dt03986a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, crystal structure and (photo)magnetic properties of the anhydrous spin crossover salt of formula [Fe(bpp)2](C6H8O4) (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H8O4 = adipate dianion), obtained by desolvation at 400 K of the original tetrahydrate in a single-crystal-to-single-crystal (SC-SC) transformation, are reported. This work offers a comparison between this compound and the previously reported hydrated material ([Fe(bpp)2](C6H8O4)·4H2O, 1·4H2O), highlighting the significance of the thermal conditions used in the dehydration-rehydration processes. In both compounds, a hydrogen-bonded network between iron(ii) complexes and adipate anions is observed. The original tetrahydrate (1·4H2O) is low-spin and desolvation at 450 K triggers a low-spin (LS) to high-spin (HS) transition to an amorphous phase that remains stable over the whole temperature range of study. Surprisingly, the dehydrated compound at 400 K (1) keeps the crystallinity, undergoes a partial spin crossover (T1/2 = 180 K) and a quantitative LS to HS photomagnetic conversion at low temperatures, with a T(LIESST) value of 61 K.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | | | | | | | |
Collapse
|
30
|
Turo-Cortés R, Bartual-Murgui C, Castells-Gil J, Muñoz MC, Martí-Gastaldo C, Real JA. Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates. Chem Sci 2020; 11:11224-11234. [PMID: 34094363 PMCID: PMC8162911 DOI: 10.1039/d0sc04246c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
Spin crossover (SCO) compounds are very attractive types of switchable materials due to their potential applications in memory devices, actuators or chemical sensors. Rational chemical tailoring of these switchable compounds is key for achieving new functionalities in synergy with the spin state change. However, the lack of precise structural information required to understand the chemical principles that control the SCO response with external stimuli may eventually hinder further development of spin switching-based applications. In this work, the functionalization with an amine group in the two-dimensional (2D) SCO compound {Fe(5-NH2Pym)2[MII(CN)4]} (1M, 5-NH2Pym = 5-aminopyrimidine, MII = Pt (1Pt), Pd (1Pd)) confers versatile host-guest chemistry and structural flexibility to the framework primarily driven by the generation of extensive H-bond interactions. Solvent free 1M species reversibly adsorb small protic molecules such as water, methanol or ethanol yielding the 1M·H2O, 1M·0.5MeOH or 1M·xEtOH (x = 0.25-0.40) solvated derivatives. Our results demonstrate that the reversible structural rearrangements accompanying these adsorption/desorption processes (1M ↔ 1M·guest) follow a gate-opening mechanism whose kinetics depend not only on the nature of the guest molecule and that of the host framework (1Pt or 1Pd) but also on their reciprocal interactions. In addition, a predictable and reversible guest-induced SCO modulation has been observed and accurately correlated with the associated crystallographic transformations monitored in detail by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Rubén Turo-Cortés
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia Spain
| | - Carlos Bartual-Murgui
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia Spain
| | - Javier Castells-Gil
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia Spain
| | - M Carmen Muñoz
- Departamento de Física Aplicada, Universitat Politècnica de València Camino de Vera s/n E-46022 Valencia Spain
| | - Carlos Martí-Gastaldo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia Spain
| | - José Antonio Real
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia Spain
| |
Collapse
|
31
|
Mondal DJ, Roy S, Yadav J, Zeller M, Konar S. Solvent-Induced Reversible Spin-Crossover in a 3D Hofmann-Type Coordination Polymer and Unusual Enhancement of the Lattice Cooperativity at the Desolvated State. Inorg Chem 2020; 59:13024-13028. [PMID: 32865405 DOI: 10.1021/acs.inorgchem.0c02240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The new 3D Hofmann-type coordination polymer [Fe(dpyu){Pt(CN)4}]·9H2O [dpyu = 1,3-di(pyridin-4-yl)urea] exhibits reversible interchange between two- and one-step spin-crossover behavior, associated with desorption/resorption of lattice water molecules. Solvent water removal also induces an increase of the spin-transition temperature, indicating strong lattice cooperativity, observed for the first time in a 3D Hofmann-type coordination polymer.
Collapse
Affiliation(s)
- Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Subhadip Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India.,Department of Chemistry, The ICFAI University Tripura, Kamalghat, Mohanpur, Agartala, Tripura 799210, India
| | - Jyoti Yadav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
32
|
Ghosh S, Kamilya S, Pramanik T, Rouzières M, Herchel R, Mehta S, Mondal A. ON/OFF Photoswitching and Thermoinduced Spin Crossover with Cooperative Luminescence in a 2D Iron(II) Coordination Polymer. Inorg Chem 2020; 59:13009-13013. [PMID: 32875794 DOI: 10.1021/acs.inorgchem.0c02136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A 2D coordination polymer, {[Fe(L)2(NCSe)2]·6MeOH·14H2O}n (1; L = 2,5-dipyridylethynylene-3,4-ethylenedioxythiophene), has been synthesized based on a redox active luminescence ligand. 1 possesses a 2D [4 × 4] square-grid network where the iron(II) center is in a FeN6 octahedral coordination environment. 1 displays reversible thermoinduced high-spin (HS; S = 2) to diamagnetic low-spin (LS; S = 0) ON/OFF spin-state switching with a T1/2 value of 150 K. Interestingly, optical reflectivity and photomagnetic studies at 10 K under light irradiation revealed an efficient conversion to a photoinduced metastable HS excited state from a LS ground state. Remarkably, the photoexcited HS state can be reversibly switched ON and OFF by using 625 and 850 nm light-emitting-diode lights. Intriguingly, the thermal dependence of the luminescence intensity of the maximum emission at 524 nm for 1 shows a minimum at around the spin-crossover (SCO) temperature, indicating a cooperative nature between the SCO and luminescence properties. Theoretical calculations confirmed the above findings.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Titas Pramanik
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Mathieu Rouzières
- Centre de Recherche Paul Pascal, University of Bordeaux, UMR 5031, CNRS, Pessac 33600, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc CZ-771 46, Czech Republic
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
33
|
Kitase K, Kitazawa T. A novel two-step Fe-Au type spin-crossover behavior in a Hofmann-type coordination complex {Fe(4-methylpyrimidine) 2[Au(CN) 2] 2}. Dalton Trans 2020; 49:12210-12214. [PMID: 32608445 DOI: 10.1039/d0dt01681k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A Hofmann-type two-step spin-crossover (SCO) complex with a pyrimidine derivative ligand, Fe(4-methylpyrimidine)2[Au(CN)2]2, was synthesized, and this complex shows a two-step SCO phenomenon in the intermediate state. Symmetry breaking also occurs in the intermediate state. These results reveal three spin states within the complex for high-spin (HS), HS0.5LS0.5, and low-spin (LS).
Collapse
Affiliation(s)
- Kosuke Kitase
- Department of Chemistry, Toho University, Chiba 274-8510, Japan.
| | | |
Collapse
|
34
|
Hao X, Dou Y, Cao T, Qin L, Yang L, Liu H, Li D, Liu Q, Zhang D, Zhou Z. Tuning of crystallization method and ligand conformation to give a mononuclear compound or two-dimensional SCO coordination polymer based on a new semi-rigid V-shaped bis-pyridyl bis-amide ligand. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:412-418. [PMID: 32367821 DOI: 10.1107/s2053229620004854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/05/2020] [Indexed: 11/11/2022]
Abstract
With the new semi-rigid V-shaped bidentate pyridyl amide compound 5-methyl-N,N'-bis(pyridin-4-yl)benzene-1,3-dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol-κO)bis[5-methyl-N,N'-bis(pyridin-4-yl)benzene-1,3-dicarboxamide-κN]bis(thiocyanato-κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] (1), and one two-dimensional coordination polymer, catena-poly[[[bis(thiocyanato-κN)iron(II)]-bis[μ-5-methyl-N,N'-bis(pyridin-4-yl)benzene-1,3-dicarboxamide-κ2N:N']] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n (2), were prepared by slow evaporation and H-tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray crystallography. The single-crystal X-ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1, while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2, with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two-dimensional grid-like network. Investigation of the magnetic properties reveals the always high-spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally-induced incomplete spin crossover (SCO) behaviour below 150 K in 2, demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.
Collapse
Affiliation(s)
- Xiaoyun Hao
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yong Dou
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Tong Cao
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Lan Qin
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Lu Yang
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Liu
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Dacheng Li
- College of Chemical and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China
| | - Daopeng Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Zhen Zhou
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| |
Collapse
|
35
|
Li Y, Liu M, Yao ZS, Tao J. Temperature-dependent hysteretic two-step spin crossover in two-dimensional Hofmann-type compounds. Dalton Trans 2020; 49:7245-7251. [DOI: 10.1039/d0dt00866d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two 2D Hofmann-type compounds [FeII(ppe)2MII(CN)4]·3H2O [ppe = 1-(2-pyridyl)-2-(4-pyridyl)ethylene; M = Pd for 1 and Pt for 2] have been synthesized. Both of them show complete two-step hysteretic SCO transitions HS1.0 ⇌ HS0.6–0.5LS0.4–0.5 ⇌ LS1.0.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Min Liu
- School of Nuclear Science and Technology
- University of South China
- Hengyang 421001
- People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Key Laboratory of Cluster Science of Ministry of Education
| |
Collapse
|
36
|
Fan K, Bao SS, Huo R, Huang XD, Liu YJ, Yu ZW, Kurmoo M, Zheng LM. Luminescent Ir(iii)–Ln(iii) coordination polymers showing slow magnetization relaxation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01504c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two structural types of iridium(iii)–lanthanide(iii) coordination polymers, single-chain Ir2Ln and double-chain Ir4Ln2 (Ln = Gd, Dy, Er, and Yb), have been prepared. SMM behaviour and NIR luminescence were observed for the Ir–Er and Ir–Yb systems.
Collapse
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Ran Huo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yu-Jie Liu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zi-Wen Yu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Mohamedally Kurmoo
- Institut de Chimie
- Université de Strasbourg CNRS-UMR7177
- Strasbourg Cedex 67007
- France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|
37
|
Ma TT, Sun XP, Yao ZS, Tao J. Homochiral versus racemic polymorphs of spin-crossover iron(ii) complexes with reversible LIESST effect. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01590f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homochiral and racemic polymorphs show different spin-crossover behaviours due to different intermolecular interactions, and reversible LIESST effects can be realized on homochiral complexes.
Collapse
Affiliation(s)
- Ting-Ting Ma
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Xiao-Peng Sun
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|
38
|
Zhang CJ, Lian KT, Wu SG, Liu Y, Huang GZ, Ni ZP, Tong ML. The substituent guest effect on four-step spin-crossover behavior. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01420a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fluoro substituent strategy on the guest in a three-dimensional Hofmann-type metal–organic framework is explored for four-step spin-crossover properties.
Collapse
Affiliation(s)
- Cui-Juan Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Kai-Ting Lian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
39
|
Wu WW, Wu SG, Chen YC, Huang GZ, Lyu BH, Ni ZP, Tong ML. Spin-crossover in an organic–inorganic hybrid perovskite. Chem Commun (Camb) 2020; 56:4551-4554. [DOI: 10.1039/d0cc00992j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first spin-crossover complex with an organic–inorganic hybrid perovskite structure is reported, which displays three-step spin-crossover, light-induced excited spin-state trapping and spin-state dependent fluorescence properties.
Collapse
Affiliation(s)
- Wei-Wei Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| |
Collapse
|
40
|
Huang XD, Jia JG, Kurmoo M, Bao SS, Zheng LM. Interplay of anthracene luminescence and dysprosium magnetism by steric control of photodimerization. Dalton Trans 2019; 48:13769-13779. [PMID: 31482159 DOI: 10.1039/c9dt02854d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systematic control of the intermolecular pair-wise [4 + 4] photocycloaddition of a series of dysprosium phosphonates through fine-tuning of two different phosphonate ligands, one with a bidentate blocker and one with an anthracene antenna, both with alkyl substituents, reveals a size dependent rate. With bulky isopropyl on the diphosphonate blocker little response to UV light is observed. In contrast, compounds with ethyl which has less steric hindrance exhibit almost complete photocycloaddition. Interestingly, the alkyl substituents attached to anthracene monophosphonate have no evident effect on the reaction rate. Although no direct relationship can be found between the substitutions and the observed differences in field-induced single molecule magnetism, remarkable changes in magnetic dynamics are observed for complexes before and after the complete photocycloaddition reactions.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Desai AV, Sharma S, Let S, Ghosh SK. N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Ge J, Chen Z, Zhang L, Liang X, Su J, Kurmoo M, Zuo J. A Two‐Dimensional Iron(II) Coordination Polymer with Synergetic Spin‐Crossover and Luminescent Properties. Angew Chem Int Ed Engl 2019; 58:8789-8793. [DOI: 10.1002/anie.201903281] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Jing‐Yuan Ge
- College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou 310018 China
| | - Zhongyan Chen
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xiao Liang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Jian Su
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Mohamedally Kurmoo
- Institut de Chimie de StrasbourgUniversité de Strasbourg, CNRS-UMR 7177 4 rue Blaise Pascal 67008 Strasbourg France
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
43
|
Ge J, Chen Z, Zhang L, Liang X, Su J, Kurmoo M, Zuo J. A Two‐Dimensional Iron(II) Coordination Polymer with Synergetic Spin‐Crossover and Luminescent Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Yuan Ge
- College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou 310018 China
| | - Zhongyan Chen
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xiao Liang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Jian Su
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Mohamedally Kurmoo
- Institut de Chimie de StrasbourgUniversité de Strasbourg, CNRS-UMR 7177 4 rue Blaise Pascal 67008 Strasbourg France
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
44
|
Valverde-Muñoz FJ, Seredyuk M, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material. Chem Sci 2019; 10:3807-3816. [PMID: 31015922 PMCID: PMC6457193 DOI: 10.1039/c8sc05256e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/20/2019] [Indexed: 11/21/2022] Open
Abstract
A multistable spin crossover (SCO) molecular alloy system [Fe1-x M x (nBu-im)3(tren)](P1-y As y F6)2 (M = ZnII, NiII; (nBu-im)3(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T c) and hysteresis widths (ΔT c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-butyl arms and two different arrangements of the AsF6 - anions [T1c = 174 K (ΔT1c = 17 K), T2c = 191 K (ΔT2c = 23 K) (scan rate 2 K min-1)]. The high-temperature PTHT takes place in the high-spin state domain and essentially involves rearrangement of the AsF6 - anions [TPTc = 275 K (ΔTPTc = 16 K)]. This behavior strongly contrasts with that of the homologous 100P [x = 0, y = 0] derivative where two separate cooperative one-step SCO can be selected by controlling the kinetics of the coupled PTLT at ambient pressure: (i) one at low temperatures, T c = 122 K (ΔT c = 9 K), for temperature scan rates (>1 K min-1) (memory channel A) where the structural modifications associated with PTLS are inhibited; (ii) the other centered at T c = 155 K (ΔT c = 41 K) for slower temperature scan rates ≤0.1 K min-1 (memory channel B). These two SCO regimes of the 100P derivative transform reversibly into the two-step SCO of 100As upon application of hydrostatic pressure (ca. 0.1 GPa) denoting the subtle effect of internal chemical pressure on the SCO behavior. Precise control of AsF6 - ↔ PF6 - substitution, and hence of the PTLT kinetics, selectively selects the memory channel B of 100P when x = 0 and y ≈ 0.7. Meanwhile, substitution of FeII with ZnII or NiII [x ≈ 0.2, y = 0] favors the low temperature memory channel A at any scan rate. This intriguing interplay between PT, SCO and isomorphous substitution was monitored by single crystal and powder X-ray diffractometries, and magnetic and calorimetric measurements.
Collapse
Affiliation(s)
| | - Maksym Seredyuk
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
- On leave from Department of Chemistry , Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Street , 01601 , Kyiv , Ukraine . ;
| | - Manuel Meneses-Sánchez
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
| | - M Carmen Muñoz
- Departament de Física Aplicada , Universitat Politècnica de València , Camino de Vera s/n , E-46022 , Valencia , Spain
| | - Carlos Bartual-Murgui
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
| | - José A Real
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
| |
Collapse
|
45
|
Zhang CJ, Lian KT, Huang GZ, Bala S, Ni ZP, Tong ML. Hysteretic four-step spin-crossover in a 3D Hofmann-type metal–organic framework with aromatic guest. Chem Commun (Camb) 2019; 55:11033-11036. [DOI: 10.1039/c9cc06017k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hysteretic four-step spin crossover behaviour with the sequence of LS ↔ HS0.25LS0.75 ↔ HS0.5LS0.5 ↔ HS0.67LS0.33 ↔ HS is observed for the first time.
Collapse
Affiliation(s)
- Cui-Juan Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Kai-Ting Lian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Sukhen Bala
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
46
|
Sun XP, Liu T, Yao ZS, Tao J. Spin crossover and photomagnetic behaviors in one-dimensional looped coordination polymers. Dalton Trans 2019; 48:9243-9249. [DOI: 10.1039/c9dt01520e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal- and light-induced SCO behaviors have been studied on two one-dimensional looped coordination polymers.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|