1
|
Hoover SC, Margossian KO, Muthukumar M. Theory and quantitative assessment of pH-responsive polyzwitterion-polyelectrolyte complexation. SOFT MATTER 2024; 20:7199-7213. [PMID: 39222025 DOI: 10.1039/d4sm00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We introduce a theoretical framework to describe the pH-sensitive phase behavior of polyzwitterion-polyelectrolyte complex coacervates that reasonably captures the phenomenon from recent experimental observations. The polyzwitterion is described by a combinatorial sequence of the four states in which each zwitterionic monomer can occupy: dipolar, quasi-cationic, quasi-anionic, and fully neutralized. We explore the effects of various modifiable chemical and physical properties of the polymers-such as, pKa of the pH-active charged group on the zwitterion, equilibrium constant of salt condensation on the permanently charged group on the zwitterion, degrees of polymerization, hydrophobicity (via the Flory-Huggins interaction parameter), and dipole lengths-on the window of complexation across many stoichiometric mixing ratios of polyzwitterion and polyelectrolyte. The properties that determine the net charge of the polyzwitterion have the strongest effect on the pH range in which polyzwitterion-polyelectrolyte complexation occurs. We finish with general guidance for those interested in molecular design of polyzwitterion-polyelectrolyte complex coacervates and opportunities for future investigation.
Collapse
Affiliation(s)
- Samuel C Hoover
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Khatcher O Margossian
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Rush University Medical Center and John H. Stroger Hospital of Cook County, both in Chicago, IL 60612, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Beyer D, Holm C. Unexpected Two-Stage Swelling of Weak Polyelectrolyte Brushes with Divalent Counterions. ACS Macro Lett 2024; 13:1185-1191. [PMID: 39173189 DOI: 10.1021/acsmacrolett.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We use particle-based, coarse-grained simulations to study the influence of divalent counterions on a weak polyelectrolyte brush. Our simulations show a profound influence of even small concentrations of divalent salt on the titration behavior of the brush, which is shown to be a combined effect of electrostatic interactions and the Donnan effect. Furthermore, we examine the partitioning of mono- and divalent counterions into the brush. We demonstrate the preferred uptake of divalent ions by the brush, which is further enhanced by electrostatic correlation effects. Finally, our simulations reveal a hitherto unobserved two-stage swelling of the brush as a function of the pH in the presence of divalent salt. This phenomenon arises as a consequence of charge regulation and ion partitioning.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Colla T, Bakhshandeh A, Levin Y. Charge regulation of nanoparticles in the presence of multivalent electrolytes. J Chem Phys 2024; 161:094103. [PMID: 39225518 DOI: 10.1063/5.0220654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
We explore the charge regulation (CR) of spherical nanoparticles immersed in an asymmetric electrolyte of a specified pH. Using a recently developed reactive canonical Monte Carlo (MC) simulation method, titration isotherms are obtained for suspensions containing monovalent, divalent, and trivalent coions. A theory based on the modified Poisson-Boltzmann approximation, which incorporates the electrostatic ion solvation free energy and discrete surface charge effects, is used to compare with the simulation results. A remarkably good agreement is found without any fitting parameters, both for the ion distributions and titration curves, suggesting that ionic correlations between coions and hydronium ions at the nanoparticle surface play only a minor role in determining the association equilibrium between hydroniums and the functional sites on the nanoparticle surface. On the other hand, if suspension contains multivalent counterions, we observe a large deviation between theory and simulations, showing that the electrostatic correlations between counterions and hydronium ions at the nanoparticle surface are very significant and must be properly taken into account to correctly describe CR for such solutions.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | - Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Blanco PM, Košovan P. The explicit bonding reaction ensemble Monte Carlo method. J Chem Phys 2024; 161:094906. [PMID: 39225533 DOI: 10.1063/5.0226122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
We present the explicit bonding Reaction ensemble Monte Carlo (eb-RxMC) method, designed to sample reversible bonding reactions in macromolecular systems in thermodynamic equilibrium. Our eb-RxMC method is based on the reaction ensemble method; however, its implementation differs from the latter by the representation of the reaction. In the eb-RxMC implementation, we are adding or deleting bonds between existing particles, instead of inserting or deleting particles with different chemical identities. This new implementation makes the eb-RxMC method suitable for simulating the formation of reversible linkages between macromolecules, which would not be feasible with the original implementation. To enable coupling of our eb-RxMC algorithm with molecular dynamics algorithm for the sampling of the configuration space, we biased the sampling of reactions only within a certain inclusion radius. We validated our algorithm using a set of ideally behaving systems undergoing dimerization and polycondensation reactions, for which analytical results are available. For dimerization reactions with various equilibrium constants and initial compositions, the degree of conversion measured in our simulations perfectly matched the reference values given by the analytical equations. We also showed that this agreement is not affected by the arbitrary choice of the inclusion radius or the stiffness of the harmonic bond potential. Next, we showed that our simulations can correctly match the analytical results for the distribution of the degree of polymerization and end-to-end distance of ideal chains in polycondensation reactions. Altogether, we demonstrated that our eb-RxMC simulations correctly sample both reaction and configuration spaces of these reference systems, opening the door to future simulations of more complex interacting macromolecular systems.
Collapse
Affiliation(s)
- Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Department of Physics, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
5
|
Lee S, Walker PJ, Velling SJ, Chen A, Taylor ZW, Fiori CJBM, Gandhi V, Wang ZG, Greer JR. Molecular control via dynamic bonding enables material responsiveness in additively manufactured metallo-polyelectrolytes. Nat Commun 2024; 15:6850. [PMID: 39127713 PMCID: PMC11316739 DOI: 10.1038/s41467-024-50860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Metallo-polyelectrolytes are versatile materials for applications like filtration, biomedical devices, and sensors, due to their metal-organic synergy. Their dynamic and reversible electrostatic interactions offer high ionic conductivity, self-healing, and tunable mechanical properties. However, the knowledge gap between molecular-level dynamic bonds and continuum-level material properties persists, largely due to limited fabrication methods and a lack of theoretical design frameworks. To address this critical gap, we present a framework, combining theoretical and experimental insights, highlighting the interplay of molecular parameters in governing material properties. Using stereolithography-based additive manufacturing, we produce durable metallo-polyelectrolytes gels with tunable mechanical properties based on metal ion valency and polymer charge sparsity. Our approach unveils mechanistic insights into how these interactions propagate to macroscale properties, where higher valency ions yield stiffer, tougher materials, and lower charge sparsity alters material phase behavior. This work enhances understanding of metallo-polyelectrolytes behavior, providing a foundation for designing advanced functional materials.
Collapse
Affiliation(s)
- Seola Lee
- Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
| | - Pierre J Walker
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Seneca J Velling
- Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Amylynn Chen
- Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Zane W Taylor
- Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Cyrus J B M Fiori
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Vatsa Gandhi
- Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| | - Julia R Greer
- Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA
| |
Collapse
|
6
|
Beyer D, Torres PB, Pineda SP, Narambuena CF, Grad JN, Košovan P, Blanco PM. pyMBE: The Python-based molecule builder for ESPResSo. J Chem Phys 2024; 161:022502. [PMID: 38995083 DOI: 10.1063/5.0216389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Paola B Torres
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Sebastian P Pineda
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Claudio F Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Jean-Noël Grad
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Department of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
7
|
Pineda S, Staňo R, Murmiliuk A, Blanco PM, Montes P, Tošner Z, Groborz O, Pánek J, Hrubý M, Štěpánek M, Košovan P. Charge Regulation Triggers Condensation of Short Oligopeptides to Polyelectrolytes. JACS AU 2024; 4:1775-1785. [PMID: 38818083 PMCID: PMC11134362 DOI: 10.1021/jacsau.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Electrostatic interactions between charged macromolecules are ubiquitous in biological systems, and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interactions, experimental evidence supporting such a view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: (1) practically nonionized and free in solution; (2) highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.
Collapse
Affiliation(s)
- Sebastian
P. Pineda
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Anastasiia Murmiliuk
- Jülich
Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, Garching 85748, Germany
| | - Pablo M. Blanco
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
- Department
of Material Science and Physical Chemistry, Research Institute of
Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, Barcelona 08028, Spain
- Department of Physics, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Patricia Montes
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zdeněk Tošner
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Ondřej Groborz
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Jiří Pánek
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Štěpánek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| |
Collapse
|
8
|
Bong JH, Grebenchuk S, Nikolaev KG, Chee CPT, Yang K, Chen S, Baranov D, Woods CR, Andreeva DV, Novoselov KS. Graphene oxide-DNA/graphene oxide-PDDA sandwiched membranes with neuromorphic function. NANOSCALE HORIZONS 2024; 9:863-872. [PMID: 38533738 DOI: 10.1039/d3nh00570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.
Collapse
Affiliation(s)
- Jia Hui Bong
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Sergey Grebenchuk
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Konstantin G Nikolaev
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Celestine P T Chee
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Kou Yang
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Siyu Chen
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Denis Baranov
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Colin R Woods
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
9
|
G Lopez C, Matsumoto A, Shen AQ. Dilute polyelectrolyte solutions: recent progress and open questions. SOFT MATTER 2024; 20:2635-2687. [PMID: 38427030 DOI: 10.1039/d3sm00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are significantly different from those of electrically neutral polymers. The aim of this article is to highlight key results and some outstanding questions in the polyelectrolyte research from recent literature. We focus on the influence of electrostatics on conformational and hydrodynamic properties of polyelectrolyte chains. A compilation of experimental results from the literature reveals significant disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude this review by listing some key research challenges in order to fully understand the conformation and dynamics of polyelectrolytes in solutions.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
10
|
Bakhshandeh A, Levin Y. On the Validity of Constant pH Simulations. J Chem Theory Comput 2024; 20:1889-1896. [PMID: 38359410 DOI: 10.1021/acs.jctc.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Constant pH (cpH) simulations are now a standard tool for investigating charge regulation in coarse-grained models of polyelectrolytes and colloidal systems. Originally developed for studying solutions with implicit ions, extending this method to systems with explicit ions or solvents presents several challenges. Ensuring proper charge neutrality within the simulation cell requires performing titration moves in sync with the insertion or deletion of ions, a crucial aspect often overlooked in the literature. Contrary to the prevailing views, cpH simulations are inherently grand-canonical, meaning that the controlled pH is that of the reservoir. The presence of the Donnan potential between the implicit reservoir and the simulation cell introduces significant differences between titration curves calculated for open and closed systems; the pH of an isolated (closed) system is different from the pH of the reservoir for the same protonation state of the polyelectrolyte. To underscore this point, in this paper, we will compare the titration curves calculated using the usual cpH algorithm with those from the exact canonical simulation algorithm. In the latter case, titration moves adhere to the correct detailed balance condition, and pH is calculated using the recently introduced surface Widom insertion algorithm. Our findings reveal a very significant difference between the titration isotherms obtained using the standard cpH algorithm and the canonical titration algorithm, emphasizing the importance of using the correct simulation approach when studying charge regulation of polyelectrolytes, proteins, and colloidal particles.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa P.O. Box 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa P.O. Box 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Staňo R, van Lente J, Lindhoud S, Košovan P. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. Macromolecules 2024; 57:1383-1398. [PMID: 38370910 PMCID: PMC10867894 DOI: 10.1021/acs.macromol.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jéré
J. van Lente
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
12
|
Strauch C, Schneider S. Monte Carlo simulation of the ionization and uptake behavior of cationic oligomers into pH-responsive polyelectrolyte microgels of opposite charge - a model for oligopeptide uptake and release. SOFT MATTER 2024; 20:1263-1274. [PMID: 38236145 DOI: 10.1039/d3sm01426f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
External stimuli can tune the uptake and release of guest molecules in microgels. Especially their pH responsiveness makes microgels exciting candidates for drug delivery systems. When both microgel and guest molecules are pH-responsive, predicting the electrostatically driven uptake can be complex since the ionization depends on many parameters. In this work, we performed Metropolis Monte Carlo simulations while systematically varying the pK of the monomers, the concentrations of microgel and guest molecules to obtain a better understanding of the uptake of weak cationic oligomers as a model for oligopeptides into a weak anionic polyelectrolyte microgel. Further, we varied the chain length of the oligomers. The polyelectrolyte networks can take up oligomers when both the network and the oligomers are charged. The presence of both species in the system leads to a mutual enhancement of their ionization. The uptake induces a release of counterions and results in complex formation between the oligomers and the network, leading to the collapse of the networks. Longer oligomers enhance the ionization of the network and, therefore, the complexation. A higher microgel concentration increases the uptake only around the isoelectric point but prevents the uptake due to lower entropy gain at counterion release at higher pH. The results give an insight into the uptake of cationic oligomers into oppositely charged polyelectrolyte microgels and provide hints for the design of anionic microgels as carriers for guest molecules e.g. antimicrobial peptides.
Collapse
Affiliation(s)
- Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| |
Collapse
|
13
|
Kumari S, Podgornik R. On the nature of screening in charge-regulated macroion solutions. J Chem Phys 2024; 160:014905. [PMID: 38180260 DOI: 10.1063/5.0187324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
We present a derivation of the screening length for a solution containing a charge-regulated macroion, e.g. protein, with its counterions. We show that it can be obtained directly from the second derivatives of the total free energy by taking recourse to the "uncertainty relation" of the Legendre transform, which connects the Hessians or the local curvatures of the free energy as a function of density and its Legendre transform, i.e., osmotic pressure, as a function of chemical potentials. Based on the Fowler-Guggenheim-Frumkin model of charge regulation, we then analyze the "screening resonance" and the "overscreening" of the screening properties of the charge-regulated macroion solution.
Collapse
Affiliation(s)
- Sunita Kumari
- Department of Physics, Indian Institute of Technology, Jodhpur 342037, India
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
López-Flores L, de la Cruz MO. Induced phase transformation in ionizable colloidal nanoparticles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:122. [PMID: 38060163 PMCID: PMC10703989 DOI: 10.1140/epje/s10189-023-00386-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Acid-base equilibria directly influence the functionality and behavior of particles in a system. Due to the ionizing effects of acid-base functional groups, particles will undergo charge exchange. The degree of ionization and their intermolecular and electrostatic interactions are controlled by varying the pH and salt concentration of the solution in a system. Although the pH can be tuned in experiments, it is hard to model this effect using simulations or theoretical approaches. This is due to the difficulty in treating charge regulation and capturing the cooperative effects in a colloidal suspension with Coulombic interaction. In this work, we analyze a suspension of ionizable colloidal particles via molecular dynamics (MD) simulations, along with Monte Carlo simulations for charge regulation (MC-CR) and derive a phase diagram of the system as a function of pH. It is observed that as pH increases, particles functionalized with acid groups change their arrangement from face-centered cubic (FCC) packing to a disordered state. We attribute these transitions to an increase in the degree of charge polydispersity arising from an increase in pH. Our work shows that charge regulation leads to amorphous solids in colloids when the mean nanoparticle charge is sufficiently high.
Collapse
Affiliation(s)
- Leticia López-Flores
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
15
|
Gallegos A, Müller M, Wu J. Single-chain simulation of Ising density functional theory for weak polyelectrolytes. J Chem Phys 2023; 159:214902. [PMID: 38047517 DOI: 10.1063/5.0175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Conventional theories of weak polyelectrolytes are either computationally prohibitive to account for the multidimensional inhomogeneity of polymer ionization in a liquid environment or oversimplistic in describing the coupling effects of ion-explicit electrostatic interactions and long-range intrachain correlations. To bridge this gap, we implement the Ising density functional theory (iDFT) for ionizable polymer systems using the single-chain-in-mean-field algorithm. The single-chain-in-iDFT (sc-iDFT) shows significant improvements over conventional mean-field methods in describing segment-level dissociation equilibrium, specific ion effects, and long-range intrachain correlations. With an explicit consideration of the fluctuations of polymer configurations and the position-dependent ionization of individual polymer segments, sc-iDFT provides a faithful description of the structure and thermodynamic properties of inhomogeneous weak polyelectrolyte systems across multiple length scales.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
16
|
Ruixuan H, Majee A, Dobnikar J, Podgornik R. Electrostatic interactions between charge regulated spherical macroions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:115. [PMID: 38019363 DOI: 10.1140/epje/s10189-023-00373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
We study the interaction between two charge regulating spherical macroions with dielectric interior and dissociable surface groups immersed in a monovalent electrolyte solution. The charge dissociation is modelled via the Frumkin-Fowler-Guggenheim isotherm, which allows for multiple adsorption equilibrium states. The interactions are derived from the solutions of the mean-field Poisson-Boltzmann type theory with charge regulation boundary conditions. For a range of conditions we find symmetry breaking transitions from symmetric to asymmetric charge distribution exhibiting annealed charge patchiness, which results in like-charge attraction even in a univalent electrolyte-thus fundamentally modifying the nature of electrostatic interactions in charge-stabilized colloidal suspensions.
Collapse
Affiliation(s)
- Hu Ruixuan
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arghya Majee
- Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
| | - Jure Dobnikar
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Songshan Lake Materials Laboratory, Guangdong, 523808, Dongguan, China
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Abstract
We discuss problems associated with the notion of pH in heterogeneous systems. For homogeneous systems, standardization protocols lead to a well-defined quantity, which, although different from Sørensen's original idea of pH, is well reproducible and has become accepted as the measure of the "hydrogen potential". On the other hand, for heterogeneous systems, pH defined in terms of the chemical part of the electrochemical activity is thermodynamically inconsistent and runs afoul of the Gibbs-Guggenheim principle that forbids splitting of the electrochemical potential into separate chemical and electrostatic parts, since only the sum of two has any thermodynamic meaning. The problem is particularly relevant for modern simulation methods which involve charge regulation of proteins, polyelectrolytes, nanoparticles, colloidal suspensions, and so forth. In this paper, we show that titration isotherms calculated using semigrand canonical simulations can be very different from the ones obtained using canonical reactive Monte Carlo simulations.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
18
|
Levin Y, Bakhshandeh A. A new method for reactive constant pH simulations. J Chem Phys 2023; 159:111101. [PMID: 37721322 DOI: 10.1063/5.0166840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
We present a simulation method that allows us to calculate the titration curves for systems undergoing protonation/deprotonation reactions-such as charged colloidal suspensions with acidic/basic surface groups, polyelectrolytes, polyampholytes, and proteins. The new approach allows us to simultaneously obtain titration curves both for systems in contact with salt and acid reservoir (semi-grand canonical ensemble) and for isolated suspensions (canonical ensemble). To treat the electrostatic interactions, we present a new method based on Ewald summation-which accounts for the existence of both Bethe and Donnan potentials within the simulation cell. We show that the Donnan potential dramatically affects the pH of a suspension. Counterintuitively, we find that in suspensions with a large volume fraction of nanoparticles and low ionic strength, the number of deprotonated groups can be 100% larger in an isolated system, compared to a system connected to a reservoir by a semi-permeable membrane-both systems being at exactly the same pH.
Collapse
Affiliation(s)
- Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Schlaich A, Tyagi S, Kesselheim S, Sega M, Holm C. Renormalized charge and dielectric effects in colloidal interactions: a numerical solution of the nonlinear Poisson-Boltzmann equation for unknown boundary conditions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:80. [PMID: 37695466 PMCID: PMC10495524 DOI: 10.1140/epje/s10189-023-00334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, introduced more than 70 years ago, is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often supplemented by Alexander's prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the nonlinear Poisson-Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al. in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD) simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with the expected behavior. We furthermore find that the influence of polarization becomes important only when the Debye layers overlap significantly.
Collapse
Affiliation(s)
- Alexander Schlaich
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | | | - Stefan Kesselheim
- Forschungszentrum Jülich (FZJ), Jülich Supercomputing Centre, 52428 Jülich, Germany
| | - Marcello Sega
- Department of Chemical Engineering, University College London, London, WC1E 7JE UK
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Khunpetch P, Majee A, Ruixuan H, Podgornik R. Curvature effects in interfacial acidity of amphiphilic vesicles. Phys Rev E 2023; 108:024402. [PMID: 37723726 DOI: 10.1103/physreve.108.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
We analyze the changes in the vicinal acidity (pH) at a spherical amphiphilic membrane. The membrane is assumed to contain solvent accessible, embedded, dissociable, charge-regulated moieties. Basing our approach on the linear Debye-Hückel approximation, as well as on the nonlinear Poisson-Boltzmann theory, together with the general Frumkin-Fowler-Guggenheim adsorption isotherm model of the charge-regulation process, we analyze and review the dependence of the local pH on the position, as well as bulk electrolyte concentration, bulk pH, and curvature of the amphiphilic single membrane vesicle. With appropriately chosen adsorption parameters of the charge-regulation model, we find a good agreement with the available experimental data.
Collapse
Affiliation(s)
- Petch Khunpetch
- Department of Physics, Faculty of Science, Ramkhamhaeng University, Bang Kapi, 10240 Bangkok, Thailand
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Arghya Majee
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Hu Ruixuan
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang, China
| |
Collapse
|
21
|
Bakhshandeh A, Levin Y. Charge fluctuations in charge-regulated systems: dependence on statistical ensemble. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:65. [PMID: 37522995 DOI: 10.1140/epje/s10189-023-00325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
We investigate charge regulation of nanoparticles in concentrated suspensions, focusing on the effect of different statistical ensembles. We find that the choice of ensemble does not affect the mean charge of nanoparticles, but significantly alters the magnitude of its fluctuation. Specifically, we compared the behaviors of colloidal charge fluctuations in the semi-grand canonical and canonical ensembles and identified significant differences between the two. The choice of ensemble-whether the system is isolated or is in contact with a reservoir of acid and salt-will, therefore, affect the Kirkwood-Shumaker fluctuation-induced force inside concentrated suspensions. Our results emphasize the importance of selecting an appropriate ensemble that accurately reflects the experimental conditions when studying fluctuation-induced forces between polyelectrolytes, proteins, and colloidal particles in concentrated suspensions.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
22
|
Liu Z, Keum JK, Li T, Chen J, Hong K, Wang Y, Sumpter BG, Advincula R, Kumar R. Anti-polyelectrolyte and polyelectrolyte effects on conformations of polyzwitterionic chains in dilute aqueous solutions. PNAS NEXUS 2023; 2:pgad204. [PMID: 37424896 PMCID: PMC10323900 DOI: 10.1093/pnasnexus/pgad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Polyzwitterions (PZs) are considered as model synthetic analogs of intrinsically disordered proteins. Based on this analogy, PZs in dilute aqueous solutions are expected to attain either globular (i.e. molten, compact) or random coil conformations. Addition of salt is expected to open these conformations. To the best of our knowledge, these hypotheses about conformations of PZs have never been verified. In this study, we test these hypotheses by studying effects of added salt [potassium bromide (KBr)] on gyration and hydrodynamic radii of poly(sulfobetaine methacrylate) in dilute aqueous solutions using dynamic light scattering and small-angle X-ray scattering, respectively. Effects of zwitteration are revealed by direct comparisons of the PZs with the polymers of the same backbone but containing (1) no explicit charges on side groups such as poly(2-dimethylaminoethyl methacrylate)s and (2) explicit cationic side groups with tertiary amino bromide pendants. Zeta-potential measurements, transmission electron microscopy, and ab initio molecular dynamics simulations reveal that the PZs acquire net positive charge in near salt-free conditions due to protonation but retain coiled conformations. Added KBr leads to nonmonotonic changes exhibiting an increase followed by a decrease in radius of gyration (and hydrodynamic radius), which are called antipolyelectrolyte and polyelectrolyte effects, respectively. Charge regulation and screening of charge-charge interactions are discussed in relation to the antipolyelectrolyte and polyelectrolyte effects, respectively, which highlight the importance of salt in affecting net charge and conformations of PZs.
Collapse
Affiliation(s)
| | | | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rigoberto Advincula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
23
|
Kargaki ME, Arfara F, Iatrou H, Tsitsilianis C. pH-Sensitive Poly(acrylic acid)-g-poly(L-lysine) Charge-Driven Self-Assembling Hydrogels with 3D-Printability and Self-Healing Properties. Gels 2023; 9:512. [PMID: 37504391 PMCID: PMC10379232 DOI: 10.3390/gels9070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.
Collapse
Affiliation(s)
- Maria-Eleni Kargaki
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Foteini Arfara
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | |
Collapse
|
24
|
Blanco PM, Narambuena CF, Madurga S, Mas F, Garcés JL. Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes. Polymers (Basel) 2023; 15:2680. [PMID: 37376324 PMCID: PMC10302168 DOI: 10.3390/polym15122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.
Collapse
Affiliation(s)
- Pablo M. Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Claudio F. Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos, Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina;
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Josep L. Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO, Lleida University (UdL), 25003 Lleida, Catalonia, Spain;
| |
Collapse
|
25
|
Bakhshandeh A, Frydel D, Levin Y. Theory of Charge Regulation of Colloidal Particles in Electrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13963-13971. [PMID: 36318200 DOI: 10.1021/acs.langmuir.2c02313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present a theory that enables us to (i) calculate the effective surface charge of colloidal particles and (ii) efficiently obtain titration curves for different salt concentrations. The theory accounts for the shift of pH of solution due to the presence of 1:1 electrolyte. It also accounts self-consistently for the electrostatic potential produced by the deprotonated surface groups. To examine the accuracy of the theory, we have performed extensive reactive Monte Carlo simulations, which show excellent agreement between theory and simulations without any adjustable parameters.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RSBrazil
| | - Derek Frydel
- Department of Chemistry, Universidad Técnica Federico Santa María, Campus San Joaquin, 7820275, Santiago, Chile
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RSBrazil
| |
Collapse
|
26
|
Lunkad R, Biehl P, Murmiliuk A, Blanco PM, Mons P, Štěpánek M, Schacher FH, Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective p Ka Values of Various Polyzwitterions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Anastasiia Murmiliuk
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Pablo M. Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Peter Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
27
|
Nová L, Uhlík F. Salt Counterion Valency Controls the Ionization and Morphology of Weak Polyelectrolyte Miktoarm Stars. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| |
Collapse
|
28
|
Zhukouskaya H, Blanco PM, Černochová Z, Čtveráčková L, Staňo R, Pavlova E, Vetrík M, Černoch P, Filipová M, Šlouf M, Štěpánek M, Hrubý M, Košovan P, Pánek J. Anionically Functionalized Glycogen Encapsulates Melittin by Multivalent Interaction. Biomacromolecules 2022; 23:3371-3382. [PMID: 35768319 DOI: 10.1021/acs.biomac.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed acid-functionalized glycogen conjugates as supramolecular carriers for efficient encapsulation and inhibition of a model cationic peptide melittin─the main component of honeybee venom. For this purpose, we synthesized and characterized a set of glycogens, functionalized to various degrees by several different acid groups. These conjugates encapsulate melittin up to a certain threshold amount, beyond which they precipitate. Computer simulations showed that sufficiently functionalized conjugates electrostatically attract melittin, resulting in its efficient encapsulation in a broad pH range around the physiological pH. Hemolytic assays confirmed in vitro that the effective inhibition of melittin's hemolytic activity occurs for highly functionalized samples, whereas no inhibition is observed when using low-functionalized conjugates. It can be concluded that functional glycogens are promising carriers for cationic molecular cargos or antidotes against animal venoms under conditions, in which suitable properties such as biodegradability and biocompatibility are crucial.
Collapse
Affiliation(s)
- Hanna Zhukouskaya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lucie Čtveráčková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Roman Staňo
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Vetrík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
29
|
Ortega-Zamora C, González-Sálamo J, Perretti MD, Santana D, Carrillo R, Hernández-Borges J. Chain-Shattering Polymers as Degradable Microdispersive Solid-Phase Extraction Sorbents. Anal Chem 2022; 94:9065-9073. [PMID: 35695755 PMCID: PMC9244869 DOI: 10.1021/acs.analchem.2c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A chain-shattering
polymer (CSP) has been proposed as a microdispersive
solid-phase extraction (μdSPE) sorbent in a proof-of-concept
study of degradable materials for analytical purposes. The responsive
CSP was synthesized from 1,3,5-tris(bromomethyl)-2-nitrobenzene acting
as the self-immolative trigger responsive unit and 2,6-naphthalenedicarboxylic
acid as aromatic linker to enhance noncovalent aromatic interactions
with the analytes. The CSP was characterized and applied as a μdSPE
sorbent of a group of plasticizers, which were selected as model analytes,
from different types of environmental water samples (tap, waste, and
spring waters). Gas chromatography coupled to mass spectrometry detection
was used for analyte determination. Mean recovery values were in the
range of 80%–118% with RSD values below 22%. After the extraction,
the polymer could be efficiently degraded by UV irradiation or by
chemical reduction, recovering the aromatic linker. This work has
proved the potential of CSPs as recyclable sorbents, paving the way
to more environmentally benign analytical procedures.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.,Department of Chemistry, Sapienza University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain
| | - David Santana
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| |
Collapse
|
30
|
Mella M, Tagliabue A. Impact of Chemically Specific Interactions between Anions and Weak Polyacids on Chain Ionization, Conformations, and Solution Energetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (I), Italy
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (I), Italy
| |
Collapse
|
31
|
Nap RJ, Qiao B, Palmer LC, Stupp SI, Olvera de la Cruz M, Szleifer I. Acid-Base Equilibrium and Dielectric Environment Regulate Charge in Supramolecular Nanofibers. Front Chem 2022; 10:852164. [PMID: 35372273 PMCID: PMC8965714 DOI: 10.3389/fchem.2022.852164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Peptide amphiphiles are a class of molecules that can self-assemble into a variety of supramolecular structures, including high-aspect-ratio nanofibers. It is challenging to model and predict the charges in these supramolecular nanofibers because the ionization state of the peptides are not fixed but liable to change due to the acid-base equilibrium that is coupled to the structural organization of the peptide amphiphile molecules. Here, we have developed a theoretical model to describe and predict the amount of charge found on self-assembled peptide amphiphiles as a function of pH and ion concentration. In particular, we computed the amount of charge of peptide amphiphiles nanofibers with the sequence C16 − V2A2E2. In our theoretical formulation, we consider charge regulation of the carboxylic acid groups, which involves the acid-base chemical equilibrium of the glutamic acid residues and the possibility of ion condensation. The charge regulation is coupled with the local dielectric environment by allowing for a varying dielectric constant that also includes a position-dependent electrostatic solvation energy for the charged species. We find that the charges on the glutamic acid residues of the peptide amphiphile nanofiber are much lower than the same functional group in aqueous solution. There is a strong coupling between the charging via the acid-base equilibrium and the local dielectric environment. Our model predicts a much lower degree of deprotonation for a position-dependent relative dielectric constant compared to a constant dielectric background. Furthermore, the shape and size of the electrostatic potential as well as the counterion distribution are quantitatively and qualitatively different. These results indicate that an accurate model of peptide amphiphile self-assembly must take into account charge regulation of acidic groups through acid–base equilibria and ion condensation, as well as coupling to the local dielectric environment.
Collapse
Affiliation(s)
- Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- *Correspondence: Rikkert J. Nap, ; Igal Szleifer,
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Liam C. Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Samuel I. Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, United States
- Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL, United States
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- *Correspondence: Rikkert J. Nap, ; Igal Szleifer,
| |
Collapse
|
32
|
Rud OV, Kazakov AD, Nova L, Uhlik F. Polyelectrolyte Hydrogels as Draw Agents for Desalination of Solutions with Multivalent Ions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Oleg V. Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Praha 2 128 00, Czech Republic
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Alexander D. Kazakov
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Praha 2 128 00, Czech Republic
| | - Lucie Nova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Praha 2 128 00, Czech Republic
| | - Filip Uhlik
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Praha 2 128 00, Czech Republic
| |
Collapse
|
33
|
Curk T, Yuan J, Luijten E. Accelerated simulation method for charge regulation effects. J Chem Phys 2022; 156:044122. [PMID: 35105090 DOI: 10.1063/5.0066432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The net charge of solvated entities, ranging from polyelectrolytes and biomolecules to charged nanoparticles and membranes, depends on the local dissociation equilibrium of individual ionizable groups. Incorporation of this phenomenon, charge regulation (CR), in theoretical and computational models requires dynamic, configuration-dependent recalculation of surface charges and is therefore typically approximated by assuming constant net charge on particles. Various computational methods exist that address this. We present an alternative, particularly efficient CR Monte Carlo method (CR-MC), which explicitly models the redistribution of individual charges and accurately samples the correct grand-canonical charge distribution. In addition, we provide an open-source implementation in the large-scale Atomic/Molecular Massively Parallel Simulator molecular dynamics (MD) simulation package, resulting in a hybrid MD/CR-MC simulation method. This implementation is designed to handle a wide range of implicit-solvent systems that model discreet ionizable groups or surface sites. The computational cost of the method scales linearly with the number of ionizable groups, thereby allowing accurate simulations of systems containing thousands of individual ionizable sites. By matter of illustration, we use the CR-MC method to quantify the effects of CR on the nature of the polyelectrolyte coil-globule transition and on the effective interaction between oppositely charged nanoparticles.
Collapse
Affiliation(s)
- Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiaxing Yuan
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
34
|
Lunkad R, Barroso da Silva FL, Košovan P. Both Charge-Regulation and Charge-Patch Distribution Can Drive Adsorption on the Wrong Side of the Isoelectric Point. J Am Chem Soc 2022; 144:1813-1825. [DOI: 10.1021/jacs.1c11676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Fernando L. Barroso da Silva
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| |
Collapse
|
35
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
36
|
Mella M, Tagliabue A, Mollica L, Vaghi S, Izzo L. Inducing pH control over the critical micelle concentration of zwitterionic surfactants via polyacids adsorption: Effect of chain length and structure. J Colloid Interface Sci 2022; 606:1636-1651. [PMID: 34500165 DOI: 10.1016/j.jcis.2021.07.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS The critical concentration above which micelles form from zwitterionic surfactant solutions and their thermodynamic stability is affected by the interaction with weak Brønsted polyacid chains (An) via the formation of charged hydrogen bonds between the latter and anionic moieties. EXPERIMENTS The interaction between zwitterionic micelles and polyacids capable of forming hydrogen bonds, and its dependence on the environmental pH and polymer structure, has been studied with constant-pH simulations and a restricted primitive model for all electrolytes. FINDINGS At low pH, the formation of polyacid/micelle complexes is witnessed independently of the polymer size or structure, so that the concentration above which micelles form is substantially decreased compared to polyacid-free cases. Upon rising pH, polymer desorption takes place within a narrow range of pH values, its location markedly depending on the size and structure of polyacids, and on the relative disposition between headgroup charged moieties. Thus, the desorption onset for long linear polyacids (A60) interacting with sulphobetainic headgroups is roughly two pH units higher than for six decameric chains (6A10) adsorbed onto micelles bearing phosphorylcholinic headgroups. This effect, together with the preferential desorption of chain ends at intermediate pH, may be exploited for drug delivery purposes or building advanced metamaterials.
Collapse
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy.
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| | - Luca Mollica
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20133 Milano, Italy
| | - Stefano Vaghi
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Universitá degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
37
|
Gallegos A, Ong GMC, Wu J. Ising density functional theory for weak polyelectrolytes with strong coupling of ionization and intrachain correlations. J Chem Phys 2021; 155:241102. [PMID: 34972389 DOI: 10.1063/5.0066774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a theoretical framework for weak polyelectrolytes by combining the polymer density functional theory with the Ising model for charge regulation. The so-called Ising density functional theory provides an accurate description of the effects of polymer conformation on the ionization of individual segments and is able to account for both the intra- and interchain correlations due to the excluded-volume effects, chain connectivity, and electrostatic interactions. Theoretical predictions of the titration behavior and microscopic structure of ionizable polymers are found to be in excellent agreement with the experiment.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
38
|
Polyelectrolyte-nanoparticle mutual charge regulation and its influence on their complexation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Gallegos A, Ong GMC, Wu J. Thermodynamic non-ideality in charge regulation of weak polyelectrolytes. SOFT MATTER 2021; 17:9221-9234. [PMID: 34596201 DOI: 10.1039/d1sm00848j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer ionization differs from that for their monomeric counterparts due to intramolecular correlations. Such effects are conventionally described in terms of the site-binding model that accounts for short-range interactions between neighboring sites. With an apparent equilibrium constant for each ionizable group and the nearest-neighbor energy as adjustable parameters, the site-binding method is useful to correlate experimental titration curves when the site-site interactions are insignificant at long ranges. This work aims to describe the electrostatic behavior of weak polyelectrolytes in aqueous solutions on the basis of the intrinsic equilibrium constants of the individual ionizable groups and solution conditions underlying the thermodynamic non-ideality. A molecular thermodynamic model is proposed for the protonation of weak polyelectrolytes by incorporating classical density functional theory into the site-binding model to account for the effects of the local ionic environment on both inter-chain and intra-chain correlations. By an extensive comparison of theoretical predictions with experimental titration curves, we demonstrate that the thermodynamic model is able to quantify the ionization behavior of weak polyelectrolytes over a broad range of molecular architectures and solution conditions.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
40
|
Yuan J, Wang Y. Conformation and Ionization Behavior of Charge-Regulating Polyelectrolyte Brushes in a Poor Solvent. J Phys Chem B 2021; 125:10589-10596. [PMID: 34494845 DOI: 10.1021/acs.jpcb.1c04451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the structural response of weak polyelectrolyte brushes upon external stimuli is crucial for their applications ranging from modifying surface properties to the development of smart and intelligent materials. In this work, coarse-grained molecular dynamics simulations were carried out to investigate the conformation and ionization behavior of charge-regulating polyelectrolyte brushes under poor solvent conditions, using an implicit solvent model. The results show that, while the thickness of a sparse polyelectrolyte brush shows a similar behavior to that of a single chain, namely, a monotonic change as a function of solvent quality (modeled by an effective segment-segment attraction strength parameter) and solution pH, a dense polyelectrolyte brush exhibits more complex behavior. An unexpected reexpansion is observed when the effective segment-segment attraction strength is further increased, especially in the case of a high pH. In the latter case, strong attraction in polymer segments promotes the formation of large, interchain, cylindrical aggregates, leading to an increase in brush thickness.
Collapse
Affiliation(s)
- Jiaxing Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwei Wang
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan.,Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
41
|
Hofzumahaus C, Strauch C, Schneider S. Monte Carlo simulations of weak polyampholyte microgels: pH-dependence of conformation and ionization. SOFT MATTER 2021; 17:6029-6043. [PMID: 34076026 DOI: 10.1039/d1sm00433f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We performed Metropolis Monte Carlo simulations to investigate the impact of varying acid and base dissociation constants on the pH-dependent ionization and conformation of weak polyampholyte microgels under salt-free conditions and under explicit consideration of the chemical ionization equilibria of the acidic and basic groups and their electrostatic interaction. Irrespective of their relative acid and base dissociation constant, all of the microgels undergo a pH-dependent charge reversal from positive to negative with a neutral charge at the isoelectric point. This charge reversal is accompanied by a U-shaped swelling transition of the microgels with a minimum of their size at the point of charge neutrality. The width of the U-shaped swelling transition, however, is found to depend on the chosen relative acid and base dissociation constants through which the extent of the favorable electrostatic intramolecular interaction of the ionized acidic and basic groups is altered. The pH-dependent swelling transition of the microgels is found to become broader, the stronger the intramolecular electrostatic interaction of the oppositely charged ionized species is. In addition, the intramolecular charge compensation of the acidic and basic groups of the microgels allows their counterions to abandon the microgel and the associated gain in translational entropy further amplifies the broadening of the pH-dependent swelling transition. The analysis of the radial ionization profiles of the acidic and basic groups of the differently composed microgels reveals a variety of radial ionization patterns with a dependence on the overall charge of the microgels.
Collapse
Affiliation(s)
- C Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - C Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - S Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
42
|
Oyewusi HA, Huyop F, Wahab RA, Hamid AAA. In silico assessment of dehalogenase from Bacillus thuringiensis H2 in relation to its salinity-stability and pollutants degradation. J Biomol Struct Dyn 2021; 40:9332-9346. [PMID: 34014147 DOI: 10.1080/07391102.2021.1927846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased scientific interest has led to the rise in biotechnological uses of halophilic and halotolerant microbes for hypersaline wastewater bioremediation. Hence, this study performed molecular docking, molecular dynamic (MD) simulations, and validation by Molecular Mechanic Poisson-Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis H2. We aimed to identify the interactions of DehH2 with substrates haloacids, haloacetates, and chlorpyrifos under extreme salinity (35% NaCl). MD simulations revealed that DehH2 preferentially degraded haloacids and haloacetates (-6.3 to -4.7 kcal/mol) by forming three or four hydrogen bonds to the catalytic triad, Asp125, Arg201, and Lys202. Conversely, chlorpyrifos was the least preferred substrate in both MD simulations and MM-PBSA calculations. MD simulation results ranked the DehH2-L-2CP complex (RMSD □0.125-0.23 nm) as the most stable while the least was the DehH2-chlorpyrifos complex (RMSD 0.32 nm; RMSF 0.0 - 0.29). The order of stability was as follows: DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-chlorpyrifos. The MM-PBSA calculations further affirmed the DehH2-L-2CP complex's highest stability with the lowest binding energy of -45.14 kcal/mol, followed closely by DehH2-MCA (-41.21 kcal/mol), DehH2-D-2CP (-31.59 kcal/mol), DehH2-3CP (-30.75 kcal/mol), DehH2-2,2- DCP (-29.72 kcal/mol), DehH2-2,3-DCP (-22.20 kcal/mol) and DehH2-TCA (-18.46 kcal/mol). The positive binding energy of the DehH2-chlorpyrifos complex (+180.57 kcal/mol) proved the enzyme's non-preference for the substrate. The results ultimately illustrated the unique specificity of the DehH2 to degrade the above-said pollutants under a hypersaline condition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan Pahang, Malaysia
| |
Collapse
|
43
|
Staňo R, Košovan P, Tagliabue A, Holm C. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roman Staňo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell’Insubria, via Valleggio 9, 22100 Como, Italy
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
44
|
Curk T, Luijten E. Charge Regulation Effects in Nanoparticle Self-Assembly. PHYSICAL REVIEW LETTERS 2021; 126:138003. [PMID: 33861112 DOI: 10.1103/physrevlett.126.138003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles in solution acquire charge through the dissociation or association of surface groups. Thus, a proper description of their electrostatic interactions requires the use of charge-regulating boundary conditions rather than the commonly employed constant-charge approximation. We implement a hybrid Monte Carlo/molecular dynamics scheme that dynamically adjusts the charges of individual surface groups of objects while evolving their trajectories. Charge regulation effects are shown to qualitatively change self-assembled structures due to global charge redistribution, stabilizing asymmetric constructs. We delineate under which conditions the conventional constant-charge approximation may be employed and clarify the interplay between charge regulation and dielectric polarization.
Collapse
Affiliation(s)
- Tine Curk
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik Luijten
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Departments of Engineering Sciences & Applied Mathematics, Chemistry, and Physics & Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
45
|
Pérez-Chávez NA, Albesa AG, Longo GS. Thermodynamic Theory of Multiresponsive Microgel Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Néstor A. Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Alberto G. Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| |
Collapse
|
46
|
Eichhorn J, Gordievskaya YD, Kramarenko EY, Khokhlov AR, Schacher FH. pH-Dependent Structure of Block Copolymer Micelles Featuring a Polyampholyte Corona: A Combined Experimental and Theoretical Approach. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Yulia D. Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, Moscow 119991, Russia
- Institute of Advanced Energy Related Nanomaterials, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, Moscow 119991, Russia
- Institute of Advanced Energy Related Nanomaterials, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, Jena 07743, Germany
| |
Collapse
|
47
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021; 60:3882-3904. [PMID: 32589355 PMCID: PMC7894192 DOI: 10.1002/anie.202006457] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
Collapse
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- IRIS AdlershofHumboldt Universität zu BerlinZum Grossen Windkanal 612489BerlinGermany
| | - Jens Dernedde
- Charité-Universitätsmedizin BerlinInstitute of Laboratory MedicineClinical Chemistry, and PathobiochemistryCVK Augustenburger Platz 113353BerlinGermany
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood ResearchDepartment of Pathology and Laboratory MedicineLife Science InstituteDepartment of ChemistrySchool of Biomedical EngineeringUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| | - Gerd Multhaup
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| |
Collapse
|
48
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Cummings PT, Hall CK, Jackson G, Palmer JC. Keith E. Gubbins: A retrospective. AIChE J 2021. [DOI: 10.1002/aic.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Cummings
- Department of Chemical Engineering Vanderbilt University Nashville Tennessee USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - George Jackson
- Department of Chemical Engineering Imperial College London London UK
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering University of Houston Houston Texas USA
| |
Collapse
|
50
|
Blanco PM, Madurga S, Garcés JL, Mas F, Dias RS. Influence of macromolecular crowding on the charge regulation of intrinsically disordered proteins. SOFT MATTER 2021; 17:655-669. [PMID: 33215185 DOI: 10.1039/d0sm01475c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we study the coupling between ionization and conformational properties of two IDPs, histatin-5 and β-amyloid 42, in the presence of neutral and charged crowders. The latter is modeled to resemble bovine serum albumin (BSA). With this aim, semi-grand canonical Monte Carlo simulations are performed, so that the IDP charge is a dynamic property, undergoing protonation/deprotonation processes. Both ionization properties (global and specific amino acid charge and binding capacitance) and radius of gyration are analyzed in a large range of pH values and salt concentrations. Without crowder agents, the titration curve of histatin-5, a polycation, is salt-dependent while that of β-amyloid 42, a polyampholyte, is almost unaffected. The salt concentration is found to be particularly relevant at pH values where the protein binding capacitance (directly linked with charge fluctuation) is larger. Upon addition of neutral crowders, charge regulation is observed in histatin-5, while for β-amyloid 42 this effect is very small. The main mechanism for charge regulation is found to be the effective increase in the ionic strength due to the excluded volume. In the presence of charged crowders, a significant increase in the charge of both IDPs is observed in almost all the pH range. In this case, the IDP charge is altered not only by the increase in the effective ionic strength but also by its direct electrostatic interaction with the charged crowders.
Collapse
Affiliation(s)
- Pablo M Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Josep L Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO of Lleida University (UdL), Lleida, Catalonia, Spain
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Rita S Dias
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|