1
|
Lee W, Shin MJ, Kim S, Lee CE, Choi J, Koo HJ, Choi MJ, Kim JH, Kim K. Injectable composite hydrogels embedded with gallium-based liquid metal particles for solid breast cancer treatment via chemo-photothermal combination. Acta Biomater 2024; 180:140-153. [PMID: 38604467 DOI: 10.1016/j.actbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy. Eutectic gallium-indium LM particles were first stabilized with 1,2-Distearoyl-sn‑glycero-3-phosphoethanolamine (DSPE) lipids. They were then incorporated into an interpenetrating hydrogel network composed of thiolated gelatin conjugated with 6-mercaptopurine (MP) chemodrug and poly(ethylene glycol)-diacrylate. The resulted composite hydrogel exhibited sufficient capability to induce MDA-MB-231 breast cancer cell death through a multi-step mechanism: (1) hyperthermic cancer cell death due to temperature elevation by near-infrared laser irradiation via LM particles, (2) leakage of glutathione (GSH) and cleavage of disulfide bonds due to destruction of cancer cells. As a consequence, additional chemotherapy was facilitated by GSH, leading to accelerated release of MP within the tumor microenvironment. The effectiveness of our composite hydrogel system was evaluated both in vitro and in vivo, demonstrating significant tumor suppression and killing. These results demonstrate the potential of this injectable composite hydrogel for spatiotemporal cancer treatment. In conclusion, integration of PTT and chemotherapy within our hydrogel platform offers enhanced therapeutic efficacy, suggesting promising prospects for future clinical applications. STATEMENT OF SIGNIFICANCE: Our research pioneers a breakthrough in cancer treatments by developing an injectable hydrogel platform incorporating liquid metal (LM) particle-mediated photothermal therapy and 6-mercaptopurine (MP)-based chemotherapy. The combination of gallium-based LM and MP achieves synergistic anticancer effects, and our injectable composite hydrogel acts as a localized reservoir for specific delivery of both therapeutic agents. This platform induces a multi-step anticancer mechanism, combining NIR-mediated hyperthermic tumor death and drug release triggered by released glutathione from damaged cancer populations. The synergistic efficacy validated in vitro and in vivo studies highlights significant tumor suppression. This injectable composite hydrogel with synergistic therapeutic efficacy holds immense promise for biomaterial-mediated spatiotemporal treatment of solid tumors, offering a potent targeted therapy for triple negative breast cancers.
Collapse
Affiliation(s)
- Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
3
|
Wu H, Zhang G, Yang X. Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection. Talanta 2023; 259:124492. [PMID: 37011563 DOI: 10.1016/j.talanta.2023.124492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
An electrochemical biosensor based on iron tetroxide (Fe3O4)/carboxylated carbon nanotubes (MWCNTs-COOH)/gold nanoparticles (AuNPs) was designed for the detection of alpha-fetoprotein (AFP), which is often used as an important indicator for the early clinical diagnosis of liver cancer markers. The Fe3O4/MWCNTs-COOH nanocomposite was synthesized by a solvothermal method and it combined with gold nanoparticles (AuNPs) deposited at the constant potential on a glassy carbon electrode to form Fe3O4/MWCNTs-COOH/AuNPs, which intensifies the electrical signal while the large active sites enable more stable immobilization of the AFP monoclonal antibodies on the electrode. The electrochemical performance of Fe3O4/MWCNTs-COOH/AuNPs was investigated in detail and the electrochemical response signal after the immune reaction with the AFP antigen-antibody was recorded. The peak current Ip of the response signal is linearly proportional to the lgcAFP in the range of 1 pg mL-1-10 μg mL-1, with a detection limit of 1.09034 pg mL-1 and good performance in clinical sample testing. The proposed sensor has shown great application and development potential in clinical medicine field.
Collapse
|
4
|
Liu G, Liu J, Zhou H, Wang H. Recent advances in nanotechnology-enhanced biosensors for α-fetoprotein detection. Mikrochim Acta 2022; 190:3. [PMID: 36469175 DOI: 10.1007/s00604-022-05592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
α-Fetoprotein (AFP) is a kind of fetal protein that is related to tumor, the increasing concentration of which gives birth to a large variety of diseases, such as liver cancer. Therefore, the detection method with super sensitivity, high selectivity, and less time consumption under trace concentrations in early stage of diseases is becoming a necessity. In recent years, nanomaterials have been regarded as significant resources for the exploration of efficient biosensors with high sensitivity, selectivity, speed, as well as simple process, due to their excellent optical, electrical, and chemical properties. In this paper, we reviewed the research progress of AFP biosensors with enhanced sensitivity and selectivity by nanoparticles. Representative examples have also been displayed in this paper to expound the nanotechnologies utilized in the early detection of AFP. Furthermore, challenges of the clinical application of AFP biosensors based on nanotechnology have been elaborated, as well as the development opportunity in this field in the future. This review provides a comprehensive overview on the various nano-biosensor for AFP detection based on functional nanotechnology.
Collapse
Affiliation(s)
- Gengjun Liu
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Hong Zhou
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China. .,Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
5
|
Ebrahimi M, Norouzi P, Davami F, Bonakdar A, Asgharian Marzabad M, Tabaei O. Direct detection of TNF-α by copper benzene tricarboxylate MOFs/gold nanoparticles modified electrochemical label-free immunosensor using FFT admittance voltammetry. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Wu P, Chen P, Xu C, Wang Q, Zhang F, Yang K, Jiang W, Feng J, Luo Z. Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair. NANO ENERGY 2022; 102:107707. [DOI: 10.1016/j.nanoen.2022.107707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
7
|
Zhan S, Xu C, Chen J, Xiao Q, Zhou Z, Xing Z, Gu C, Yin Z, Liu H. A novel epinephrine biosensor based on gold nanoparticles coordinated polydopamine-functionalized acupuncture needle microelectrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Li L, Liu X, Su B, Zhang H, Li R, Liu Z, Chen Q, Huang T, Cao H. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Meng Z, Wang B, Liu Y, Wan Y, Liu Q, Xu H, Liang R, Shi Y, Tu P, Wu H, Xu C. Mitochondria-targeting Polydopamine-coated Nanodrugs for Effective Photothermal- and Chemo- Synergistic therapies Against Lung Cancer. Regen Biomater 2022; 9:rbac051. [PMID: 35958515 PMCID: PMC9362997 DOI: 10.1093/rb/rbac051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Targeting mitochondria via nano platform emerged as an attractive anti-tumor pathway due to the central regulation role in cellar apoptosis and drug resistance. Here, a mitochondria-targeting nanoparticle (TOS-PDA-PEG-TPP) was designed to precisely deliver polydopamine (PDA) as the photothermal agent and alpha-tocopherol succinate (α-TOS) as the chemotherapeutic drug to the mitochondria of the tumor cells, which inhibits the tumor growth through chemo- and photothermal- synergistic therapies. TOS-PDA-PEG-TPP was constructed by coating PDA on the surface of TOS NPs self-assembled by α-TOS, followed by grafting PEG and triphenylphosphonium (TPP) on their surface to prolong the blood circulation time and target delivery of TOS and PDA to the mitochondria of tumor cells. In vitro studies showed that TOS-PDA-PEG-TPP could be efficiently internalized by tumor cells and accumulated at mitochondria, resulting in cellular apoptosis and synergistic inhibition of tumor cell proliferation. In vivo studies demonstrated that TOS-PDA-PEG-TPP could be efficiently localized at tumor sites and significantly restrain the tumor growth under NIR irradiation without apparent toxicity or deleterious effects. Conclusively, the combination strategy adopted for functional nanodrugs construction aimed at target-delivering therapeutic agents with different action mechanisms to the same intracellular organelles can be extended to other nanodrugs-dependent therapeutic systems.
Collapse
Affiliation(s)
- Ziyu Meng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Binchao Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiqiang Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Yejian Wan
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Qianshi Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Huasheng Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Renchuan Liang
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Peng Tu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Hong Wu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Chuan Xu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| |
Collapse
|
10
|
Chen Z, Li B, Liu J, Li H, Li C, Xuan X, Li M. A label-free electrochemical immunosensor based on a gold-vertical graphene/TiO 2 nanotube electrode for CA125 detection in oxidation/reduction dual channels. Mikrochim Acta 2022; 189:257. [PMID: 35701556 DOI: 10.1007/s00604-022-05332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
A label-free immunosensor was constructed in oxidation and reduction dual channel mode for the trace detection of cancer antigen 125 (CA125) in serum. The gold-vertical graphene/titanium dioxide (Au-VG/TiO2) electrode was used as the signal-amplification platform, and cytosine and dopamine were used as probes in the oxidation and reduction channels, respectively. VG nanosheets were synthesized on a TiO2 nanotube array via chemical vapor deposition (CVD), and Au nanoparticles were deeply embedded on the surface and in the root of the VG nanosheets via electrodeposition. The CA125 antibody was then directly immobilized onto the electrode surface, benefitting from its natural affinity for Au nanoparticles. In the oxidation and reduction channels the CA125 antibody-Au-VG/TiO2 immune electrode had the same response concentration range (0.01-1000 mU∙mL-1) for the determination of the CA125 antigen. However, the oxidation channel had a higher sensitivity (14.82 μA•(log(mU•mL-1))-1 at a working potential of ~ 1.25 V vs. SCE), lower detection limit (0.0001 mU∙mL-1), higher stability, and lower performance deviation than the reduction channel. This immunosensor was successfully used for CA125 detection in human serum. The recoveries of spiked serum samples ranged from 99.8 ± 0.5 to 100 ± 0.4%. The study on the difference in the sensing performance between oxidation and reduction channels provides a preliminary experimental reference for exploring dual-channel synchronous detection immunosensors and verifying the accuracy of the assay based on dual-channel data, which will promote the development of reliable electrochemical immunosensor technology.
Collapse
Affiliation(s)
- Zehua Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Bingbing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Jinbiao Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
11
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Becheva ZR, Ivanov YL, Godjevargova TI, Tchorbanov AI. Simultaneous determination of ochratoxin A and enterotoxin A in milk by magnetic nanoparticles based fluorescent immunoassay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1218-1236. [PMID: 33955808 DOI: 10.1080/19440049.2021.1914866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ochratoxin A (OTA) and staphylococcus enterotoxin A (SEA) are highly toxic contaminants and have induced human health problems. They commonly occur in milk and milk products. A competitive fluorescent immunoassay was developed for rapid and simultaneous determination of these toxins in milk samples. The procedure was based on the competitive immunoreactions between antigens in sample and antigen-fluorescent dye conjugates with immobilised antibodies on magnetic nanoparticles (MNPs). Each monoclonal antibody specifically recognises its corresponding toxin (antigen), and there is no cross-reactivity in the assay. First, monoclonal antibodies against OTA and SEA were produced. The activity of the obtained antibodies was determined by fluorescent-linked immunosorbent assay. Then, the monoclonal antibodies were immobilised on MNPs. The amounts of immobilised anti-OTA antibody and anti-SEA antibody were determined to be 20 and 22 μg mL-1, respectively. The antigen-fluorescent dye conjugates OTA-OVA-ATTO620 and SEA-FITC were prepared. The optimal amount of immobilised antibodies for competitive immunoassay was determined. It was found that the linear range of OTA in buffer was larger (0.001-100 ng mL-1) than the linear range of SEA (0.001-20 ng mL-1). The results for simultaneous determination of OTA and SEA in sixfold diluted milk were almost the same in buffer; the linear range for OTA was from 0.005 to 100 ng mL-1 and for SEA from 0.005 to 20 ng mL-1. The detection limit for both OTA and SEA in milk was 0.004 ng mL-1. The developed method took half the time of the individual assays (20 min). The assay was evaluated using spiked milk samples. The influences of somatic cell count, fat, pH and protein concentration in milk on immunoassay were studied. In summary, this developed immunoassay could provide an effective and rapid approach for detecting multi-toxins in milk samples.
Collapse
Affiliation(s)
- Zlatina R Becheva
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Yavor L Ivanov
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Tzonka I Godjevargova
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
13
|
Abstract
Electrochemical immunosensors are affinity-based biosensors characterized by several useful features such as specificity, miniaturizability, low cost and simplicity, making them very interesting for many applications in several scientific fields. One of the significant issues in the design of electrochemical immunosensors is to increase the system’s sensitivity. Different strategies have been developed, one of the most common is the use of nanostructured materials as electrode materials, nanocarriers, electroactive or electrocatalytic nanotracers because of their abilities in signal amplification and biocompatibility. In this review, we will consider some of the most used nanostructures employed in the development of electrochemical immunosensors (e.g., metallic nanoparticles, graphene, carbon nanotubes) and many other still uncommon nanomaterials. Furthermore, their diagnostic applications in the last decade will be discussed, referring to two relevant issues of present-day: the detection of tumor markers and viruses.
Collapse
|
14
|
Liu B, Yang L, Wang G, He S, Wang X, Ye L. A simple method to construct a low-cost immunosensor based on a dithiol-functionalized polydopamine platform. NEW J CHEM 2021. [DOI: 10.1039/d0nj06241c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and low-cost electrochemical CEA immunosensor was investigated via the self-polymerization of dopamine and a dithiol compound spacer for the covalent immobilization of antibodies. The designed CEA immunosensor exhibited a linear response and a low detection limit.
Collapse
Affiliation(s)
- Bo Liu
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials
- College of Chemistry and Materials Engineering
- Hunan University of Arts and Science
- Changde
- P. R. China
| | - Luanying Yang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials
- College of Chemistry and Materials Engineering
- Hunan University of Arts and Science
- Changde
- P. R. China
| | - Gang Wang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials
- College of Chemistry and Materials Engineering
- Hunan University of Arts and Science
- Changde
- P. R. China
| | - Sha He
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials
- College of Chemistry and Materials Engineering
- Hunan University of Arts and Science
- Changde
- P. R. China
| | - Xiaobo Wang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials
- College of Chemistry and Materials Engineering
- Hunan University of Arts and Science
- Changde
- P. R. China
| | - Ling Ye
- Department of Geriatrics
- The Second Xiangya Hospital
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
15
|
Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016-2020. Anal Chem 2020; 93:124-166. [PMID: 33242951 DOI: 10.1021/acs.analchem.0c04476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joshua M Ziegler
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric J Choi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, 1158 Second Street, Xiasha, Hangzhou 310018, China
| | - Heriberto Flores-Zuleta
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nicholas J Humphrey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Hyunho Youn
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
16
|
Ultrasensitive competitive electrochemiluminescence immunosensor based on luminol-AuNPs@Mo2C and upconversion nanoparticles for detection of diethylstilbestrol. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115961] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
19
|
Kulkarni S, Pandey A, Mutalik S. Liquid metal based theranostic nanoplatforms: Application in cancer therapy, imaging and biosensing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102175. [DOI: 10.1016/j.nano.2020.102175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
|
20
|
Liu Q, Li J, Yang W, Zhang X, Zhang C, Labbé C, Portier X, Liu F, Yao J, Liu B. Simultaneous detection of trace Ag(I) and Cu(II) ions using homoepitaxially grown GaN micropillar electrode. Anal Chim Acta 2020; 1100:22-30. [PMID: 31987144 DOI: 10.1016/j.aca.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Driven by the motivation to quantitively control and monitor trace metal ions in water, the development of environmental-friendly electrodes with superior detection sensitivity is extremely important. In this work, we report the design of a stable, ultrasensitive and biocompatible electrode for the detection of trace Ag+ and Cu2+ ions by growing n-type GaN micropillars on conductive p-type GaN substrate. The electrochemical measurement based on cyclic voltammetry indicates that the GaN micropillars exhibit quasi-reversible and mass-controlled reaction in redox probe solution. In the application of trace Ag+ and Cu2+ determination, the GaN micropillars show superior sensitivity and excellent conductivity by presenting a detection limit of 3.3 ppb for Ag+ and 3.3 ppb for Cu2+. Comparative studies on the electrochemical response of GaN micropillars and GaN film in the simultaneous Ag+ and Cu2+ detection reveal that GaN micropillars show three orders of magnitude higher stripping peak current than GaN film. It is assumed that the microarray morphology with large active area and the hydrophilia nature of GaN micropillars are responsible for the excellent sensitivity. This work will open up some opportunities for GaN nanostructure electrodes in the application of trace metal ions detection.
Collapse
Affiliation(s)
- Qingyun Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jing Li
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenjin Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xinglai Zhang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Cai Zhang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Christophe Labbé
- CIMAP CNRS/CEA/ENSICAEN/Normandie University, 6 Bd Maréchal Juin, 14050, Caen Cedex 4, France
| | - Xavier Portier
- CIMAP CNRS/CEA/ENSICAEN/Normandie University, 6 Bd Maréchal Juin, 14050, Caen Cedex 4, France
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jinlei Yao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Baodan Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
21
|
Zheng S, Li M, Li H, Li C, Li P, Qian L, Yang B. Sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on the cooperation of a gold-vertical graphene electrode and gold@silica-methylene blue. J Mater Chem B 2019; 8:298-307. [PMID: 31808501 DOI: 10.1039/c9tb01803d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, a sandwich-type electrochemical (EC) immunosensor was proposed to detect a carcinoembryonic antigen (CEA) based on Au-graphene and Au@SiO2-methylene blue (MB). The Au nanoparticles (NPs)-vertical graphene (VG) electrode efficiently amplifies the response signal by immobilizing a large amount of the coating antibody (Ab) and is characterized by excellent electrocatalytic activity. The MB nanodot-loaded Au@SiO2 carriers with core-shell nanostructure and detection Ab were used to construct the Ab-Au@SiO2-MB label, which improved the sensitivity due to the high EC signal of MB nanodots and the high labeling effect between the detection Ab and MB probe. A novel double-Ab sandwich strategy was developed to further improve the sensitivity and stability based on the same specificity of the coating and detection Abs for the recognition of CEA. Under optimal conditions, the developed EC sensor exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, with an ultralow detection limit of 0.8 fg mL-1 (S/N = 3). The feasibility in the clinical application of the EC sensor was verified by the in vitro detection of CEA in human serum.
Collapse
Affiliation(s)
- Siyu Zheng
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China. and Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Penghai Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Lirong Qian
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Baohe Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
22
|
Hu M, Wang Y, Yang J, Sun Y, Xing G, Deng R, Hu X, Zhang G. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH 2/AuPt. Biosens Bioelectron 2019; 142:111554. [PMID: 31382098 DOI: 10.1016/j.bios.2019.111554] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Maduramicin (MD) is a type of monoglycoside polyether ionophore antibiotic that can effectively treat coccidiosis and facilitate animal growth. However, its extensive and excessive use brings potential risk to human health. Herein, an electrochemical immunosensor based on indirect competitive format was fabricated for analysis of MD residue in eggs by a multiple signal amplification system. Initially, Au nanoparticles were deposited onto glassy carbon electrode surface to load the coating antigen MD-BSA and to improve conductivity. Then the signal amplification platform was constructed by encapsulating hemin into Fe-MIL-88 NH2 metal-organic frameworks (hemin@MOFs), and then the obtained composites were decorated with AuPt nanoparticles. The synthesized hemin@MOFs/AuPt was not only used as a signal amplification mediator, but also utilized as a carrier for immobilization of horseradish peroxidase-conjugated affinipure goat anti-mouse antibody (Ab2-HRP) and horseradish peroxidase (HRP). The constructed hemin@MOFs/AuPt-Ab2-HRP bioconjugates could effectively amplify the current signal since hemin@MOFs, AuPt and HRP all exhibited high catalytic activity towards the hydrogen peroxide. Moreover, the established immunosensor showed high sensitivity and stability during the detection procedure. With the synergistic catalytic effect of hemin@MOFs, AuPt and HRP, a wide detection range of 0.1-50 ng mL-1 and a low detection limit of 0.045 ng mL-1 were achieved (S/N = 3), respectively. Ultimately, the developed method displayed excellent performance in practical applications, providing a promising probability to detect other veterinary drug residues to guarantee food safety.
Collapse
Affiliation(s)
- Mei Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jifei Yang
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China; Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
23
|
Vilian ATE, Kim W, Park B, Oh SY, Kim T, Huh YS, Hwangbo CK, Han YK. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosens Bioelectron 2019; 142:111549. [PMID: 31400725 DOI: 10.1016/j.bios.2019.111549] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/18/2022]
Abstract
C-reactive protein (CRP) is considered a promising biomarker for the rapid and high-throughput real-time monitoring of cardiovascular disease and inflammation in unprocessed clinical samples. Implementation of this monitoring would enable various transformative biomedical applications. We have fabricated a highly specific sensor chip to detect CRP with a detection limit of 2.25 fg/mL. The protein was immobilized on top of a gold (Au) wire/polycarbonate (PC) substrate using 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride/N-hydroxy succinimide-activated 3-mercaptoproponic acid (MPA) as a self-assembled monolayer agent and bovine serum albumin (BSA) as a blocking agent. In contrast to the bare PC substrate, the CRP/BSA/anti-CRP/MPA/Au substrate exhibited a considerably high electrochemical signal toward CRP. The influence of the experimental parameters on CRP detection was assessed via various analysis methods, and these parameters were then optimized. The linear dynamic range of the CRP was 5-220 fg/mL for voltammetric and impedance analysis. Morever, the strategy exhibited high selectivity against various potential interfering species and was capable of directly probing trace amounts of the target CRP in human serum with excellent selectivity. The analytical assay based on the CRP/BSA/anti-CRP/MPA/Au substrate could be exploited as a potentially useful tool for detecting CRP in clinical samples.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea
| | - Wonyoung Kim
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Bumjun Park
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Seo Yeong Oh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - TaeYoung Kim
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Chang Kwon Hwangbo
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea.
| |
Collapse
|