1
|
Stolarek M, Kaminski K, Kaczor-Kamińska M, Obłoza M, Bonarek P, Czaja A, Datta M, Łach W, Brela M, Sikorski A, Rak J, Nowakowska M, Szczubiałka K. Light-Controlled Anticancer Activity and Cellular Uptake of a Photoswitchable Cisplatin Analogue. J Med Chem 2024; 67:19103-19120. [PMID: 39445571 DOI: 10.1021/acs.jmedchem.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A photoactive analogue of cisplatin was synthesized with two arylazopyrazole ligands, able to undergo trans-cis/cis-trans photoisomerizations. The cis photoisomer showed a dark half-life of 9 days. The cytotoxicities of both photoisomers of the complex were determined in several cancer and normal cell lines and compared to that of cisplatin. The trans photoisomer of the complex was much more cytotoxic than both the cis photoisomer and cisplatin, and was more toxic for cancer (4T1) than for normal (NMuMG) murine breast cells. 4T1 cell death occurred through necrosis. Photoisomerization of the trans and cis photoisomers internalized by the 4T1 cells increased and decreased their viability, respectively. The cellular uptake of the trans photoisomer was stronger than that of both the cis photoisomer and cisplatin. Both photoisomers interacted with DNA faster than cisplatin. The trans photoisomer was bound stronger by bovine serum albumin and induced a greater decrease in cellular glutathione levels than the cis photoisomer.
Collapse
Affiliation(s)
- Marta Stolarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Cracow, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University, Collegium Medicum, Kopernika 7C, 31-034 Cracow, Poland
| | - Magdalena Obłoza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Piotr Bonarek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Anna Czaja
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Datta
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Wojciech Łach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Mateusz Brela
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Janusz Rak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Krzysztof Szczubiałka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| |
Collapse
|
2
|
Ma ZY, Ding XJ, Zhu ZZ, Chen Q, Wang DB, Qiao X, Xu JY. Pt(iv) derivatives of cisplatin and oxaliplatin bearing an EMT-related TMEM16A/COX-2-selective dual inhibitor against colorectal cancer cells HCT116. RSC Med Chem 2024:d4md00327f. [PMID: 39185449 PMCID: PMC11342162 DOI: 10.1039/d4md00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer represents the over-expression of TMEM16A and COX-2, offering a promising therapeutic strategy. Two Pt(iv) conjugates derived from Pt(ii) drug (cisplatin or oxaliplatin) and niflumic acid, complexes 1 and 2, were designed and prepared to exert the positive impact of multiple biological targets of DNA/TMEM16A/COX-2 against colorectal cancer. Complex 2 afforded higher cytotoxicity than 1 and the combination of an intermediate of oxidized oxaliplatin and NFA against cancer cells A549, HeLa, MCF-7, and HCT116. Especially for colorectal cancer cells HCT116, 2 was significantly more toxic (22-fold) and selective to cancer cells against normal HUVEC cells (4-fold) than first-line oxaliplatin. The outstanding anticancer activity of 2 is partly attributed to its dramatic increase in cellular uptake, DNA damage, and apoptosis. Mechanistic studies indicated that 2 inhibited HCT116 cell metastasis by triggering TMEM16A, COX-2, and their downstream signaling pathways, including EGFR, STAT3, E-cadherin and N-cadherin.
Collapse
Affiliation(s)
- Zhong-Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Zhen-Zhen Zhu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Dong-Bo Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University Tianjin 300070 China
| |
Collapse
|
3
|
Shi H, Carter OWL, Ponte F, Imberti C, Gomez-Gonzalez MA, Cacho-Nerin F, Quinn PD, Parker JE, Sicilia E, Huang H, Sadler PJ. A Photodynamic and Photochemotherapeutic Platinum-Iridium Charge-Transfer Conjugate for Anticancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202400476. [PMID: 38656762 DOI: 10.1002/anie.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/26/2024]
Abstract
The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(μ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036, Arcavacata Rende, Cs, Italy
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | | | - Fernando Cacho-Nerin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Paul D Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Julia E Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036, Arcavacata Rende, Cs, Italy
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
4
|
Imberti C, Lok J, Coverdale JPC, Carter OWL, Fry ME, Postings ML, Kim J, Firth G, Blower PJ, Sadler PJ. Radiometal-Labeled Photoactivatable Pt(IV) Anticancer Complex for Theranostic Phototherapy. Inorg Chem 2023; 62:20745-20753. [PMID: 37643591 PMCID: PMC10731635 DOI: 10.1021/acs.inorgchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/31/2023]
Abstract
A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jamie Lok
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - James P. C. Coverdale
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Millie E. Fry
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Miles L. Postings
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jana Kim
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
5
|
Dutta D, Nair RR, Neog K, Nair SA, Gogoi P. Mitochondria-targeted biotin-conjugated BODIPYs for cancer imaging and therapy. RSC Med Chem 2023; 14:2358-2364. [PMID: 37974957 PMCID: PMC10650437 DOI: 10.1039/d3md00347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Two BODIPY-biotin conjugates KDP1 and KDP2 are designed and synthesized for targeted PDT applications. Both have good absorption with a high molar absorption coefficient and decent singlet oxygen generation quantum yields. The photosensitizers KDP1 and KDP2 were found to be localized in the mitochondria with excellent photocytotoxicity of up to 18.7 nM in MDA-MB-231 breast cancer cells. The cell death predominantly proceeded through the apoptosis pathway via ROS production.
Collapse
Affiliation(s)
- Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Rajshree R Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Trivandrum-695014 Kerala India
- Manipal Academy of Higher Education Manipal-576104 Karnataka India
| | - Kashmiri Neog
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
| | - S Asha Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Trivandrum-695014 Kerala India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
6
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
7
|
Huang J, Ding W, Zhu X, Li B, Zeng F, Wu K, Wu X, Wang F. Ligand Evolution in the Photoactivatable Platinum(IV) Anticancer Prodrugs. Front Chem 2022; 10:876410. [PMID: 35755267 PMCID: PMC9218644 DOI: 10.3389/fchem.2022.876410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Photoactivatable Pt(IV) anticancer prodrugs with the structure of [PtIV(N1)(N2)(L1)(L2)(A1)(A2)], where N1 and N2 are non-leaving nitrogen donor ligands, L1 and L2 are leaving ligands, and A1 and A2 are axial ligands, have attracted increasing attention due to their promising photo-cytotoxicity even to cisplatin-resistant cancer cells. These photochemotherapeutic prodrugs have high dark-stability under physiological conditions, while they can be activated by visible light restrained at the disease areas, as a consequence showing higher spatial and temporal controllability and much more safety than conventional chemotherapy. The coordinated ligands to the Pt center have been proved to be pivotal in determining the function and activity of the photoactivatable Pt(IV) prodrugs. In this review, we will focus on the development of the coordinated ligands in such Pt(IV) prodrugs and discuss the effects of diverse ligands on their photochemistry and photoactivity as well as the future evolution directions of the ligands. We hope this review can help to facilitate the design and development of novel photoactivatable Pt(IV) anticancer prodrugs.
Collapse
Affiliation(s)
- Jingjing Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weize Ding
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xingfan Zhu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Bingbing Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Zhu G, Chen Z, Song H, You A, Li Z. A theoretical study on the on-off phosphorescence of novel Pt(ii)/Pt(iv)-bisphenylpyridinylmethane complexes. RSC Adv 2022; 12:18238-18244. [PMID: 35800316 PMCID: PMC9214957 DOI: 10.1039/d2ra03060h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
An in-depth theoretical study on the Pt(ii)/Pt(iv)-bisphenylpyridinylmethane complexes was carried out, which focused on the geometric/electronic structures, excitation procedures, on-off phosphorescence mechanisms, and structure-optical performance relationships. The key roles of the linkages (LK) connected in the middle of phenylpyridines were carefully investigated using multiple wavefunction analysis methods, such as non-covalent interaction (NCI) visualizations and natural bond orbital (NBO) studies. The phosphorescence-off phenomenon was considered by hole-electron analysis and visualizations, spin-orbit coupling (SOC) studies, and NBO analysis. Through these investigations, the relationship of the substituents in LK and the optical performances were revealed, as well as the fundamental principles of the phosphorescence-quenching mechanism in Pt(iv) complexes, which pave the way for further performance/structural renovation works. In addition, an intuitive visualization method was developed using a heatmap to quantitatively express the SOC matrix elementary (SOCME), which is helpful for big data simplification for phosphorescence analysis.
Collapse
Affiliation(s)
- Guoxun Zhu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| | - Zhenping Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| | - Huacan Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China
| | - Ao You
- School of Eco-Environmental Technology, Guangdong Industry Polytechnic 152 Xingang West Road Guangzhou 510300 P. R. China
| | - Zhengquan Li
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| |
Collapse
|
9
|
Gao A, Wu Y, Yu J, Gong H, Jiang J, Yang C, Liu W, Qing C. Synthesis and anticancer activity of two highly water-soluble and ionic Pt(iv) complexes as prodrugs for Pt(ii) anticancer drugs. RSC Med Chem 2022; 13:594-598. [PMID: 35694692 PMCID: PMC9132197 DOI: 10.1039/d2md00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two new Pt(iv) complexes featuring mesylate as the outer sphere anion, cis,trans,cis-[PtCl2(OH2)2(NH3)2](CH3SO3)2 (SPt-1) and cis,trans,cis-[PtCl2(OH2)2(1R,2R-DACH)](CH3SO3)2 (SPt-2), were synthesized and characterized by elemental analysis, 1H and 13C NMR, IR, and ESI-MS. Both complexes have excellent water-solubility, high molar conductivity and good water stability. They exhibit an irreversible two-electron reduction event with the peak potentials (E p) for the processes being -0.40 V for SPt-1 and -0.52 V for SPt-2. The biological tests reveal that SPt-2 possesses high in vitro anticancer activity against three human cancer cell lines (HCT-116, A549 and MKN-1) and its overall anticancer activity is slightly greater than that of oxaliplatin, whereas SPt-1 is less active than cisplatin. Moreover, the antitumor efficacy of SPt-2 on human colon carcinoma HCT-116 xenografts in nude mice is also greater than that of oxaliplatin, suggesting that SPt-2 deserves further evaluation as a prodrug for oxaliplatin.
Collapse
Affiliation(s)
- Anli Gao
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Yaxi Wu
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
- Department of Pharmacy, Yunnan New Kunhua Hospital Anning City Z044 Provincial Highway Kunming City 650301 China
| | - Juan Yu
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Hongyu Gong
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| | - Jing Jiang
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Caihong Yang
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| | - Weiping Liu
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Chen Qing
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| |
Collapse
|
10
|
Morales K, Rodríguez-Calado S, Hernando J, Lorenzo J, Rodríguez-Diéguez A, Jaime C, Nolis P, Capdevila M, Palacios Ò, Figueredo M, Bayón P. Synthesis and In Vitro Studies of Photoactivatable Semisquaraine-type Pt(II) Complexes. Inorg Chem 2022; 61:7729-7745. [PMID: 35522899 PMCID: PMC9131461 DOI: 10.1021/acs.inorgchem.1c03957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The synthesis, full
characterization, photochemical properties,
and cytotoxic activity toward cisplatin-resistant cancer cell lines
of new semisquaraine-type Pt(II) complexes are presented. The synthesis
of eight semisquaraine-type ligands has been carried out by means
of an innovative, straightforward methodology. A thorough structural
NMR and X-ray diffraction analysis of the new ligands and complexes
has been done. Density functional theory calculations have allowed
to assign the trans configuration of the platinum
center. Through the structural modification of the ligands, it has
been possible to synthesize some complexes, which have turned out
to be photoactive at wavelengths that allow their activation in cell
cultures and, importantly, two of them show remarkable solubility
in biological media. Photodegradation processes have been studied
in depth, including the structural identification of photoproducts,
thus justifying the changes observed after irradiation. From biological
assessment, complexes C7 and C8 have been
demonstrated to behave as promising photoactivatable compounds in
the assayed cancer cell lines. Upon photoactivation, both complexes
are capable of inducing a higher cytotoxic effect on the tested cells
compared with nonphotoactivated compounds. Among the observed results,
it is remarkable to note that C7 showed a PI > 50
in
HeLa cells, and C8 showed a PI > 40 in A2780 cells,
being
also effective over cisplatin-resistant A2780cis cells (PI = 7 and
PI = 4, respectively). The mechanism of action of these complexes
has been studied, revealing that these photoactivated platinum complexes
would actually present a combined mode of action, a therapeutically
potential advantage. The
synthesis, full characterization, photochemical properties,
and cytotoxic activity toward cisplatin-resistant cancer cell lines
of new semisquaraine-type Pt(II) complexes are presented. Eight semisquaraine-type
ligands and their corresponding Pt(II) complexes have been studied.
These complexes have turned out to be photoactive at wavelengths that
allow their activation in cell cultures. Two of them display remarkable
solubility in biological media showing a promising behavior as photoactivatable
compounds against several cancer cell lines.
Collapse
Affiliation(s)
- Kevin Morales
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Sergi Rodríguez-Calado
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av/Severo Ochoa s/n, 18071 Granada, Spain
| | - Carlos Jaime
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pau Nolis
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marta Figueredo
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pau Bayón
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Lai Y, Lu N, Ouyang A, Zhang Q, Zhang P. Ferroptosis promotes sonodynamic therapy: a platinum( ii)–indocyanine sonosensitizer. Chem Sci 2022; 13:9921-9926. [PMID: 36128230 PMCID: PMC9430585 DOI: 10.1039/d2sc02597c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 12/07/2022] Open
Abstract
Sonodynamic therapy (SDT) has unique advantages in deep tumour ablation due to its deep penetration depth, showing great preclinical and clinical potential. Herein, a platinum(ii)–cyanine complex has been designed to investigate its potential as a SDT anticancer agent. It generates singlet oxygen (1O2) under ultrasound (US) irradiation or light irradiation, and exhibits US-cytotoxicity in breast cancer 4T1 cells but with negligible dark-cytotoxicity. Mechanistic investigations reveal that Pt-Cy reduces the cellular GSH and GPX4, and triggers cancer cell ferroptosis under US irradiation. The metabolomics analysis illustrates that Pt-Cy upon US treatment significantly dysregulates glutathione metabolism, and finally induces ferroptosis. In vivo studies further demonstrate that Pt-Cy inhibits tumor growth under US irradiation and its efficiency for SDT is better than that for PDT in vivo. This is the first example of platinum(ii) complexes for sonodynamic therapy. This work extends the biological applications of metal complexes from PDT to SDT. A novel platinum(ii)–cyanine complex showed a greater excellent sonodynamic therapeutic effect than photodynamic therapy in vivo. This work expands the biological applications of metal complexes from traditional photodynamic therapy to sonodynamic therapy.![]()
Collapse
Affiliation(s)
- Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
12
|
Bolitho E, Sanchez-Cano C, Shi H, Quinn PD, Harkiolaki M, Imberti C, Sadler PJ. Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes. J Am Chem Soc 2021; 143:20224-20240. [PMID: 34808054 PMCID: PMC8662725 DOI: 10.1021/jacs.1c08630] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.
Collapse
Affiliation(s)
- Elizabeth
M. Bolitho
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 San Sebastián, Spain
| | - Huayun Shi
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Paul D. Quinn
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Cinzia Imberti
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
13
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Wang N, Deng Z, Zhu Q, Zhao J, Xie K, Shi P, Wang Z, Chen X, Wang F, Shi J, Zhu G. An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chem Sci 2021; 12:14353-14362. [PMID: 34880985 PMCID: PMC8580000 DOI: 10.1039/d1sc02941j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
The outcome of conventional platinum (Pt)-based chemotherapy is limited by reduced circulation, failure to accumulate in the tumor, and dose-limiting toxicity arising from non-controllable activation. To address these limitations, we present an erythrocyte-delivered and near-infrared (NIR) photoactivatable PtIV nanoprodrug for advanced cancer treatment. Compared with small molecule PtIV prodrugs, this nanoprodrug exhibits significantly enhanced stability, prolonged circulation in the blood, and minimized side effects. The hitchhiking of the nanoprodrug on erythrocytes dramatically increases Pt accumulation in the tumor. Upon irradiation, the nanoprodrug releases oxaliplatin in a controllable manner, resulting in significant antitumor activity against breast tumors in vivo, as evidenced by the complete elimination of tumors from a single-dose injection. Additionally, this nanoprodrug is associated with remarkably enhanced immunopotentiation. Our study highlights an efficient strategy to overcome the shortcomings of traditional Pt-based chemotherapy via the erythrocyte-mediated delivery of an NIR-activatable nanoprodrug of oxaliplatin, a clinically used anticancer drug. Strategic illustration of an erythrocyte-delivered and near-infrared photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response.![]()
Collapse
Affiliation(s)
- Na Wang
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Qi Zhu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Jianxiong Zhao
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University Shenzhen 518060 P. R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh Mayfield Road Edinburgh EH9 3JL UK
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR P. R. China.,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong Hong Kong SAR P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
15
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
16
|
Shaili E, Romero MJ, Salassa L, Woods JA, Butler JS, Romero-Canelón I, Clarkson G, Habtemariam A, Sadler PJ, Farrer NJ. Platinum(IV)-azido monocarboxylato complexes are photocytotoxic under irradiation with visible light. Dalton Trans 2021; 50:10593-10607. [PMID: 34278398 PMCID: PMC8335519 DOI: 10.1039/d1dt01730f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
Complexes trans,trans,trans-[Pt(N3)2(OH)(OCOR)(py)2] where py = pyridine and where OCOR = succinate (1); 4-oxo-4-propoxybutanoate (2) and N-methylisatoate (3) have been synthesized by derivation of trans,trans,trans-[Pt(OH)2(N3)2(py)2] (4) and characterised by NMR and EPR spectroscopy, ESI-MS and X-ray crystallography. Irradiation of 1-3 with green (517 nm) light initiated photoreduction to Pt(ii) and release of the axial ligands at a 3-fold faster rate than for 4. TD-DFT calculations showed dissociative transitions at longer wavelengths for 1 compared to 4. Complexes 1 and 2 showed greater photocytotoxicity than 4 when irradiated with 420 nm light (A2780 cell line IC50 values: 2.7 and 3.7 μM) and complex 2 was particularly active towards the cisplatin-resistant cell line A2780cis (IC50 3.7 μM). Unlike 4, complexes 1-3 were phototoxic under green light irradiation (517 nm), with minimal toxicity in the dark. A pKa(H2O) of 5.13 for the free carboxylate group was determined for 1, corresponding to an overall negative charge during biological experiments, which crucially, did not appear to impede cellular accumulation and photocytotoxicity.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Marίa J Romero
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain and Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology and Photobiology, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Jennifer S Butler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, Sir Robert Aitken Institute for Medical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Guy Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Nicola J Farrer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
17
|
Imberti C, Lermyte F, Friar EP, O'Connor PB, Sadler PJ. Facile protein conjugation of platinum for light-activated cytotoxic payload release. Chem Commun (Camb) 2021; 57:7645-7648. [PMID: 34250984 PMCID: PMC8330822 DOI: 10.1039/d1cc02722k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
The novel Pt(iv) complex trans,trans-[Pt(N3)2(Py)2(OH)(OCO-(PEG)2-NHCSNH-Ph-NCS)] (Pt4) conjugates to the side chain of lysine amino acids in proteins under mild conditions. Reaction with myoglobin generated a bioconjugate that was stable in the dark, but released a Pt(iv) prodrug upon visible light irradiation. A similar procedure was used to conjugate Pt4 to the antibody trastuzumab, resulting in the first photoactivatable Pt(iv)-antibody conjugate, demonstrating potential for highly selective cancer phototherapy.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. and Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt 64287, Germany
| | - Emily P Friar
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
18
|
Shi H, Kasparkova J, Soulié C, Clarkson GJ, Imberti C, Novakova O, Paterson MJ, Brabec V, Sadler PJ. DNA-Intercalative Platinum Anticancer Complexes Photoactivated by Visible Light. Chemistry 2021; 27:10711-10716. [PMID: 34046954 PMCID: PMC8361943 DOI: 10.1002/chem.202101168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.
Collapse
Affiliation(s)
- Huayun Shi
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Jana Kasparkova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Clément Soulié
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Olga Novakova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Martin J. Paterson
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Viktor Brabec
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
19
|
Bera A, Gautam S, Raza MK, Kondaiah P, Chakravarty AR. Oxoplatin-B, a cisplatin-based platinum(IV) complex with photoactive BODIPY for mitochondria specific "chemo-PDT" activity. J Inorg Biochem 2021; 223:111526. [PMID: 34246120 DOI: 10.1016/j.jinorgbio.2021.111526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Oxoplatin-B, a platinum(IV) complex [Pt(NH3)2Cl2(L1)(OH)] (1) of 4-methylbenzoic acid (HL1) functionalized with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) was prepared, characterized and its antitumor activity studied. [Pt(NH3)2Cl2(L2)(OH)] (2) of 4-methylbenzoic acid (HL2) was studied as a control. Complex 1 showed an absorption band at 500 nm (ɛ = 4.34 × 104 M-1 cm-1) and an emission band at 515 nm (λex = 488 nm, ΦF = 0.64) in 1% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (pH = 7.2). Visible light-induced (400-700 nm) generation of singlet oxygen was evidenced from 1,3-diphenylisobenzofuran titration study. Complex 1 showed photo-induced cytotoxicity in visible light (400-700 nm, 10 J cm-2) against human breast cancer (MCF-7), cervical cancer (HeLa) and lung cancer (A549) cells (IC50: 1.1-3.8 μM) while being less toxic in normal cells. Confocal imaging showed mitochondrial localization with additional evidence from platinum content from isolated mitochondria and 5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) assay. Cellular apoptosis was observed from Annexin-V-FITC (fluorescein isothiocyanate)/propidium iodide assay.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
20
|
Biancalana L, Kostrhunova H, Batchelor LK, Hadiji M, Degano I, Pampaloni G, Zacchini S, Dyson PJ, Brabec V, Marchetti F. Hetero-Bis-Conjugation of Bioactive Molecules to Half-Sandwich Ruthenium(II) and Iridium(III) Complexes Provides Synergic Effects in Cancer Cell Cytotoxicity. Inorg Chem 2021; 60:9529-9541. [PMID: 34156246 DOI: 10.1021/acs.inorgchem.1c00641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four bipyridine-type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2'-bipyridine-4,4'-dicarboxylic acid and subsequently coordinated to ruthenium(II) p-cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case. The complexes were assessed for their antiproliferative activity on four cancer cell lines, showing cytotoxicity to the low micromolar level (equipotent with cisplatin). Additional biological experiments revealed a multimodal mechanism of action of the investigated compounds, involving DNA metalation and enzyme inhibition. Synergic effects provided by specific combinations of metal and bioactive fragments were identified, pointing toward an optimal ethacrynic acid/flurbiprofen combination for both Ru(II) and Ir(III) complexes.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lucinda K Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ilaria Degano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
21
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Gibson D. Platinum(IV) anticancer agents; are we en route to the holy grail or to a dead end? J Inorg Biochem 2021; 217:111353. [PMID: 33477089 DOI: 10.1016/j.jinorgbio.2020.111353] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 01/23/2023]
Abstract
Pt(IV) complexes are designed as prodrugs that are intended to overcome resistance. Pt(IV) prodrugs are activated inside cancer cells releasing cytotoxic Pt(II) drugs as well as two axial ligands that can be used to confer favorable pharmacological properties to the prodrug. The ligands can be innocent spectators, cancer targeting agents or bioactive moieties. The choice of axial ligands determines the chemical and pharmacological properties of the prodrugs. Over the years, several approaches were employed in attempts to increase the selectivity of the prodrugs to cancer cells and to utilize multi-action prodrugs to overcome resistance. In this review, we critically examine several of these approaches in order to evaluate the validity of some of the working hypotheses that are driving the current research.
Collapse
Affiliation(s)
- Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
23
|
Léger SJ, Marchetti B, Ashfold MNR, Karsili TNV. The Role of Norrish Type-I Chemistry in Photoactive Drugs: An ab initio Study of a Cyclopropenone-Enediyne Drug Precursor. Front Chem 2020; 8:596590. [PMID: 33425854 PMCID: PMC7793749 DOI: 10.3389/fchem.2020.596590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
We present a contemporary mechanistic description of the light-driven conversion of cyclopropenone containing enediyne (CPE) precusors to ring-opened species amenable to further Bergman cyclization and formation of stable biradical species that have been proposed for use in light-induced cancer treatment. The transformation is rationalized in terms of (purely singlet state) Norrish type-I chemistry, wherein photoinduced opening of one C-C bond in the cyclopropenone ring facilitates non-adiabatic coupling to high levels of the ground state, subsequent loss of CO and Bergman cyclization of the enediyne intermediate to the cytotoxic target biradical species. Limited investigations of substituent effects on the ensuing photochemistry serve to vindicate the experimental choices of Popik and coworkers (J. Org. Chem., 2005, 70, 1297-1305). Specifically, replacing the phenyl moiety in the chosen model CPE by a 1,4-benzoquinone unit leads to a stronger, red-shifted parent absorption, and increases the exoergicity of the parent → biradical conversion.
Collapse
Affiliation(s)
- Spencer J. Léger
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Barbara Marchetti
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | | | - Tolga N. V. Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
24
|
Shi H, Imberti C, Clarkson GJ, Sadler PJ. Axial functionalisation of photoactive diazido platinum(iv) anticancer complexes. Inorg Chem Front 2020; 7:3533-3540. [PMID: 33786191 PMCID: PMC7610473 DOI: 10.1039/d0qi00685h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mono-axial functionalised octahedral diazido Pt(iv) complexes trans, trans, trans-[Pt(py)2(N3)2(OR1)(OR2)] (OR1 = OH and OR2 = anticancer agent coumarin-3 carboxylate (cou, 2a), pyruvate dehydrogenase kinase (PDK) inhibitors 4-phenylbutyrate (PhB, 2b) or dichloroacetate (DCA, 2c)), and their di-axial functionalised analogues with OR1 = DCA and OR2 = cou (3a), PhB (3b), or DCA (3c) have been synthesised and characterised, including the X-ray crystal structures of complexes 2a, 3a, 3b and 3c. These complexes exhibit dark stability and have the potential to generate cytotoxic Pt(ii) species and free radicals selectively in cancer cells when irradiated. Mono-functionalised complexes 2a-2c showed higher aqueous solubility and more negative reduction potentials. Mono- and di-functionalised complexes displayed higher photocytotoxicity with blue light (1 h, 465 nm, 4.8 mW cm-2) than the parent dihydroxido complex 1 (OR1 = OR2 = OH) in A2780 human ovarian (IC50 0.9-2.9 μM for 2a-2c; 0.11-0.39 μM for 3a-3c) and A549 human lung cancer cells (5.4-7.8 μM for 2a-2c; 1.2-2.6 μM for 3a-3c) with satisfactory dark stability. Notably, no apparent dark cytotoxicity was observed in healthy lung MRC-5 fibroblasts for all complexes (IC50 > 20 μM). Significantly higher platinum cellular accumulation and photo-generated ROS levels were observed for the di-functionalised complexes compared with their mono-functionalised analogues when cancer cells were treated under the same concentrations.
Collapse
Affiliation(s)
| | | | | | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|