1
|
Ao L, Li D, Chu S, Wu F, Wang J, Li J, Huang L, Jin Q. Visual quantitative point-of-care immunoassay based on signal transduction amplification and hue-recognition analysis. Biosens Bioelectron 2025; 279:117397. [PMID: 40154004 DOI: 10.1016/j.bios.2025.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Visual based immunoassay employs both human eye interpretation and machine-vision (smartphone imaging) quantification for equipment-independent diagnosis of biomarkers, fitting a variety of scenarios such as home-testing. Here we use hue-recognition strategy to create vivid and sensitive color changes against C-reactive protein (CRP) for accurate visual analysis. The red-to-green tonality gradient presentation was realized by ratiometric fluorescent probe using dual-emissive quantum dots (QDs) structure. The sandwich immuno-capturing process of antigen was integrated on ELISA plate, with the signal amplified and transduced by silver particle labels etching and interaction with the ratiometric QDs probe. The narrow-emissive QDs with selective response to released Ag+ ions produced high color fidelity and prominent hue variation towards analyte concentration. This portable immunoassay enabled eye-perception of 5 specific CRP concentration points (0, 5, 50, 200, 500 ng/mL) and 4 concentration intervals (0-5, 5-50, 50-200, 200-500 ng/mL) with reading accuracy of 97.5 % and 96.4 %, respectively, which is superior against traditional lightness-gradient based reading mode. With the aid of smartphone imaging and software color-analyzing, an elaborated quantification of CRP was achieved via color information. The broad CRP responsive range (0-500 ng/mL), low limit of detection (0.062 ng/mL) and high specificity against protein substrates allowed a robust point-of-care CRP clinical diagnosis application.
Collapse
Affiliation(s)
- Lijiao Ao
- Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institute), Hangzhou, 310021, PR China; Shenzhen People's Hospital, Shenzhen, 518020, PR China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Hangzhou, 310021, PR China
| | - Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Sai Chu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Feng Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institute), Hangzhou, 310021, PR China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Hangzhou, 310021, PR China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Quan Jin
- Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institute), Hangzhou, 310021, PR China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Hangzhou, 310021, PR China.
| |
Collapse
|
2
|
Wang Y, Qi J, Ding D, Deng R, Jin F, Ren J, Di H. Biomimetic fluorescence-enhanced platform based on photonic crystals and DNAzyme walker for visualization and quantification of miRNA-21. Talanta 2025; 286:127440. [PMID: 39732101 DOI: 10.1016/j.talanta.2024.127440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Developing a fluorescence sensing platform for point-of-care detection of low abundance biomarkers is highly valuable for early diagnosis of disease. Herein, a biomimetic fluorescence-enhanced platform based on photonic crystals and DNAzyme walker was constructed and further applied to visualize and quantify the miRNA-21 in biological samples. The DNAzyme walker was orthogonally activated by the target miRNA-21, which enabled the unlocking of the DNAzyme walker strand and the subsequently repeated substrate cleavage, thus generating enhanced fluorescence signals. Meanwhile, a biomimetic photonic crystals substrate was employed to physically boost the emitted fluorescence signals again, enabling visual detection by naked eyes and quantitative analysis by smartphone. A limit of detection as low as 84.8 pM was obtained and the single base variation in miRNA-21 could also be discriminated. Furthermore, the potential application of this platform was demonstrated in spiked-urine sample and total RNA extracts, showing good agreement with RT-qPCR results. Therefore, the multiple signal amplification strategy-based fluorescent platform has the advantages of high sensitivity, good specificity, good portability and high-throughput analysis, providing a powerful tool for convenient disease diagnosis and health assessment.
Collapse
Affiliation(s)
- Yingqian Wang
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China.
| | - Jia'en Qi
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China
| | - Dianxing Ding
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China
| | - Rong Deng
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China
| | - Fujing Jin
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China
| | - Jiamin Ren
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China
| | - Huixia Di
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China
| |
Collapse
|
3
|
Chen M, Zhang J, Ji G, Wang H, Zhu B, Chen C, Zhou H, Wang Y, Gao Z. Universal Flexible Wearable Biosensors for Noninvasive Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20741-20755. [PMID: 40014807 DOI: 10.1021/acsami.4c22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Sweat, with its abundant biomarkers, is a highly appealing biofluid for personalized health monitoring and management. Noninvasive wearable sweat sensors hold great potential in this regard. However, developing an easy-to-prepare, highly sensitive, precise, and versatile wearable biosensor remains challenging. Herein, we report a universal electrochemical wearable biosensor for the accurate and sensitive detection of glucose, uric acid, and lactate in human sweat samples. A Pt nanoparticle-deposited nitrogen-doped mesoporous carbon/reduced graphene oxide composite (PNGO) was synthesized rapidly by using a simple multistage self-assembly strategy. The detection was carried out using electrodes modified with PNGO and enzyme-immobilized membranes, achieving high sensitivities (glucose: 15.33 μA mM-1 cm-2, uric acid: 103.2 μA mM-1 cm-2, lactate: 219.1 μA mM-1 cm-2), along with excellent selectivity, reproducibility, and stability. Based on the excellent performance of the biosensor, we investigated its reliability in detecting sweat targets during physical exercise and assessed its utility for monitoring human health status through glucose and purine dietary challenges, observing trends consistent with blood results. The integrated wearable flexible patch constructed in this work can provide periodic information related to sweat chemistry, and the low-cost electrode suggests the potential for large-scale manufacturing. Thus, it shows extraordinary promise for promotion and application in human health and training management.
Collapse
Affiliation(s)
- Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Jiangshan Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guangna Ji
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Haoran Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Banglei Zhu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Chen Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| |
Collapse
|
4
|
Yoon J, Kwon N, Lee Y, Kim S, Lee T, Choi JW. Nanotechnology-Based Wearable Electrochemical Biosensor for Disease Diagnosis. ACS Sens 2025; 10:1675-1689. [PMID: 40036139 DOI: 10.1021/acssensors.4c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Recently, flexible electronics have significantly transformed information and communications technology (ICT). In particular, wearable devices, via integration with attachable biosensors, have driven the development of new types of biosensors and diagnostic devices for point-of-care testing (POCT). Moreover, wearable electrochemical biosensors can be applied to diagnose diseases in real time based on the synergistic effect generated from the incorporation of the electrochemical technique. Besides, to improve the sensitivity of electrochemical biosensors while retaining their wearability, novel nanomaterials and nanotechnologies have been introduced. In this review, recent studies on nanotechnology-based wearable electrochemical biosensors for accurate disease diagnosis are discussed. First, widely used techniques for developing flexible electrodes, including nanolithography- and nano/microneedle-based patches, are presented. Next, the latest studies on developing wearable electrochemical biosensors for the diagnosis of diseases such as diabetes and dermatitis are discussed by categorizing the biosensors into nanolithography- and nano/microneedle-based categories. Finally, this review explores the latest research trends on the application of nanotechnology-enabled nanopatterning and nano/microneedle technologies to electrochemical wearable biosensors. This review suggests novel approaches and methods for developing wearable electrochemical biosensors for real-time disease diagnosis under POCT applications.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Nayeon Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seewoo Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
5
|
Song Y, Park H, Thirumalaraju P, Kovilakath N, Hardie JM, Bigdeli A, Bai Y, Chang S, Yoo J, Kanakasabapathy MK, Kim S, Chun J, Chen H, Li JZ, Tsibris AM, Kuritzkes DR, Shafiee H. Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay. ACS NANO 2025; 19:8646-8660. [PMID: 40017424 DOI: 10.1021/acsnano.4c14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Digital nucleic acid assays, known for their high sensitivity and specificity, typically rely on fluorescent readouts and expensive and complex nanowell manufacturing, which constrain their broader use in point-of-care (POC) application. Here, we introduce an alternative digital molecular diagnostics, termed dCRISTOR, by seamlessly integrating deactivated Cas9 (dCas9)-engineered micromotors, extraction-free loop-mediated isothermal amplification (LAMP), low-cost bright field microscopy, and deep learning-enabled image processing. The micromotor, composed of a polystyrene sphere attached to a magnetic bead, incorporates a dCas9 ribonucleoprotein complex. The presence of human immunodeficiency virus-1 (HIV-1) RNA in a sample results in the formation of large-sized amplicons that can be specifically captured by the micromotors, reducing their velocity induced by an external magnetic field. The micromotor is propelled by an external magnetic field, which eliminates the need for chemical fuels, reducing system complexity, and allowing for precise control over micromotor movement, enhancing accuracy and reliability. A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format ("1" or "0") for simplified result interpretation without user bias. Incorporating an extraction-free LAMP assay streamlines the dCRISTOR workflow, enabling qualitative HIV-1 detection in spiked plasma (n = 21) that demonstrates 100% sensitivity and specificity and achieves a limit of detection (LOD) of 0.96 copies/μL. The assay also achieved 100% correlation with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in clinical patient samples (n = 9). The dCRISTOR assay, a label-free digital nucleic acid testing system that eliminates the need for fluorescence readouts, absorbance measurements, or expensive manufacturing processes, represents a substantial advancement in digital viral RNA diagnostics.
Collapse
Affiliation(s)
- Younseong Song
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Hyunji Park
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Prudhvi Thirumalaraju
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Niveditha Kovilakath
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Joseph Michael Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Arafeh Bigdeli
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Yueying Bai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Sukbeom Chang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Jungmin Yoo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Sungwan Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Juhyeon Chun
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Hui Chen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Jonathan Z Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Athe M Tsibris
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts 02139, United States
| |
Collapse
|
6
|
Yuan H, Miao Z, Wan C, Wang J, Liu J, Li Y, Xiao Y, Chen P, Liu BF. Recent advances in centrifugal microfluidics for point-of-care testing. LAB ON A CHIP 2025; 25:1015-1046. [PMID: 39776118 DOI: 10.1039/d4lc00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Point-of-care testing (POCT) holds significant importance in the field of infectious disease prevention and control, as well as personalized precision medicine. The emerging microfluidics, capable of minimal reagent consumption, integration, and a high degree of automation, play a pivotal role in POCT. Centrifugal microfluidics, also termed lab-on-a-disc (LOAD), is a significant subfield of microfluidics that integrates crucial analytical steps onto a single chip, thereby optimizing the process and enabling high-throughput, automated analysis. By utilizing rotational mechanics to precisely control fluid dynamics without external pressure sources, centrifugal microfluidics facilitates swift operations ideal for urgent medical and field settings. This review provides a comprehensive overview of the latest advancements in centrifugal microfluidics for POCT, covering both theoretical principles and practical applications. We begin by introducing the fundamental operational principles, fluidic control mechanisms, and signal output detection methods. Subsequently, we delve into the typical applications of centrifugal microfluidic platforms in immunoassays, nucleic acid testing, antimicrobial susceptibility testing, and other tests. We also discuss the strengths and potential limitations of centrifugal microfluidic platforms, underscoring their transformative impact on traditional conventional procedures and their significant role in diagnostic practices.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jingjing Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Jinzhi Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. BIOSENSORS 2025; 15:139. [PMID: 40136936 PMCID: PMC11940385 DOI: 10.3390/bios15030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Min S, An J, Lee JH, Kim JH, Joe DJ, Eom SH, Yoo CD, Ahn HS, Hwang JY, Xu S, Rogers JA, Lee KJ. Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nat Rev Cardiol 2025:10.1038/s41569-025-01127-0. [PMID: 39966649 DOI: 10.1038/s41569-025-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
With advances in materials science and medical technology, wearable sensors have become crucial tools for the early diagnosis and continuous monitoring of numerous cardiovascular diseases, including arrhythmias, hypertension and coronary artery disease. These devices employ various sensing mechanisms, such as mechanoelectric, optoelectronic, ultrasonic and electrophysiological methods, to measure vital biosignals, including pulse rate, blood pressure and changes in heart rhythm. In this Review, we provide a comprehensive overview of the current state of wearable cardiovascular sensors, focusing particularly on those that measure blood pressure. We explore biosignal sensing principles, discuss blood pressure estimation methods (including machine learning algorithms) and summarize the latest advances in cuffless wearable blood pressure sensors. Finally, we highlight the challenges of and offer insights into potential pathways for the practical application of cuffless wearable blood pressure sensors in the medical field from both technical and clinical perspectives.
Collapse
Affiliation(s)
- Seongwook Min
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaehun An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Hee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Ji Hoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daniel J Joe
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Soo Hwan Eom
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang D Yoo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyo-Suk Ahn
- Department of Internal Medicine, Division of Cardiology, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Young Hwang
- Department of Anaesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Zhang D, Zhou Y, Li X, Luan Q. CRISPR/Cas13a-Enhanced Porous Hydrogel Encapsulated Photonic Barcodes for Multiplexed Detection of Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408725. [PMID: 39838754 DOI: 10.1002/smll.202408725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization. Furthermore, the inherent structural colors remain stable during detection events due to the robust mechanical strength of the barcode cores. This integration of CRISPR/Cas13a and HCR leverages both the highly specific RNA recognition capabilities and trans-cleavage activity of Cas13a while employing HCR to enhance sensitivity. Upon encountering target RNA, Cas13a cleaves a hairpin probe, thereby initiating subsequent HCR amplification for enhanced detection sensitivity. Our method demonstrates high accuracy and sensitivity in multiplexed detection of SARS-CoV-2, Flu A and Flu B RNA with a limit-of-detection as low as 200 aM. Importantly, this assay also exhibits acceptable accuracy in repeated clinical sample testing. Thus, our platform represents a promising strategy for highly sensitive multiplexed virus detection in clinical.
Collapse
Affiliation(s)
- Dagan Zhang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanyang Zhou
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xueqin Li
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qichen Luan
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
10
|
Sun M, Ma C, Emran MY, Kotb A, Bai J, Zhou M. A fully integrated wireless microfluidic immunosensing system for portable monitoring of Staphylococcus aureus. Talanta 2025; 283:127158. [PMID: 39515059 DOI: 10.1016/j.talanta.2024.127158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The advanced devices that function fully without the need for external accessories are regarded as a pinnacle goal in the design and construction of modern ones. Staphylococcus aureus (S. aureus), a prominent human pathogen, is responsible for causing a wide variety of infections and chronic diseases. Herein, we present the first instance of a fully integrated wireless microfluidic immunosensing system (FIWMIS) capable of conducting point-of-care S. aureus monitoring in real samples of S. aureus-spiked commercial purified drinking water and S. aureus-spiked watermelon juice. The development of the proposed FIWMIS became a reality by conquering significant engineering hurdles in seamlessly integrating a microfluidic unit for liquid sample transport without the need of an external pump, an immunosensing unit for S. aureus monitoring, and an electronic control unit for signal conversion and wireless transmission. Such full integration culminated in a FIWMIS that upholds its pump-free, wireless, and low-cost characteristics for portable monitoring of S. aureus.
Collapse
Affiliation(s)
- Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
11
|
Teymur A, Hussain I, Tang C, Saxena R, Erickson D, Wu T. Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis. MICROMACHINES 2025; 16:156. [PMID: 40047601 PMCID: PMC11857597 DOI: 10.3390/mi16020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Point-of-care (POC) testing has revolutionized diagnostics by providing rapid, accessible solutions outside traditional laboratory settings. However, many POC systems lack the sensitivity or multiplexing capability required for complex diseases. This study introduces an LED-based fluorescence reader designed for POC applications, enabling multiplex detection of lupus nephritis (LN) biomarkers using a biomarker microarray (BMA) slide. The reader integrates an LED excitation source, neutral density (ND) filters for precise intensity control, and onboard image processing with Gaussian smoothing and centroid thresholding to enhance signal detection and localization. Five LN biomarkers (VSIG4, OPN, VCAM1, ALCAM, and TNFRSF1B) were assessed, and performance was validated against a Genepix laser-based scanner. The LED reader demonstrated strong correlation coefficients (r = 0.96-0.98) with the Genepix system for both standard curves and patient samples, achieving robust signal-to-noise ratios and reproducibility across all biomarkers. The multiplex format reduced sample volume and allowed simultaneous analysis of multiple biomarkers. These results highlight the reader's potential to bridge the gap between laboratory-grade precision and POC accessibility. By combining portability, cost-effectiveness, and high analytical performance, this fluorescence reader provides a practical solution for POC diagnostics, particularly in resource-limited settings, improving the feasibility of routine monitoring and early intervention for diseases requiring comprehensive biomarker analysis.
Collapse
Affiliation(s)
- Aygun Teymur
- Department of Biomedical Engineering, University of Houston, Houston, TX 77024, USA; (A.T.); (C.T.)
| | - Iftak Hussain
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA;
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77024, USA; (A.T.); (C.T.)
| | - Ramesh Saxena
- Department of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA;
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77024, USA; (A.T.); (C.T.)
| |
Collapse
|
12
|
Liu Z, Huang X, Liu Z, Zheng S, Yao C, Zhang T, Huang S, Zhang J, Wang J, Farah S, Xie X, Chen HJ. Plug-In Design of the Microneedle Electrode Array for Multi-Parameter Biochemical Sensing in Gouty Arthritis. ACS Sens 2025; 10:159-174. [PMID: 39783825 DOI: 10.1021/acssensors.4c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Gouty arthritis is one of the most common forms of inflammatory arthritis and has brought a significant burden on patients and society. Current strategies for managing gout primarily focus on long-term urate-lowering therapy. With the rapid advancement of point-of-care testing (POCT) technology, continuous monitoring of gout-related biomarkers like uric acid (UA) or inflammatory cytokines can provide rapid and personalized diagnosis for gout management. In this study, a plug-in design of a microneedle electrode array (PIMNA) was developed and integrated into a multi-parameter sensing portable system in combination with embedded circuits and a mobile application. The system enabled real-time, in situ, and dynamic monitoring of biomarkers, including UA, reactive oxygen species (ROS), and pH at gouty joints. The multi-parameter monitoring system demonstrated a wide linear response range, excellent selectivity, stability, reproducibility, and reliable signal transmission performance. In vivo experiments demonstrated the real-time monitoring capability of PIMNA for UA, ROS, and pH, showing the potential to facilitate urate-lowering management and inflammation assessment. Prospectively, the system enables quantitative analysis of the complexity and diversity of gout, presenting promising applications in clinical practice. This work provides a unique strategy with potential for broader applications in gout management and arthritic disease treatment.
Collapse
Affiliation(s)
- Zhibo Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Junrui Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery, Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Jin Z, Lou J, Shu F, Hong Z, Qiu CW. Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0562. [PMID: 39807357 PMCID: PMC11725723 DOI: 10.34133/research.0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity. This review comprehensively examines the latest advancements in nanoengineered THz technology, beginning with state-of-the-art THz generation methods based on heterostructures, metasurfaces, and hybrid systems, followed by THz modulation techniques, including both homogeneous and individual modulation. Subsequently, it explores bio-applications such as novel biosensing and biofunction techniques. Finally, it summarizes findings and reflects on future trends and challenges in the field. Each section focuses on the physical mechanisms, structural designs, and performances, aiming to provide a thorough understanding of the advancements and potential of this rapidly evolving technology domain. This review aims to provide insights into the creation of next-generation nanoscale THz devices and applications while establishing a comprehensive foundation for addressing key issues that limit the full implementation of these promising technologies in real-world scenarios.
Collapse
Affiliation(s)
- Zhongwei Jin
- College of Optical and Electronic Technology,
China Jiliang University, Hangzhou 310018, China
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, 100071 Beijing, China
| | - Fangzhou Shu
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
14
|
Cai J, Cao M, Bai J, Sun M, Ma C, Emran MY, Kotb A, Bo X, Zhou M. Flexible epidermal wearable sensor for Athlete's sweat biomarkers monitoring. Talanta 2025; 282:126986. [PMID: 39383716 DOI: 10.1016/j.talanta.2024.126986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Wearable sweat sensors hold great promise for the monitoring of athletic sweat biomarkers that are reflective of physical status and the inimitable feature of wearable sensors to conduct dynamic sweat analysis in situ. However, the preparative methods of wearable patches for monitoring athlete's biomarkers are often complicated. Here, we demonstrate the first example of "sports lab-on-skin" as a fully integrated epidermal sweat sensor through simple laser engraving and laser cutting methods, which enables on-body and wirelessly measuring sweat Na+, sweat K+, sweat lactate, and initial sweat rate for physical status assessment. We test the performance of the "sports lab-on-skin" in both physically trained and un-trained groups under the same exercise intensity. We also validate the influence of different scenarios (water intake, breakfast, and exercise intensity) on dehydration time, sweat K+ level, sweat lactate level, and initial sweat rate.
Collapse
Affiliation(s)
- Jian Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Xiangjie Bo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
15
|
Li T, Wang Q, Cao Z, Zhu J, Wang N, Li R, Meng W, Liu Q, Yu S, Liao X, Song A, Tan Y, Zhou Z. Nerve-Inspired Optical Waveguide Stretchable Sensor Fusing Wireless Transmission and AI Enabling Smart Tele-Healthcare. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410395. [PMID: 39630936 PMCID: PMC11789582 DOI: 10.1002/advs.202410395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Flexible strain monitoring of hand and joint muscle movement is recognized as an effective method for the diagnosis and rehabilitation of neurological diseases such as stroke and Parkinson's disease. However, balancing high sensitivity and large strain, improving wearing comfort, and solving the separation of diagnosis and treatment are important challenges for further building tele-healthcare systems. Herein, a hydrogel-based optical waveguide stretchable (HOWS) sensor is proposed in this paper. A double network structure is adopted to allow the HOWS sensor to exhibit high stretchability of the tensile strain up to 600% and sensitivity of 0.685 mV %-1. Additionally, the flexible smart bionic fabric embedding the HOWS sensor, produced through the warp and weft knitting, significantly enhances wearing comfort. A small circuit board is prepared to enable wireless signal transmission of the designed sensor, thereby improving the daily portability. A speech recognition and human-machine interaction system, based on sensor signal acquisition, is constructed, and the convolutional neural network algorithm is integrated for disease assessment. By integrating sensing, wireless transmission, and artificial intelligence (AI), a smart tele-healthcare system based on HOWS sensors is demonstrated to hold great potential for early warning and rehabilitation monitoring of neurological diseases.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Qian'ao Wang
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Zichun Cao
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Jianglin Zhu
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Nian Wang
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Run Li
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Wei Meng
- School of InformationWuhan University of TechnologyWuhanHubei430070China
| | - Quan Liu
- School of InformationWuhan University of TechnologyWuhanHubei430070China
| | - Shifan Yu
- School of Electronic Science and EngineeringXiamen UniversityXiamenFujian361005China
| | - Xinqin Liao
- School of Electronic Science and EngineeringXiamen UniversityXiamenFujian361005China
| | - Aiguo Song
- School of Instrument Science and EngineeringSoutheast UniversityNanjingJiangsu210096China
| | - Yuegang Tan
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Zude Zhou
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| |
Collapse
|
16
|
Fu D, Dong Y, Yin J, Zhang B, Zhang S, Deng J, Shui H, Liu X. A Multi-Channel Handheld Diagnostic Device Based on Green Biomimetic Material for Point-of-Care Testing of Vitamin C in Human Fluids. Adv Healthc Mater 2025; 14:e2403454. [PMID: 39548945 DOI: 10.1002/adhm.202403454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Indexed: 11/18/2024]
Abstract
In the era of "Great Health", maintaining an appropriate level of vitamin C is crucial for human health as it directly impacts the proper functioning of the immune system. In this study, a handheld nonenzymatic electrochemical sensor based on biomimetic material prussian blue functionalized polydopamine is proposed for point-of-care testing (POCT) of vitamin C in human fluids. Particularly, Prussian blue, known as a bio-antidote, and polydopamine, a main component of cuttlefish ink, ensure the safety and reliability of home testing. The experimental results quantitatively demonstrate that this electrochemical POCT sensor enables rapid and accurate determination of vitamin C with a wide linear detection range from 0.2 to 200 µm, a low limit of detection at 0.03 µm, and high sensitivity at 0.33 µA µm-1 cm-2. More importantly, the performance evaluation using human urine and saliva samples confirms satisfactory accuracy and recovery rates for vitamin C determination by this electrochemical POCT sensor. Thus, the proposed handheld electrochemical POCT sensor holds potential utility as an affordable tool for VC determination and home-based healthcare.
Collapse
Affiliation(s)
- Donglei Fu
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
| | - Yueyan Dong
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
| | - Junping Yin
- Wuhan Danyaxiang Biological Technology Co. Ltd., Wuhan, 432000, P. R. China
| | - Bowen Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Shuaibo Zhang
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
| | - Junjie Deng
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinghai Liu
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
| |
Collapse
|
17
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Tan S, Tan M, Zhang T, Gao L, Li Y, Xu X, Yang ZQ. Establishment of a visual assessment platform for total antioxidant capacity of Ganoderma sichuanense based on Arg-CeO 2 hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D-printed device. Mikrochim Acta 2024; 191:770. [PMID: 39609278 DOI: 10.1007/s00604-024-06840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
A multienzyme-like L-argininemodified CeO2 (Arg-CeO2) nanozyme was prepared for accurate total antioxidant capacity (TAC) determination of Ganoderma sichuanense (G. sichuanense). It exhibits oxidase-like and peroxidase-like activities catalyzing the generation of superoxide anion free radicals and hydroxyl radicals, accelerating 3, 3', 5, 5'-tetramethylbenzidine (TMB) chromogenic reaction. Antioxidants can effectively eliminate the generated free radicals, inhibiting the TMB chromogenic reaction. Hence, TAC can be assessed by Arg-CeO2 catalyzed TMB chromogenic reaction using ascorbic acid (AA) as a reference substance. TAC of G. sichuanense extracted using different solvents was determined, indicating the highest TAC observed in the G. sichuanense extracted by the mixture solvent (deionized water/ethanol/ethyl acetate = 1 : 1 : 1). A visual assessment platform based on Arg-CeO2 hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D printed device is established. TAC using AA as a reference substance (3.33 ~ 83.33 µM) can be detected with a detection limit as low as 0.58 µM. The platform can realize one-step quantitative determination of TAC in G. sichuanense within 40 min. The proposed visual assessment platform presented exhibits promising application prospects in the field of TAC assessment in food.
Collapse
Affiliation(s)
- Suhui Tan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Mengyuan Tan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Tao Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yi Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Zhen-Quan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
19
|
Shahid Z, Veenuttranon K, Lu X, Chen J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. BIOSENSORS 2024; 14:561. [PMID: 39590020 PMCID: PMC11592294 DOI: 10.3390/bios14110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In response to growing environmental concerns, the scientific community is increasingly incorporating green chemistry principles into modern analytical techniques. Electrochemical paper-based analytical devices (ePADs) have emerged as a sustainable and efficient alternative to conventional analytical devices, offering robust applications in point-of-care testing, personalized healthcare, environmental monitoring, and food safety. ePADs align with green chemistry by minimizing reagent use, reducing energy consumption, and being disposable, making them ideal for eco-friendly and cost-effective analyses. Their user-friendly interface, alongside sensitive and selective detection capabilities, has driven their popularity in recent years. This review traces the evolution of ePADs from simple designs to complex multilayered structures that optimize analyte flow and improve detection. It also delves into innovative electrode fabrication methods, assessing key advantages, limitations, and modification strategies for enhanced sensitivity. Application-focused sections explore recent advancements in using ePADs for detecting diseases, monitoring environmental hazards like heavy metals and bacterial contamination, and screening contaminants in food. The integration of cutting-edge technologies, such as wearable wireless devices and the Internet of Things (IoT), further positions ePADs at the forefront of point-of-care testing (POCT). Finally, the review identifies key research gaps and proposes future directions for the field.
Collapse
Affiliation(s)
- Zarfashan Shahid
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kornautchaya Veenuttranon
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| |
Collapse
|
20
|
Qi C, Chen J, Shang Y, Yang Y, Wang K, Chen J. Target-Triggered Ultrafast Chondroitin Gelation Enabled Power-Free and Point-of-Care Bioassays. Anal Chem 2024; 96:17781-17788. [PMID: 39436985 DOI: 10.1021/acs.analchem.4c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Point-of-care (POC) tests increasingly highlight the importance of portable, cost-effective, and visually quantitative detection of biomarkers. Herein, we developed a power-free and visual signal-readout POC sensor based on the target-triggered ultrafast gelation process. In the gelation process, the target triggered the cascade reaction catalyzed by oxidase and ferrous glycinate to produce carbon radicals that immediately initiated the rapid polymerization and cross-linking of acryloylated chondroitin sulfate and dimethylacrylamide. This highly efficient enzymatic polymerization process contributed to the ultrafast generation of chondroitin hydrogel within 1 min at 25 °C. The increase in viscosity of aqueous solution resulted from hydrogel formation was then visually measured according to the distance of solution migration on a tick-labeled pH test strip, which thus realized the quantification of a target. By utilizing glucose oxidase as an oxidase model during the gelation process, this POC sensor was successfully employed in the rapid quantitative detection of glucose without the need for any auxiliary instruments. Benefiting from the specificity and stability of the enzymatic polymerization reaction, the sensor exhibited excellent performance in the detection of glucose in clinical blood samples. Moreover, the sensor was further extended to uric acid detection and enabled accurate assay in clinical urine samples, which indicated the versatility and practicability of this sensor in the POC test.
Collapse
Affiliation(s)
- Chunjiao Qi
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Jintao Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yuhui Shang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yu Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Kangyan Wang
- Department of Clinical Laboratory, Hubei University of Science and Technology Affiliated Xishui Hospital, Huanggang 438200, Hubei, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| |
Collapse
|
21
|
Zhao P, Bai Y, Zhao C, Gao W, Ma P, Yu J, Zhang Y, Zhu P. Multiwalled Carbon Nanotube-Templated Nickel Porphyrin Covalent Organic Framework for Pencil-Drawn Noninvasive Respiration Sensors. ACS Sens 2024; 9:4711-4720. [PMID: 39186011 DOI: 10.1021/acssensors.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Paper-integrated configuration with miniaturized functionality represents one of the future main green electronics. In this study, a paper-based respiration sensor was prepared using a multiwalled carbon nanotube-templated nickel porphyrin covalent organic framework (MWCNTs@COFNiP-Ph) as an electrical identification component and pencil-drawn graphite electric circuits as interdigitated electrodes (IDEs). The MWCNTs@COFNiP-Ph not only inherited the high gas sensing performance of porphyrin and the aperture induction effect of COFs but also overcame the shielding effect between phases through the MWCNT template. Furthermore, it possessed highly exposed M-N4 metallic active sites and unique periodic porosity, thereby effectively addressing the key technical issue of room-temperature sensing for the respiration sensor. Meanwhile, the introduction of a pencil-drawing approach on common printing papers facilitates the inexpensive and simple manufacturing of the as-fabricated graphite IDE. Based on the above advantages, the MWCNTs@COFNiP-Ph respiration sensor had the characteristics of wide detection range (1-500 ppm), low detection limit (30 ppb), acceptable flexibility for toluene, and rapid response/recovery time (32 s/116 s). These advancements facilitated the integration of the respiration sensor into surgical masks and clothes with maximum functionality at a minimized size and weight. Moreover, the primary internal mechanism of COFNiP-Ph for this efficient toluene detection was investigated through in situ FTIR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers, resulting in alterations in sensor resistance upon exposure to the target gas. The encouraging results revealed the feasibility of employing a paper-sensing system as a wearable platform in green electronics.
Collapse
Affiliation(s)
- Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chuanrui Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pan Ma
- Jinan Academy of Agricultural Sciences, Jinan 250316, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
22
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
23
|
Yoshida A, Pirabul K, Fujii S, Pan ZZ, Yoshii T, Ito M, Izawa K, Minegishi Y, Noguchi Y, Hiyoshi N, Takeda K, Hasegawa Y, Itoh T, Nishihara H. Contamination-Free Reference Electrode Using Prussian Blue for Small Oxygen Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50115-50124. [PMID: 39161048 DOI: 10.1021/acsami.4c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In recent years, significant attention has been directed toward advancing compact, point-of-care testing (POCT) devices to better deliver patient care and alleviate the burden on the medical care system. Common POCTs, such as blood oxygen sensors, leverage electrochemical sensing in their design. However, conventional electrochemical devices typically use Ag/AgCl reference electrodes, which are likely to release trace amounts of silver ions that contaminate the working electrode, causing rapid deterioration of the devices. This study proposes an effective reference electrode using graphene-coated porous silica spheres (G/PSS) with embedded Prussian blue (PB), denoted PB/G/PSS, designed specifically for small oxygen sensors. PB is a redox species that is an improvement over Ag/AgCl since it is significantly less water-soluble than AgCl. Since PB is an insulator, we dispersed PB in G/PSS, well-conductive mesoporous matrices, to ensure contact between PB clusters and the electrolytes. Moreover, the monodispersed, spherically shaped PB/G/PSS is an advantageous medium for fabricating POCT devices by screen printing. In this study, the open-circuit potential of the PB/G/PSS electrode remained stable within 30 mV for 31 days. The small oxygen sensor assembled through screen printing using PB/G/PSS demonstrated stable operation for several days or more. In contrast, a similar sensor with Ag/AgCl reference electrode rapidly deteriorated within a day. This PB/G/PSS reference electrode with improved stability is expected to be an excellent alternative to the Ag/AgCl system for small electrochemical-based POCT devices.
Collapse
Affiliation(s)
- Akiko Yoshida
- Techno Medica Co., Ltd., Yokohama, Kanagawa 224-0041, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kritin Pirabul
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shunsuke Fujii
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mutsuhiro Ito
- Fuji Silysia Chemical Ltd., Kasugai, Aichi 487-0013, Japan
| | - Kenichi Izawa
- Fuji Silysia Chemical Ltd., Kasugai, Aichi 487-0013, Japan
| | - Yuka Minegishi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | | | - Norihito Hiyoshi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Kota Takeda
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Yasuhisa Hasegawa
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Tetsuji Itoh
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
24
|
Wang T, Ran C, He X, Li S, Xiang H, Shen Y, Wang J, Wei H. Effects on molecular interactions of hollow gold nanoparticles and antibody for sensitizing P24 antigen determination. RSC Adv 2024; 14:30154-30164. [PMID: 39315032 PMCID: PMC11418390 DOI: 10.1039/d4ra05277c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, with the rapid development of point-of-care testing, the application of lateral flow immunochromatography assay (LFIA) has become increasingly widespread. The key to the success of these detection technologies is the effective binding with diagnostic materials and detection antibody proteins. Although many researchers have tried to optimize antibody binding, a universally accepted strategy that can provide maximum performance has not been determined. In this study, the HIV infection P24 antigen was selected as the detection biomarker. Then the binding mechanism between hollow gold nanoparticles as diagnostic materials and detection antibodies was explored through dynamic light scattering, Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and other methods. It was found that the binding efficiency is related to the change in protein secondary conformation during binding, hydrogen bonding, and van der Waals force maintain the binding mechanism between antibodies and nanoparticles. The main forces of particle complexation and the main binding site of the antibody were discussed and analyzed. Finally, an immunochromatographic system was constructed to evaluate the significant advantages of this platform compared to the common colloidal gold immunochromatographic system.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Laboratory, Second People's Hospital of Taixing City Jiangsu Province 225400 China
| | - Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Shengzhou Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Hongguang Xiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Jue Wang
- National Institutes for Food and Drug Control 2 Tiantan Xili, Dongcheng District Beijing 100050 China +86-10-67095126
| | - Hongxia Wei
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine Nanjing 210003 China +86-13851507368
| |
Collapse
|
25
|
Javaid Z, Iqbal MA, Javeed S, Maidin SS, Morsy K, Shati AA, Choi JR. Reviewing advances in nanophotonic biosensors. Front Chem 2024; 12:1449161. [PMID: 39318420 PMCID: PMC11420028 DOI: 10.3389/fchem.2024.1449161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Biosensing, a promising branch of exploiting nanophotonic devices, enables meticulous detection of subwavelength light, which helps to analyze and manipulate light-matter interaction. The improved sensitivity of recent high-quality nanophotonic biosensors has enabled enhanced bioanalytical precision in detection. Considering the potential of nanophotonics in biosensing, this article summarizes recent advances in fabricating nanophotonic and optical biosensors, focusing on their sensing function and capacity. We typically classify these types of biosensors into five categories: phase-driven, resonant dielectric nanostructures, plasmonic nanostructures, surface-enhanced spectroscopies, and evanescent-field, and review the importance of enhancing sensor performance and efficacy by addressing some major concerns in nanophotonic biosensing, such as overcoming the difficulties in controlling biological specimens and lowering their costs for ease of access. We also address the possibility of updating these technologies for immediate implementation and their impact on enhancing safety and health.
Collapse
Affiliation(s)
- Zunaira Javaid
- Department of Biochemistry, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Saher Javeed
- Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Siti Sarah Maidin
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A. Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Ahmad F, Muhmood T. Clinical translation of nanomedicine with integrated digital medicine and machine learning interventions. Colloids Surf B Biointerfaces 2024; 241:114041. [PMID: 38897022 DOI: 10.1016/j.colsurfb.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Nanomaterials based therapeutics transform the ways of disease prevention, diagnosis and treatment with increasing sophistications in nanotechnology at a breakneck pace, but very few could reach to the clinic due to inconsistencies in preclinical studies followed by regulatory hinderances. To tackle this, integrating the nanomedicine discovery with digital medicine provide technologies as tools of specific biological activity measurement. Hence, overcome the redundancies in nanomedicine discovery by the on-site data acquisition and analytics through integrating intelligent sensors and artificial intelligence (AI) or machine learning (ML). Integrated AI/ML wearable sensors directly gather clinically relevant biochemical information from the subject's body and process data for physicians to make right clinical decision(s) in a time and cost-effective way. This review summarizes insights and recommend the infusion of actionable big data computation enabled sensors in burgeoning field of nanomedicine at academia, research institutes, and pharmaceutical industries, with a potential of clinical translation. Furthermore, many blind spots are present in modern clinically relevant computation, one of which could prevent ML-guided low-cost new nanomedicine development from being successfully translated into the clinic was also discussed.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Tahir Muhmood
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal.
| |
Collapse
|
27
|
Haghayegh F, Norouziazad A, Haghani E, Feygin AA, Rahimi RH, Ghavamabadi HA, Sadighbayan D, Madhoun F, Papagelis M, Felfeli T, Salahandish R. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400595. [PMID: 38958517 PMCID: PMC11423253 DOI: 10.1002/advs.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Early-stage disease detection, particularly in Point-Of-Care (POC) wearable formats, assumes pivotal role in advancing healthcare services and precision-medicine. Public benefits of early detection extend beyond cost-effectively promoting healthcare outcomes, to also include reducing the risk of comorbid diseases. Technological advancements enabling POC biomarker recognition empower discovery of new markers for various health conditions. Integration of POC wearables for biomarker detection with intelligent frameworks represents ground-breaking innovations enabling automation of operations, conducting advanced large-scale data analysis, generating predictive models, and facilitating remote and guided clinical decision-making. These advancements substantially alleviate socioeconomic burdens, creating a paradigm shift in diagnostics, and revolutionizing medical assessments and technology development. This review explores critical topics and recent progress in development of 1) POC systems and wearable solutions for early disease detection and physiological monitoring, as well as 2) discussing current trends in adoption of smart technologies within clinical settings and in developing biological assays, and ultimately 3) exploring utilities of POC systems and smart platforms for biomarker discovery. Additionally, the review explores technology translation from research labs to broader applications. It also addresses associated risks, biases, and challenges of widespread Artificial Intelligence (AI) integration in diagnostics systems, while systematically outlining potential prospects, current challenges, and opportunities.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Alireza Norouziazad
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Ariel Avraham Feygin
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Reza Hamed Rahimi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Hamidreza Akbari Ghavamabadi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Deniz Sadighbayan
- Department of BiologyFaculty of ScienceYork UniversityTorontoONM3J 1P3Canada
| | - Faress Madhoun
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Manos Papagelis
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Tina Felfeli
- Department of Ophthalmology and Vision SciencesUniversity of TorontoOntarioM5T 3A9Canada
- Institute of Health PolicyManagement and EvaluationUniversity of TorontoOntarioM5T 3M6Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
28
|
Nxele SR, Moetlhoa B, Dlangalala T, Maluleke K, Kgarosi K, Theberge AB, Mashamba-Thompson T. Mobile-linked point-of-care diagnostics in community-based healthcare: a scoping review of user experiences. Arch Public Health 2024; 82:139. [PMID: 39192369 PMCID: PMC11348575 DOI: 10.1186/s13690-024-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND While mobile-linked point-of-care diagnostics may circumvent geographical and temporal barriers to efficient communication, the use of such technology in community settings will depend on user experience. We conducted a scoping review to systematically map evidence on user experiences of mobile-linked point-of-care diagnostics in community healthcare settings published from the year 2016 up to the year 2022. METHODOLOGY We conducted a comprehensive search of the following electronic databases: Scopus, Web of Science, and EBSCOhost (Medline, CINAHL, Africa-wide, Academic Search Complete). The inter-reviewer agreement was determined using Cohen's kappa statistic. Data quality was appraised using the mixed method appraisal tool version 2018, and the results were reported according to the preferred reporting items for systematic reviews and meta-analyses for scoping reviews (PRISMA-ScR). RESULTS Following the abstract and full article screening, nine articles were found eligible for inclusion in data extraction. Following the quality appraisal, one study scored 72.5%, one study scored 95%, and the remaining seven studies scored 100%. Inter-rater agreement was 83.54% (Kappa statistic = 0.51, p < 0.05). Three themes emerged from the articles: approaches to implementing mobile-linked point-of-care diagnostics, user engagement in community-based healthcare settings, and limited user experiences in mobile-linked point-of-care diagnostics. User experiences are key to the sustainable implementation of mobile-linked point-of-care diagnostics. User experiences have been evaluated in small community healthcare settings. There is limited evidence of research aimed at evaluating the usability of mobile-linked diagnostics at the community level. CONCLUSION More studies are needed to assess the user experience of mobile-linked diagnostics in larger communities. This scoping review revealed gaps that need to be addressed to improve user experiences of mobile-linked diagnostics, including language barriers, privacy issues, and clear instructions.
Collapse
Affiliation(s)
- Siphesihle R Nxele
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Boitumelo Moetlhoa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Thobeka Dlangalala
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kuhlula Maluleke
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kabelo Kgarosi
- Department of Library Services, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Tivani Mashamba-Thompson
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
29
|
Jian X, Jiang G, Wang J. Recent advances of aggregation-induced emission luminogens for point-of-care biosensing systems. Chem Commun (Camb) 2024; 60:8484-8496. [PMID: 39042090 DOI: 10.1039/d4cc02901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The rapid and sensitive detection of chemical compounds in body fluids and tissues is important for diagnosis of diseases and assessment of the effectiveness of treatment programs. Point-of-care (POC) sensors based on fluorescence signals have been widely used in the rapid detection of various infectious diseases. However, the aggregation-caused quenching phenomenon of conventional fluorescent probes limits the sensitivity and accuracy of fluorescent POC sensors. In this review, we first focus on aggregation-induced emission (AIE)-based POC detection for early diagnosis of diseases and then describe how to use mechanisms of AIE to improve the sensitivity of POC testing. This review gives a summary of the design mechanisms of AIE probes in AIE-based biosensors. Subsequently, it summarizes the design strategies of AIE-based POC sensors in the detection of ions, small molecules, nucleic acids, proteins, and whole entity (cells, bacteria, viruses, and exosomes), placing an emphasis on signal amplification. Finally, it gives an overview of AIE-based POC biosensors, including probes, instruments, and applications. We hope that this review will provide valuable guidance for further expanding the application of AIE luminogens in POC biosensors.
Collapse
Affiliation(s)
- Xiaoxia Jian
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
30
|
Gu Z, Chang H, Yang G, Xu B, Miao B, Li J. An integrated electronic tag-based vertical flow assay (e-VFA) with micro-sieve and AlGaN/GaN HEMT sensors for multi-target detection in actual saliva. Analyst 2024; 149:4267-4275. [PMID: 38904993 DOI: 10.1039/d4an00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Vertical flow assay (VFA) is an effective point-of-care (POC) diagnostic tool for widespread application. Nevertheless, the lack of multi-target detection and multi-signal readout capability still remains a challenge. Herein, a brand new VFA scheme for multi-target saliva detection based on electronic tags was proposed, where AlGaN/GaN HEMT sensors modified with different bio-receptors as electronic tags endowed the VFA with multi-target detection capability. In addition, the use of electronic tags instead of optical tags allowed the VFA to simultaneously carry out direct multi-target readouts, which ensure effective POC diagnostics for saliva analysis. Moreover, by integrating a hydrophilically optimized micro-sieve, impurities like sticky filaments, epidermal cells and other large-scale charged particles in saliva were effectively screened, which enabled the direct detection of saliva using AlGaN/GaN HEMT sensors. Glucose, urea, and cortisol were selected to verify the feasibility of the multi-target e-VFA scheme, and the results showed that the limit of detection (LOD) was as low as 100 aM. The linear response was demonstrated in the dynamic range of 100 aM to 100 μM, and the specificity, long-term stability and validity of the actual saliva test were also verified. These results demonstrated that the as-proposed e-VFA has potential for application in saliva detection for simultaneous multi-target detection, and it is expected to achieve the real-time detection of more biological targets in saliva.
Collapse
Affiliation(s)
- Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Hui Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guo Yang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Electrical and Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Boxuan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China
| | - Bin Miao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| |
Collapse
|
31
|
Wang S, Wu J, Wang Q, Zhang Y, Yuan H, Wang J, Wu Y, Xu Y, Ji N, Quan B, Wang H, Shen Q. Evaluation of a miniature mass spectrometer based point-of-care-test method for direct analysis of amlodipine and benazepril in whole blood. J Pharm Biomed Anal 2024; 245:116194. [PMID: 38704878 DOI: 10.1016/j.jpba.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
A miniature mass spectrometer (mMS) based point-of-care testing (POCT) method was evaluated for on-site detecting the hypertension drugs, amlodipine and benazepril. The instrument parameters, including voltage, ISO1, ISO2, and CID, were optimized, under which the target compounds could be well detected in MS2. When these two drugs were injected simultaneously, the mutual ionization inhibition and mutual reduction between amlodipine and benazepril were evaluated. This phenomenon was severe on the precursor ions but had a small impact on the product ions, thus making this POCT method suitable for analysis using product ions. Finally, the method was validated and applied. The blood samples from patients were tested one hour after oral administration of the drugs (20 mg), and the benazepril was quantitatively analyzed using a standard curve, with detected concentrations ranging from 190.6 to 210 μg L-1 and a relative standard deviation (RSD) of 8.6 %. In summary, amlodipine has low sensitivity and can only be detected at higher concentrations, while benazepril has high sensitivity, good linearity, and even meets semi-quantitative requirements. The research results of this study are of great clinical significance for monitoring blood drug concentrations during hypertension medication, predicting drug efficacy, and customizing individualized medication plans.
Collapse
Affiliation(s)
- Shiqi Wang
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Jiahui Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang 311106, China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Hong Yuan
- First People's Hospital of Linping District, Hangzhou, China
| | - Jianding Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang 311106, China
| | - Yonghui Wu
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang 311106, China
| | - Yaxi Xu
- Central Hospital of Haining, Haining 314408, China
| | - Na Ji
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang 311106, China
| | - Bin Quan
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang 311106, China.
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
32
|
Solanki R, Patra I, Kumar TCA, Kumar NB, Kandeel M, Sivaraman R, Turki Jalil A, Yasin G, Sharma S, Abdulameer Marhoon H. Smartphone-Based Techniques Using Carbon Dot Nanomaterials for Food Safety Analysis. Crit Rev Anal Chem 2024; 54:923-941. [PMID: 35857650 DOI: 10.1080/10408347.2022.2099733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The development of portable and efficient nanoprobes to realize the quantitative/qualitative onsite determination of food pollutants is of immense importance for safeguarding human health and food safety. With the advent of the smartphone, the digital imaging property causes it to be an ideal diagnostic substrate to point-of-care analysis probes. Besides, merging the versatility of carbon dots nanostructures and bioreceptor abilities has opened an innovative assortment of construction blocks to design advanced nanoprobes or improving those existing ones. On this ground, massive endeavors have been made to combine mobile phones with smart nanomaterials to produce portable (bio)sensors in a reliable, low cost, rapid, and even facile-to-implement area with inadequate resources. Herein, this work outlines the latest advancement of carbon dots nanostructures on smartphone for onsite detecting of agri-food pollutants. Particularly, we afford a summary of numerous approaches applied for target molecule diagnosis (pesticides, mycotoxins, pathogens, antibiotics, and metal ions), for instance microscopic imaging, fluorescence, colorimetric, and electrochemical techniques. Authors tried to list those scaffolds that are well-recognized in complex media or those using novel constructions/techniques. Lastly, we also point out some challenges and appealing prospects related to the enhancement of high-efficiency smartphone based carbon dots systems.
Collapse
Affiliation(s)
- Reena Solanki
- Department of Chemistry, Dr APJ Abdul Kalam University, Indore, India
| | | | - T Ch Anil Kumar
- Department of Mechanical Engineering, Vignan's Foundation for Science Technology and Research, Vadlamudi, India
| | - N Bharath Kumar
- Department of Electrical and Electronics Engineering, Vignan's Foundation for Science Technology and Research, Guntur, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Arumbakkam, Chennai, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Ghulam Yasin
- Department of Botany, university of Bahauddin Zakariya, Multan, Pakistan
| | - Sandhir Sharma
- Chitkara Business School, Chitkara University, Punjab, India
| | - Haydar Abdulameer Marhoon
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Iraq
| |
Collapse
|
33
|
Li K, Wang J, Wang J, Zheng Z, Liu X, Wang J, Zhang C, He S, Wei H, Yu CY. A Programmable Microfluidic Paper-Based Analytical Device for Simultaneous Colorimetric and Photothermal Visual Sensing of Multiple Enzyme Activities. Anal Chem 2024; 96:12181-12188. [PMID: 38975840 DOI: 10.1021/acs.analchem.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (μPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this μPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.
Collapse
Affiliation(s)
- Kailing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jieqiong Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjing Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
34
|
Wang Y, Chu L, Meng S, Yang M, Yu Y, Deng X, Qi C, Kong T, Liu Z. Scalable and Ultra-Sensitive Nanofibers Coaxial Yarn-Woven Triboelectric Nanogenerator Textile Sensors for Real-Time Gait Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401436. [PMID: 38749008 PMCID: PMC11267306 DOI: 10.1002/advs.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Indexed: 07/25/2024]
Abstract
Yarn-woven triboelectric nanogenerators (TENGs) have greatly advanced wearable sensor technology, but their limited sensitivity and stability hinder broad adoption. To address these limitations, Poly(VDF-TrFE) and P(olyadiohexylenediamine (PA66)-based nanofibers coaxial yarns (NCYs) combining coaxial conjugated electrospinning and online conductive adhesive coating are developed. The integration of these NCYs led to enhanced TENGs (NCY-TENGs), notable for their flexibility, stretchability, and improved sensitivity, which is ideal for capturing body motion signals. One significant application of this technology is the fabrication of smart insoles from NCY-TENG plain-woven fabrics. These insoles are highly sensitive and possess antibacterial, breathable, and washable properties, making them ideal for real-time gait monitoring in patients with diabetic foot conditions. The NCY-TENGs and their derivatives show immense potential for a variety of wearable electronic devices, representing a considerable advancement in the field of wearable sensors.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Lang Chu
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Si Meng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Mingxuan Yang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Yidan Yu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Xiaokang Deng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics EngineeringCollege of Mechatronics and Control EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
- Department of UrologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037China
| | - Zhou Liu
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| |
Collapse
|
35
|
Huang Z, Zhang L, Dou Y, Liu X, Song S, Jiang H, Fan C. Electrochemical Biosensor for Point-of-Care Testing of Low-Abundance Biomarkers of Neurological Diseases. Anal Chem 2024; 96:10332-10340. [PMID: 38865206 DOI: 10.1021/acs.analchem.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The neurofilament protein light chain (NEFL) is a potential biomarker of neurodegenerative diseases, and interleukin-6 (IL-6) is also closely related to neuroinflammation. Especially, NEFL and IL-6 are the two most low-abundance known protein markers of neurological diseases, making their detection very important for the early diagnosis and prognosis prediction of such kinds of diseases. Nevertheless, quantitative detection of low concentrations of NEFL and IL-6 in serum remains quite difficult, especially in the point-of-care test (POCT). Herein, we developed a portable, sensitive electrochemical biosensor combined with smartphones that can be applied to multiple scenarios for the quantitative detection of NEFL and IL-6, meeting the need of the POCT. We used a double-antibody sandwich configuration combined with polyenzyme-catalyzed signal amplification to improve the sensitivity of the biosensor for the detection of NEFL and IL-6 in sera. We could detect NEFL as low as 5.22 pg/mL and IL-6 as low as 3.69 pg/mL of 6 μL of serum within 2 h, demonstrating that this electrochemical biosensor worked well with serum systems. Results also showed its superior detection capabilities over those of high-sensitivity ELISA for serum samples. Importantly, by detecting NEFL and IL-6 in sera, the biosensor showed its potential for the POCT model detection of all known biomarkers of neurological diseases, making it possible for the mass screening of patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziyue Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinse Academy of Sciences, Shanghai 200050, China
| | - Xue Liu
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| | - Shiping Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chunhai Fan
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Taha BA, Ahmed NM, Talreja RK, Haider AJ, Al Mashhadany Y, Al-Jubouri Q, Huddin AB, Mokhtar MHH, Rustagi S, Kaushik A, Chaudhary V, Arsad N. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis. ACS Synth Biol 2024; 13:1600-1620. [PMID: 38842483 DOI: 10.1021/acssynbio.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Naser M Ahmed
- Department of Laser and Optoelectronics Engineering, Dijlah University College, 00964 Baghdad, Iraq
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, 00964 Baghdad, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, 00964 Baghdad, Iraq
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand 248007, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| |
Collapse
|
37
|
Wu W, Chen K, Yu H, Zhu J, Feng Y, Wang J, Huang X, Li L, Hao H, Wang T, Wang N, Naumov P. Trimodal operation of a robust smart organic crystal. Chem Sci 2024; 15:9287-9297. [PMID: 38903221 PMCID: PMC11186328 DOI: 10.1039/d4sc02152e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
We describe a dynamic crystalline material that integrates mechanical, thermal, and light modes of operation, with unusual robustness and resilience and a variety of both slow and fast kinematic effects that occur on very different time scales. In the mechanical mode of operation, crystals of this material are amenable to elastic deformation, and they can be reversibly morphed and even closed into a loop, sustaining strains of up to about 2.6%. Upon release of the external force, the crystals resume their original shape without any sign of damage, demonstrating outstanding elasticity. Application of torque results in plastic twisting for several rotations without damage, and the twisted crystal can still be bent elastically. The thermal mode of operation relies on switching the lattice at least several dozen times. The migration of the phase boundaries depends on the crystal habit. It can be precisely controlled by temperature, and it is accompanied by both slow and fast motions, including shear deformation and leaping. Parallel boundaries result in a thermomechanical effect, while non-parallel boundaries result in a thermosalient effect. Finally, the photochemical mode of operation is driven by isomerization and can be thermally reverted. The structure of the crystal can also be switched photochemically, and the generation of a bilayer induces rapid bending upon exposure to ultraviolet light, an effect that further diversifies the mechanical response of the material. The small structural changes, low-energy and weak intramolecular hydrogen bonds, and shear deformation, which could dissipate part of the elastic energy, are considered to be the decisive factors for the conservation of the long-range order and the extraordinary diversity in the response of this, and potentially many other dynamic crystalline materials.
Collapse
Affiliation(s)
- Wenbo Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Kui Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Hui Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Jiaxuan Zhu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Department of Chemistry, Molecular Design Institute, New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
38
|
Liu W, Yao Y, Liu Q, Chen X. Nanoenzyme Hydrogel Film-Based Portable Point-of-Care Testing Platform for Double-Signal Visual Detection of PSA. Anal Chem 2024; 96:9909-9916. [PMID: 38830056 DOI: 10.1021/acs.analchem.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The development of the Point-of-Care Testing (POCT) platform that combines convenience and cost-effectiveness is crucial for enabling the visual detection of disease biomarkers. In this work, a POCT platform for the sensitive in situ detection of prostate specific antigen (PSA) with dual-signal output was constructed by functionalizing the Eppendorf (EP) tube. This was achieved through the modification of aptamer hairpin probes (AHPs) on the lid of the EP tube and the assembly of a nanoenzyme hydrogel film on its inner wall. The target could trigger the release of Ag+ by AHP and subsequently activate Ag+-dependent DNAzyme (Ag-DNAzyme). This would initiate the cleavage of the DNA-Au/Pt NP hydrogel network, leading to the release of Au/Pt NPs. The released Au/Pt NPs exhibit both peroxidase (POD)-like and catalase (CAT)-like activity to produce a colorimetric response and induce liquid flow under pressure. Therefore, the target can be measured visually and quantitatively through colorimetric analysis and the measurement of total dissolved solids (TDS) using a pressure-triggered liquid flow device integrated into the platform. The designed platform is distinguished by its simplicity, specificity, cost-effectiveness, and remarkable sensitivity. It allows for the visual detection of PSA within concentration ranges of 0.5-100 ng/L (colorimetric) and 3-100 ng/L (TDS reading), boasting detection limits as low as 0.15 ng/L (colorimetric) and 0.57 ng/L (TDS reading). The strategy of target-triggered nanoenzyme release significantly enhances sensitivity and provides a guiding approach for visual biomarker detection.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
39
|
Lu J, Bai Y, Wang X, Huang P, Liu M, Wang R, Zhang H, Wang H, Li Y. Sensitive, Semiquantitative, and Portable Nucleic Acid Detection of Rabies Virus Using a Personal Glucose Meter. ACS OMEGA 2024; 9:26058-26065. [PMID: 38911722 PMCID: PMC11191140 DOI: 10.1021/acsomega.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Rabies is a zoonotic infection with the potential to infect all mammals and poses a significant threat to mortality. Although enzyme-linked immunosorbent tests and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) have been established for rabies virus (RABV) detection, they require skilled staff. Here, we introduce a personal glucose meter (PGM)-based nucleic acid (NA-PGM) detection method to diagnose RABV. This method ensures sensitive and convenient RABV diagnosis through hybridization of reverse transcription-recombinase aided amplification (RT-RAA) amplicons with probes labeled with sucrose-converting enzymes, reaching a detection level as low as 6.3 copies/μL equivalent to 12.26 copies. NA-PGM allows for the differentiation of RABV from other closely related viruses. In addition, NA-PGM showed excellent performance on 65 clinical samples with a 100% accuracy rate compared with the widely adopted RT-qPCR method. Thus, our developed NA-PGM method stands out as sensitive, semiquantitative, and portable for RABV detection, showcasing promise as a versatile platform for a wide range of pathogens.
Collapse
Affiliation(s)
| | | | - Xuejin Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Pei Huang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Meihui Liu
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Ruijia Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| |
Collapse
|
40
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
41
|
Luo X, Xie J, Yang L, Cui Y. An intelligent wearable artificial pancreas patch based on a microtube glucose sensor and an ultrasonic insulin pump. Talanta 2024; 273:125879. [PMID: 38490022 DOI: 10.1016/j.talanta.2024.125879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
In order to improve the living standards of diabetes patients and reduce the negative health effects of this disease, the medical community has been actively searching for more effective treatments. In recent years, an artificial pancreas has emerged as an important approach to managing diabetes. Despite these recent advances, meeting the requirements for miniaturized size, accurate sensing and large-volume pumping capability remains a great challenge. Here, we present a novel miniaturized artificial pancreas based on a long microtube sensor integrated with an ultrasonic pump. Our device meets the requirements of achieving both accurate sensing and high pumping capacity. The artificial pancreas is constructed based on a long microtube that is low cost, painless and simple to operate, where the exterior of the microtube is fabricated as a glucose sensor for detecting diabetes and the interior of the microtube is used as a channel for delivering insulin through an ultrasonic pump. This work successfully achieved closed-loop control of blood glucose and treatment of diabetes in rats. It is expected that this work can open up new methodologies for the development of microsystems, and advance the management approach for diabetes patients.
Collapse
Affiliation(s)
- Xiaojin Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Jiaye Xie
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
42
|
Xie Y, He J, He W, Iftikhar T, Zhang C, Su L, Zhang X. Enhanced Interstitial Fluid Extraction and Rapid Analysis via Vacuum Tube-Integrated Microneedle Array Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308716. [PMID: 38502884 DOI: 10.1002/advs.202308716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Advancing the development of point-of-care testing (POCT) sensors that utilize interstitial fluid (ISF) presents considerable obstacles in terms of rapid sampling and analysis. Herein, an innovative strategy is introduced that involves the use of a 3D-printed, hollow microneedle array patch (MAP), in tandem with a vacuum tube (VT) connected through a hose, to improve ISF extraction efficiency and facilitate expedited analysis. The employment of negative pressure by the VT allows the MAP device to effectively gather ≈18 µL of ISF from the dermis of a live rabbit ear within a concise period of 5 min. This methodology enables the immediate and minimally invasive measurement of glucose levels within the body, employing personal healthcare meters for quantification. The fusion of the VT and MAP technologies provides for their effortless integration into a comprehensive and mobile system for ISF analysis, accomplished by preloading the hose with custom sensing papers designed to detect specific analytes. Moreover, the design and functionality of this integrated VT-MAP system are intuitively user-friendly, eliminating the requirement for specialized medical expertise. This feature enhances its potential to make a significant impact on the field of decentralized personal healthcare.
Collapse
Affiliation(s)
- Yuanting Xie
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Jinhua He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Tayyaba Iftikhar
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Chuangjie Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Lei Su
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
43
|
Oliveira D, Romaguera Barcelay Y, Moreira FTC. An electrochemically synthesized molecularly imprinted polymer for highly selective detection of breast cancer biomarker CA 15-3: a promising point-of-care biosensor. RSC Adv 2024; 14:15347-15357. [PMID: 38741963 PMCID: PMC11089526 DOI: 10.1039/d4ra02051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, a molecularly imprinted polymer film (MIP) was prepared on the surface of a disposable carbon screen-printed electrode (C-SPE) using (3-acrylamidopropyl)trimethylammonium chloride (AMPTMA) as a functional monomer and the cancer biomarker carbohydrate antigen 15-3 (CA 15-3) as a template. The MIP was synthesized by in situ electropolymerization (ELP) of the AMPTMA monomer in the presence of the CA 15-3 protein on the C-SPE surface. The target was subsequently removed from the polymer matrix by the action of proteinase K, resulting in imprinted cavities with a high affinity for CA 15-3. Electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the different phases of the sensor assembly. Chemical and morphological analysis was performed using RAMAN and scanning electron microscopy (SEM). CA 15-3 was successfully detected in a wide working range from 0.001 U mL-1 to 100 U mL-1 with a correlation coefficient (R2) of 0.994 in 20 min. The MIP sensor showed minimal interference with other cancer proteins (CEA and CA 125). Overall, the developed device provides a rapid, sensitive, and cost-effective response in the detection of CA 15-3. Importantly, this comprehensive approach appears suitable for point-of-care (PoC) use, particularly in a clinical context.
Collapse
Affiliation(s)
- Daniela Oliveira
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto R. Dr António Bernardino de Almeida, 431 4249-015 Porto Portugal
- CEMMPRE, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima - Pólo II 3030-790 Coimbra Portugal
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto Porto Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho Braga Portugal
| | - Yonny Romaguera Barcelay
- CEMMPRE, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima - Pólo II 3030-790 Coimbra Portugal
| | - Felismina T C Moreira
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto R. Dr António Bernardino de Almeida, 431 4249-015 Porto Portugal
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto Porto Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho Braga Portugal
| |
Collapse
|
44
|
Yuan H, Wan C, Wang X, Li S, Xie H, Qian C, Du W, Feng X, Li Y, Chen P, Liu BF. Programmable Gravity Self-Driven Microfluidic Chip for Point-of-Care Multiplied Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310206. [PMID: 38085133 DOI: 10.1002/smll.202310206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/02/2023] [Indexed: 05/25/2024]
Abstract
Point-of-care testing (POCT) is experiencing a groundbreaking transformation with microfluidic chips, which offer precise fluid control and manipulation at the microscale. Nevertheless, chip design or operation for existing platforms is rather cumbersome, with some even heavily depending on external drivers or devices, impeding their broader utilization. This study develops a unique programmable gravity self-driven microfluidic chip (PGSMC) capable of simultaneous multi-reagent sequential release, multi-target analysis, and multi-chip operation. All necessary reagents are introduced in a single step, and the process is initiated simply by flipping the PGSMC vertically, eliminating the need for additional steps or devices. Additionally, it demonstrates successful immunoassays in less than 60 min for antinuclear antibodies testing, compared to more than 120 min by traditional methods. Assessment using 25 clinically diagnosed cases showcases remarkable sensitivity (96%), specificity (100%), and accuracy (99%). These outcomes underscored its potential as a promising platform for POCT with high accuracy, speed, and reliability, highlighting its capability for automated fluid control.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
45
|
Chen P, Wu H, Zhao Y, Zhong L, Zhang Y, Zhan X, Xiao A, Huang Y, Zhang H, Guan BO. Quantitative Assessment of Fungal Biomarkers in Clinical Samples via an Interface-Modulated Optical Fiber Biosensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312985. [PMID: 38373270 DOI: 10.1002/adma.202312985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber-optic sensor with rapid response time, cost-effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.
Collapse
Affiliation(s)
- Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haotian Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Institute of Mycology, Jinan University, Guangzhou, 510632, China
| | - Lv Zhong
- Department of Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yujiao Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Institute of Mycology, Jinan University, Guangzhou, 510632, China
| | - Xundi Zhan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Aoxiang Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Institute of Mycology, Jinan University, Guangzhou, 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
Lu L, Hu G, Liu J, Yang B. 5G NB-IoT System Integrated with High-Performance Fiber Sensor Inspired by Cirrus and Spider Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309894. [PMID: 38460163 PMCID: PMC11095228 DOI: 10.1002/advs.202309894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/17/2024] [Indexed: 03/11/2024]
Abstract
Real-time telemedicine detection can solve the problem of the shortage of public medical resources caused by the coming aging society. However, the development of such an integrated monitoring system is hampered by the need for high-performance sensors and the strict-requirement of long-distance signal transmission and reproduction. Here, a bionic crack-spring fiber sensor (CSFS) inspired by spider leg and cirrus whiskers for stretchable and weavable electronics is reported. Trans-scale conductive percolation networks of multilayer graphene around the surface of outer spring-like Polyethylene terephthalate (PET) fibers and printing Ag enable a high sensitivity of 28475.6 and broad sensing range over 250%. The electromechanical changes in different stretching stages are simulated by Comsol to explain the response mechanism. The CSFS is incorporated into the fabric and realized the human-machine interactions (HMIs) for robot control. Furthermore, the 5G Narrowband Internet of Things (NB-IoT) system is developed for human healthcare data collection, transmission, and reproduction together with the integration of the CSFS, illustrating the huge potential of the approach in human-machine communication interfaces and intelligent telemedicine rehabilitation and diagnosis monitoring.
Collapse
Affiliation(s)
- Lijun Lu
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
- Department of Micro/Nano ElectronicsSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Guosheng Hu
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
- Department of Micro/Nano ElectronicsSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
47
|
Liu B, Cheng Y, Pan X, Yang W, Li X, Wang L, Ye H, Pan T. Multicolor-Assay-on-a-Chip Processed by Robotic Operation (MACpro) with Improved Diagnostic Accuracy for Field-Deployable Detection. Anal Chem 2024; 96:6634-6642. [PMID: 38622069 DOI: 10.1021/acs.analchem.3c05918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The ability to deploy decentralized laboratories with autonomous and reliable disease diagnosis holds the potential to deliver accessible healthcare services for public safety. While microfluidic technologies provide precise manipulation of small fluid volumes with improved assay performance, their limited automation and versatility confine them to laboratories. Herein, we report the utility of multicolor assay-on-a-chip processed by robotic operation (MACpro), to address this unmet need. The MACpro platform comprises a robot-microfluidic interface and an eye-in-hand module that provides flexible yet stable actions to execute tasks in a programmable manner, such as the precise manipulation of the microfluidic chip along with different paths. Notably, MACpro shows improved detection performance by integrating the microbead-based antibody immobilization with enhanced target recognition and multicolor sensing via Cu2+-catalyzed plasmonic etching of gold nanorods for rapid and sensitive analyte quantification. Using interferon-gamma as an example, we demonstrate that MACpro completes a sample-to-answer immunoassay within 30 min and achieves a 10-fold broader dynamic range and a 10-fold lower detection limit compared to standard enzyme-linked immunosorbent assays (0.66 vs 5.2 pg/mL). MACpro extends the applications beyond traditional laboratories and presents an automated solution to expand diagnostic capacity in diverse settings.
Collapse
Affiliation(s)
- Binyao Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Yixin Cheng
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Xiang Pan
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Wen Yang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Xiangpeng Li
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lele Wang
- Shenzhen Shaanxi Coal Hi-tech Research Institute Co., Ltd, Shenzhen 518107, P.R. China
| | - Haihang Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Tingrui Pan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
48
|
Cao M, Deng W, Zhu Z, Ma C, Bai J, Emran MY, Kotb A, Sun M, Zhou M. A Fully Integrated Handheld Electrochemical Sensing Platform for Point-of-Care Testing of Escherichia coli O157:H7. Anal Chem 2024; 96:5340-5347. [PMID: 38501977 DOI: 10.1021/acs.analchem.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Fully integrated devices that enable full functioning execution without or with minimum external accessories or equipment are deemed to be one of the most desirable and ultimate objectives for modern device design and construction. Escherichia coli O157:H7 (E. coli O157:H7) is often linked to outbreaks caused by contaminated water and food. However, the sensors that are currently used for point-of-care E. coli O157:H7 (E. coli O157:H7) detection are often large and cumbersome. Herein, we demonstrate the first example of a handheld and pump-free fully integrated electrochemical sensing platform with the capability to point-of-care test E. coli O157:H7 in the actual samples of E. coli O157:H7-spiked tap water and E. coli O157:H7-spiked watermelon juice. This platform was made possible by overcoming major engineering challenges in the seamless integration of a microfluidic module for pump-free liquid sample collection and transportation, a sensing module for efficient E. coli O157:H7 testing, and an electronic module for automatically converting and wirelessly transmitting signals into a single and compact electrochemical sensing platform that retains its inimitable stand-alone, handheld, pump-free, and cost-effective feature. Although our primary emphasis in this study is on detecting E. coli O157:H7, this pump-free fully integrated handheld electrochemical sensing platform may also be used to monitor other pathogens in food and water by including specific antipathogen antibodies.
Collapse
Affiliation(s)
- Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Wei Deng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ziyu Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| |
Collapse
|
49
|
Zhang Z, Wang Z, Zhang C, Yao Z, Zhang S, Wang R, Tian Z, Han J, Chang C, Lou J, Yan X, Qiu C. Advanced Terahertz Refractive Sensing And Fingerprint Recognition Through Metasurface-Excited Surface Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308453. [PMID: 38180283 DOI: 10.1002/adma.202308453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/27/2023] [Indexed: 01/06/2024]
Abstract
High-sensitive metasurface-based sensors are essential for effective substance detection and insightful bio-interaction studies, which compress light in subwavelength volumes to enhance light-matter interactions. However, current methods to improve sensing performance always focus on optimizing near-field response of individual meta-atom, and fingerprint recognition for bio-substances necessitates several pixelated metasurfaces to establish a quasi-continuous spectrum. Here, a novel sensing strategy is proposed to achieve Terahertz (THz) refractive sensing, and fingerprint recognition based on surface waves (SWs). Leveraging the long-range transmission, strong confinement, and interface sensitivity of SWs, a metasurface-supporting SWs excitation and propagation is experimentally verified to achieve sensing integrations. Through wide-band information collection of SWs, the proposed sensor not only facilitates refractive sensing up to 215.5°/RIU, but also enables the simultaneous resolution of multiple fingerprint information within a continuous spectrum. By covering 5 µm thickness of polyimide, quartz and silicon nitride layers, the maximum phase change of 91.1°, 101.8°, and 126.4° is experimentally obtained within THz band, respectively. Thus, this strategy broadens the research scope of metasurface-excited SWs and introduces a novel paradigm for ultrasensitive sensing functions.
Collapse
Affiliation(s)
- Zeyan Zhang
- School of Physics, Peking University, Beijing, 100871, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Zhuo Wang
- State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Chao Zhang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhibo Yao
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Shoujun Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Zhen Tian
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Chao Chang
- School of Physics, Peking University, Beijing, 100871, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Xueqing Yan
- School of Physics, Peking University, Beijing, 100871, China
| | - Chengwei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
50
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|