1
|
Song ZH, Ma YF, Han H, Li DY, Fu R, Zhao QY, Wang R, Guo DS, Cai K. Enantiopure Macrocycles Based on Tröger's Base and Diphenyl Maleimide Exhibiting Strong Chiral Emission and Host-Guest Properties. Chemistry 2025; 31:e202403271. [PMID: 39624941 DOI: 10.1002/chem.202403271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Indexed: 12/13/2024]
Abstract
While a plenty of macrocyclic hosts have been developed in supramolecular chemistry, those that combine chiral luminescent properties and host-guest recognition abilities are still uncommon. Herein, two pairs of enantiomeric macrocycles were synthesized via Suzuki-Miyaura [2+2] cyclization reactions using Tröger's base and diphenyl maleimide as the building blocks. The diphenyl maleimide units impart these macrocycles with highly strong fluorescence, achieving quantum yields up to 100 % in apolar solvents. Furthermore, the chiral, V-shaped Tröger's base units provide the macrocycles with circularly polarized luminescence (|glum|=1.68×10-3) and well-define cavity for hosting electron-deficient or positively charged guests with Ka up to 1.7×106 M-1.
Collapse
Affiliation(s)
- Zi-Hang Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yi-Fan Ma
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Qing-Yu Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiguo Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Kang Cai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Docker A, Min Tay H. Determining Ion-Pair Binding Affinities of Heteroditopic Receptor Systems. Chemistry 2024; 30:e202402844. [PMID: 39186476 PMCID: PMC11618037 DOI: 10.1002/chem.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Determining ion-pair affinities in heteroditopic receptor systems presents a persistent and significant challenge. The plethora of technical and experimental problems implicated in measuring ion-pair affinities have encouraged the use of several expedient experimental practices as a means of characterising ion-pair recognition behaviour. Exploiting a model heteroditopic receptor system, we interrogate the reliability of these methods and demonstrate that these commonly used techniques can be highly questionable and without extreme care can lead to incorrect conclusions.
Collapse
Affiliation(s)
- Andrew Docker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeUK
| | - Hui Min Tay
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
3
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2024:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
4
|
Roy A, Halder D, Patra AK, Frontera A, Saha I. N-Confused strapped calix[4]pyrrole: the missing member of calix[4]pyrrole chemistry. Org Biomol Chem 2024; 22:8249-8254. [PMID: 39022818 DOI: 10.1039/d4ob00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The first example of N-confused strapped calix[4]pyrrole 5 is presented. The structural integrity of 5 and its regular isomer 4 was unambiguously confirmed by single crystal X-ray diffraction analysis. Anion binding studies using 1H NMR titration carried out in CDCl3 revealed a small but detectable tendency of 5 to interact with an anion. Conversely, the isomeric regular strapped calix[4]pyrrole 4 displayed high selectivity for fluoride anions under similar experimental conditions. The high fluoride selectivity of 4 and unexpectedly low anion affinity of 5 were ascribed to the presence of intramolecular hydrogen bonds within strapping subunits.
Collapse
Affiliation(s)
- Anik Roy
- Department of Chemistry and Vivekananda Centre for Research, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Dibakar Halder
- Department of Chemistry and Vivekananda Centre for Research, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Ashoke Kumar Patra
- Department of Chemistry and Vivekananda Centre for Research, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de valldemossa km7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Indrajit Saha
- Department of Chemistry and Vivekananda Centre for Research, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| |
Collapse
|
5
|
Xu C, Tran QG, Liu D, Zhai C, Wojtas L, Liu W. Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water. Chem Sci 2024:d4sc05236f. [PMID: 39309075 PMCID: PMC11409225 DOI: 10.1039/d4sc05236f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized via a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO4 -. Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology.
Collapse
Affiliation(s)
- Chengkai Xu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Quy Gia Tran
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Dexin Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Canjia Zhai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| |
Collapse
|
6
|
Wojaczyńska E, Ostrowska M, Lower M, Czyżyk N, Jakieła A, Marra A. Recent Advances in Synthesis and Applications of Calixarene Derivatives Endowed with Anticancer Activity. Molecules 2024; 29:4240. [PMID: 39275088 PMCID: PMC11397654 DOI: 10.3390/molecules29174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Calix[n]arenes, macrocycles constituted of 4-8 phenol moieties linked through methylene bridges, are stable molecules that can be selectively functionalised at the upper or lower rim. It has already been demonstrated that calixarene derivatives can be biologically or pharmacologically active compounds. More recently, suitably functionalised calixarenes and calixarene analogues (dihomooxacalixarenes, thiacalixarenes, calix[4]resorcinols, azacalixarenes, calixpyrroles, and pillarenes) were found to act as anticancer agents, at least in in vitro assays. We are reporting on the latest progress in this research field.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Marta Ostrowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Małgorzata Lower
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Czyżyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Anna Jakieła
- Clinical Department of Clinical Oncology, 4th Military Clinical Hospital with Polyclinic in Wrocław, R. Weigla 5, 50-981 Wroclaw, Poland
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
7
|
Kohl SJ, Sigmund LM, Schmitt M, Greb L. Nitrogen monoxide and calix[4]pyrrolato aluminate: structural constraint enabled NO dimerization. Chem Sci 2024; 15:10803-10809. [PMID: 39027292 PMCID: PMC11253113 DOI: 10.1039/d4sc02378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
The dimerization of nitrogen monoxide (NO) is highly relevant in homo- and heterogeneous biochemical and environmental redox processes, but a broader understanding is challenged by the endergonic nature of this equilibrium. The present work describes NO-dimerization leveraged by structurally constrained aluminum and metal-ligand cooperativity at the anionic calix[4]pyrrolato aluminate(III). Quantum chemical calculations reveal the driving force for N-N bond formation, while reactivity tests shed light on subsequent redox chemistry and NO decomposition at metal surfaces. Inhibiting the dimerization pathway by saturating NO's unpaired electron with a phenyl group (nitrosobenzene) allows trapping the 1,2-adduct as a key intermediate. Elevated temperatures result in an unprecedented and high-yielding rearrangement of the calix[4]pyrrolato ligand scaffold. Kinetic and theoretical studies provide a comprehensive picture of the rearrangement mechanism and delineate systematics for ring modification of the prominent calix[4]pyrrole macrocycle.
Collapse
Affiliation(s)
- Senta J Kohl
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas M Sigmund
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Manuel Schmitt
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
8
|
Saha R, Skjelstad BB, Pan S. In Silico Design and Characterization of a New Molecular Electride: Li@Calix[3]Pyrrole. Chemistry 2024; 30:e202400448. [PMID: 38622984 DOI: 10.1002/chem.202400448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Electrides, in which anionic electrons are localized independently of the atoms in the compound, have shown promise, especially as catalysts and optoelectronic materials. Here, we present a new computationally designed molecular electride, Li@calix[3]pyrrole (Li@C3P). Electron density and electron localization function analyses unequivocally confirm the existence of localized electride electron density, outside the system, independent of any specific atoms. Non-covalent interaction plots further validate the character of the isolated localized electron, suggesting that the system can be accurately represented by Li+@calix[3]pyrrole ⋅ e-, denoting its distinct charge separation. The remarkable non-linear optical properties of Li@C3P, including average polarizability,α ‾ ${\bar{\alpha }}$ =412.4 au, first hyperpolarizability, β=4.46×104 au, and second hyperpolarizability,γ ∥ ${{\gamma }_{\parallel }}$ =18.40×106 au, are unparalleled in the previously reported and similar Li@C4P molecular electride. Furthermore, energy decomposition analysis in combination with natural orbital for chemical valence theory sheds light on the mechanism of electron density transfer from Li to the C3P cage, yielding the charge-separated Li@C3P complex. In addition to the electron transfer, a key factor to its electride nature is the electronic structure of the CnP cage, which has its lowest unoccupied molecular orbital located in the void adjacent to the N-H groups at the back of the bowl-shaped CnP cage.
Collapse
Affiliation(s)
- Ranajit Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India
| | - Bastian Bjerkem Skjelstad
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sudip Pan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| |
Collapse
|
9
|
Watanabe K, Pati NN, Inokuma Y. Contracted porphyrins and calixpyrroles: synthetic challenges and ring-contraction effects. Chem Sci 2024; 15:6994-7009. [PMID: 38756809 PMCID: PMC11095365 DOI: 10.1039/d4sc02028f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Ring-contracted porphyrin analogues, such as subporphyrins and calix[3]pyrroles, have recently attracted considerable attention not only as challenging synthetic targets but also as functional macrocyclic compounds. Although canonical porphyrins and calix[4]pyrrole are selectively generated via acid-catalyzed condensation reactions of pyrrole monomers, their tripyrrolic analogues are always missing under similar conditions. Recent progress in synthesis has shown that strain-controlled approaches using boron(iii)-templating, core-modification, or ring tightening provide access to various contracted porphyrins. The tripyrrolic macrocycles are a new class of functional macrocycles exhibiting unique ring-contraction effects, including strong boron chelation and strain-induced ring expansion. This Perspective reviews recent advances in synthetic strategies and the novel ring-contraction effects of subporphyrins, triphyrins(2.1.1), calix[3]pyrroles, and their analogous.
Collapse
Affiliation(s)
- Keita Watanabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Narendra Nath Pati
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| |
Collapse
|
10
|
Delecluse M, Manick AD, Chatelet B, Chevallier-Michaud S, Moraleda D, Riggi ID, Dutasta JP, Martinez A. Ditopic Covalent Cage for Ion-Pair Binding: Influence of Anion Complexation on the Cation Exchange Rate. Chempluschem 2024; 89:e202300558. [PMID: 37950861 DOI: 10.1002/cplu.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
A new hemicryptophane host with a ditopic molecular cavity combining a cyclotriveratrylene (CTV) unit with a tris-urea moiety was synthesized. The complexation of halides, tetramethylammonium (TMA+) cation, and ion pairs was investigated. A positive cooperativity was observed, since halides display a higher binding constant when a TMA+ cation is already present inside the cage. When TMA+ was complexed alone, a decrease of temperature from 298 K to 230 K was required to switch from a fast to a slow exchange regime on the NMR time scale. Nevertheless, the prior complexation of a halide guest in the lower part of the host resulted in significant decrease of the exchange rate of the subsequent complexation of the TMA+ cation. Under these conditions, the 1H NMR signals characteristic of a slow exchange regime were observed at 298 K. Addition of an excess of salts, increases the ionic strength of the solution, restoring the fast exchange dynamics. This result provides insight on how the exchange rate of a cation guest can be modulated by the complexation of a co-guest anion.
Collapse
Affiliation(s)
- Magalie Delecluse
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Anne-Doriane Manick
- Aix-Marseille Univ., CNRS, Institut de Chimie, Radicalaire, UMR 7273, 13397, Marseille, France
| | - Bastien Chatelet
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | | | - Delphine Moraleda
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Innocenzo de Riggi
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie UMR 5182 46 Allée d'Italie, 69364, Lyon, France
| | - Alexandre Martinez
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| |
Collapse
|
11
|
Ohtani S, Akine S, Kato K, Fa S, Shi TH, Ogoshi T. Silapillar[ n]arenes: Their Enhanced Electronic Conjugation and Conformational Versatility. J Am Chem Soc 2024; 146:4695-4703. [PMID: 38324921 DOI: 10.1021/jacs.3c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
During recent decades, methylene-bridged macrocyclic arenes have been widely used in supramolecular chemistry. However, their π-conjugations are very weak, as the methylene bridges disrupt the electronic communication between π orbitals of the aromatic units. Herein, we successfully synthesized a series of silapillar[n]arenes (n = 4, 6, and 8) using silylene bridging. These showed enhanced electronic conjugation compared with the parent pillar[n]arenes because of σ*-π* conjugation between σ* (Si-C) orbitals and π* orbitals of the benzenes. Owing to the longer Si-C bond compared with the C-C bond, silylene-bridging provides additional structural flexibility into the pillar[n]arene scaffolds; a strained silapillar[4]arene was formed, which is unavailable in the parent pillar[n]arenes because of the steric requirements. Furthermore, silapillar[n]arenes displayed interesting size-dependent structural and optical properties.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Kumar A, Chae PS. A Naphthoquinoline-Dione-Based Cu 2+ Sensing Probe with Visible Color Change and Fluorescence Quenching in an Aqueous Organic Solution. Molecules 2024; 29:808. [PMID: 38398561 PMCID: PMC10891706 DOI: 10.3390/molecules29040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Copper metal ions (Cu2+) are widely used in various industries, and their salts are used as supplementary components in agriculture and medicine. As this metal ion is associated with various health issues, it is necessary to detect and monitor it in environmental and biological samples. In the present report, we synthesized a naphthoquinoline-dione-based probe 1 containing three ester groups to investigate its ability to detect metal ions in an aqueous solution. Among various metal ions, probe 1 showed a vivid color change from yellow to colorless in the presence of Cu2+, as observed by the naked eye. The ratiometric method using the absorbance ratio (A413/A476) resulted in a limit of detection (LOD) of 1 µM for Cu2+. In addition, the intense yellow-green fluorescence was quenched upon the addition of Cu2+, resulting in a calculated LOD of 5 nM. Thus, probe 1 has the potential for dual response toward Cu2+ detection through color change and fluorescence quenching. 1H-NMR investigation and density functional theory (DFT) calculations indicate 1:1 binding of the metal ion to the small cavity of the probe comprising four functional groups: the carbonyl group of the amide (O), the amino group (N), and two t-butyl ester groups (O). When adsorbed onto various solid surfaces, such as cotton, silica, and filter paper, the probe showed effective detection of Cu2+ via fluorescence quenching. Probe 1 was also useful for Cu2+ sensing in environmental samples (sea and drain water) and biological samples (live HeLa cells).
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
13
|
Shi TH, Akine S, Ohtani S, Kato K, Ogoshi T. Friedel-Crafts Acylation for Accessing Multi-Bridge-Functionalized Large Pillar[n]arenes. Angew Chem Int Ed Engl 2024; 63:e202318268. [PMID: 38108597 DOI: 10.1002/anie.202318268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Pillar[n]arenes can be constructed using a Friedel-Crafts alkylation process. However, due to the reversible nature of the alkylation, mixture of large pillar[n]arenes (n≥7) are obtained as minor products, and thus laborious purification are necessary to isolate the larger pillar[n]arenes. Moreover, inert methylene bridges are introduced during the alkylation process, and the multi-functionalization of the bridges has never been investigated. Herein, an irreversible Friedel-Crafts acylation is used to prepare pillar[n]arenes. Due to the irreversible nature of the acylation, the reaction of precursors bearing carboxylic acids and electron-rich arene rings results in a size-exclusive formation of pillar[n]arenes, in which the ring-size is determined by the precursor length. Because of this size-selective formation, laborious separation of undesired macrocycles is not necessary. Moreover, the bridges of pillar[n]arenes are selectively installed with reactive carbonyl groups using the acylation method, whose positions are determined by the precursor used. The carbonyl bridges can be easily converted into versatile functional groups, leading to various laterally modified pillar[n]arenes, which cannot be accessed by the alkylation strategy.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
| |
Collapse
|
14
|
Tian J, Ji J, Zhu Y, He Y, Li H, Li Y, Luo D, Xing J, Qie L, Sessler JL, Chi X. Phenylboronic Acid Functionalized Calix[4]pyrrole-Based Solid-State Supramolecular Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308507. [PMID: 37885345 DOI: 10.1002/adma.202308507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Solid-state polymer electrolytes (SPEs) suffer from the low ionic conductivity and poor capability of suppressing lithium (Li) dendrites, which limits their utility in the preparation of all solid-state Li-metal batteries (LMBs). It is reported here a flexible solid supramolecular electrolyte that incorporates a new anion capture agent, namely a phenylboronic acid functionalized calix[4]pyrrole (C4P), into a poly(ethylene oxide) (PEO) matrix. The resulting solid-state supramolecular electrolyte demonstrates high ionic conductivity (1.9 × 10-3 S cm-1 at 60 °C) and a high Li+ transference number (t Li + ${t}_{{\mathrm{Li}}^{\mathrm{ + }}}$ = 0.70). Furthermore, the assembled Li|C4P-PEO-LiTFSI|LiFePO4 cell allows for stable cycling over 1200 cycles at 1 C at 60 °C, as well as good rate performance. The favorable performance of the C4P-PEO-LiTFSI SPE leads to suggest it can prove useful in the creation of high energy density solid-state LMBs.
Collapse
Affiliation(s)
- Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Ji
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yaling Zhu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanlei He
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbing Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Luo
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiapeng Xing
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Qie
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
15
|
Giri M, Dash Y, Guchhait T. Does Larger Cavity-Size Really Help Bigger Anions to Bind? A Scrutiny on Core-Expanded Calix[4]pyrroles and Their Properties. Chempluschem 2024; 89:e202300427. [PMID: 37830245 DOI: 10.1002/cplu.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Calix[4]pyrroles are an important class of oligopyrrolic macrocycles and have found applications in many diverse fields including anion recognition. To modulate the properties of the calix[4]pyrrole, several structural modifications are realized. The core-expansion has attracted extra attention as it provides larger cavity-size compared to parent calix[4]pyrrole(s). This review highlights the synthetic development of various core-expanded calix[4]pyrroles and their applications in anion-binding properties. Emphasis is given to the changes in the binding properties observed with expanded versions of calix[4]pyrrole(s) in both solution and the solid states. The expanded versions of calix[4]pyrrole do not always show higher binding affinities for larger anions as anticipated. Rather, they display reduced affinities with the anions. The truncated form or asymmetric nature of the expanded versions of calix[4]pyrrole does not probably allow to access all the available binding sites for the anions and hence reduced binding affinities are observed. The receptors which contain a greater number of binding sites and are somehow rigid or preorganized apparently show enhanced binding affinities for anions. The relative binding constants for halide series indicate that the enlarged molecules are more beneficial for largest iodide among others. However, most of the receptors show selectivity towards smallest fluoride over other anions studied.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Yashaswini Dash
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| |
Collapse
|
16
|
Kashyap P, Sharma P, Gohil R, Rajpurohit D, Mishra D, Shrivastav PS. Progress in appended calix[4]arene-based receptors for selective recognition of copper ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123188. [PMID: 37515889 DOI: 10.1016/j.saa.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
In the past two decades, there has been significant progress in the design and development of synthetic receptors for molecular recognition as they find application in the field of chemical, biological, medical, and environmental sciences. Synthetic receptors based on calix systems appended with fluorogenic and chromogenic groups have gained considerable attention for sensing and recognition of ions and molecules. Copper (Cu2+) is an essential element required in trace amounts in all living organisms to carry out various biological processes. The aim of this review is to summarize advancement in π-conjugated fluorogenic and chromogenic groups appended to calix[4]arene motifs for detection and quantitation of Cu2+ ion. The focus is to present a comprehensive account of extended calix[4]arene systems with different linkers and highlight the unique design and binding characteristics for the recognition and sensing of Cu2+ ions.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Payal Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Ritu Gohil
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
17
|
Jung Heo N, Lynch VM, Gross DE, Sessler JL, Kuk Kim S. Diphenylpyrrole-Strapped Calix[4]pyrrole Extractant for the Fluoride and Chloride Anions. Chemistry 2023; 29:e202302410. [PMID: 37639280 DOI: 10.1002/chem.202302410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
The anion binding features of diphenylpyrrole-strapped calix[4]pyrrole 1 have been investigated by means of 1 H NMR spectroscopy and ITC (isothermal titration calorimetry), as well as single crystal X-ray diffraction analyses. Receptor 1 bearing an auxiliary pyrrolic NH donor and solubilizing phenyl groups on the strap was found to bind F- , Cl- , and Br- as their tetrabutylammonium salts with high affinity in DMSO-d6 . In addition, receptor 1 was found to extract the fluoride anion (as both its tetraethylammonium (TEA+ ) and tetrabutylammonium (TBA+ ) salts), as well as the chloride anion into chloroform-d from an aqueous source phase. Cation metathesis using TBAI or the use of a dual host approach involving crown ethers enabled receptor 1 to extract simple alkali metal fluoride or chloride salts from water. Quantitative binding of NaF by receptor 1 was observed in 20 % D2 O-DMSO-d6 allowing for the direct determination of the NaF concentration in an unknown sample.
Collapse
Affiliation(s)
- Nam Jung Heo
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Vincent M Lynch
- Department of Chemistry, Institution The University of Texas at Austin, 2105 E. 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA
| | - Dustin E Gross
- Department of Chemistry, Sam Houston State University, Huntsville, Texas, USA
| | - Jonathan L Sessler
- Department of Chemistry, Institution The University of Texas at Austin, 2105 E. 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
18
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
19
|
Pamuła M, Bulatov E, Martínez-Crespo L, Kiesilä A, Naulapää J, Kalenius E, Helttunen K. Anion binding and transport with meso-alkyl substituted two-armed calix[4]pyrroles bearing urea and hydroxyl groups. Org Biomol Chem 2023; 21:6595-6603. [PMID: 37530577 DOI: 10.1039/d3ob00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Calix[4]pyrroles bearing hydroxyl (1) or urea (3) groups attached to the meso-positions with propyl linkers were synthesized as cis- and trans-isomers. The anion binding properties of cis-1 and cis-3 were screened with ion-mobility mass spectrometry, where cis-1 formed complexes with Cl-, Br- and H2PO4-, whereas cis-3 formed complexes with most of the investigated anions, including Cl-, Br-, I-, NO3-, ClO4-, OTf-, SCN- and PF6-. The structures of the chloride complexes were further elucidated with density functional theory calculations and a crystal structure obtained for cis-1. In solution, chloride and dihydrogenphosphate anion binding with cis-1 and cis-3 were compared using 1H NMR titrations. To assess the suitability of two-armed calix[4]pyrroles as anion transporters, chloride transport studies of cis-1, cis-3 and trans-3 were performed using large unilamellar vesicles. The results revealed that cis-3 had the highest activity among the investigated calix[4]pyrroles, which was related to the improved affinity and isolation of chloride inside the binding cavity of cis-3 in comparison to cis-1. The results indicate that appending calix[4]pyrroles with two hydrogen bonding arms is a feasible strategy to obtain anion transporters and receptors with high anion affinity.
Collapse
Affiliation(s)
- Małgorzata Pamuła
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Evgeny Bulatov
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Luis Martínez-Crespo
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Julia Naulapää
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Kaisa Helttunen
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| |
Collapse
|
20
|
Cheng K, Li H, Wang JR, Li PZ, Zhao Y. From Supramolecular Organic Cages to Porous Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability by Fully Exposed Nitrogen-Rich Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301998. [PMID: 37162443 DOI: 10.1002/smll.202301998] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Indexed: 05/11/2023]
Abstract
In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications.
Collapse
Affiliation(s)
- Ke Cheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Hailian Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Jia-Rui Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Pei-Zhou Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
21
|
Cataldo A, Norvaisa K, Halgreen L, Bodman SE, Bartik K, Butler SJ, Valkenier H. Transmembrane Transport of Inorganic Phosphate by a Strapped Calix[4]pyrrole. J Am Chem Soc 2023. [PMID: 37471295 DOI: 10.1021/jacs.3c04631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic anion receptors are increasingly being explored for the transport of anions across lipid membranes because of their potential therapeutic applications. A considerable amount of research focuses on the transport of chloride, whereas the transmembrane transport of inorganic phosphate has not been reported to date, despite the biological relevance of this anion. Here we present a calix[4]pyrrole with a bisurea strap that functions as a receptor and transporter for H2PO4-, relying on the formation of eight hydrogen bonds and efficient encapsulation of the anion. Using a phosphate-sensitive lanthanide probe and 31P NMR spectroscopy, we demonstrate that this receptor can transport phosphate into vesicles by H2PO4-/Cl- antiport, H2PO4- uniport, and Cs+/H2PO4- symport mechanisms. This first example of inorganic phosphate transport by a neutral receptor opens perspectives for the future development of transporters for various biological phosphates.
Collapse
Affiliation(s)
- Alessio Cataldo
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Karolis Norvaisa
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Samantha E Bodman
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, U.K
| | - Kristin Bartik
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, U.K
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
22
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
23
|
Li G, Wang Y, Luan H, Sun Y, Qu Y, Lu Z, Li H. Highly Selective Transport and Enrichment of Lithium Ions through Bionic Ion Pair Receptor Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384944 DOI: 10.1021/acsami.3c05776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Inspired by ion pair cotransport channels in biological systems, a bionic nanochannel modified with lithium ion pair receptors is constructed for selective transport and enrichment of lithium ions (Li+). NH2-pillar[5]arene (NP5) is chosen as ion pair receptors, and the theoretical simulation and NMR titration experiments illustrate that NP5 has good affinity for the ion pair of LiCl through a strong host-guest interaction at the molecular level. Due to the confinement effect and ion pair cooperation recognition, an NP5-based receptor was introduced into an artificial PET nanochannel. An I-V test indicated that the NP5 channel realized the highly selective recognition for Li+. Meanwhile, transmembrane transport and COMSOL simulation experiments proved that the NP5 channel achieved the transport and enrichment of Li+ through the cooperative interaction between NP5 and LiCl. Moreover, the receptor solution of transmembrane transport LiCl in the NP5 channel was used to cultivate wheat seedlings, which obviously promoted their growth. This nanochannel based on the ion pair recognition will be much useful for practical applications like metal ion extraction, enrichment, and recycle.
Collapse
Affiliation(s)
- Guang Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yue Wang
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Hanghang Luan
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Yanjuan Qu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
24
|
Gou F, Shi D, Kou B, Li Z, Yan X, Wu X, Jiang YB. One-Pot Cyclization to Large Peptidomimetic Macrocycles by In Situ-Generated β-Turn-Enforced Folding. J Am Chem Soc 2023; 145:9530-9539. [PMID: 37037798 DOI: 10.1021/jacs.2c11684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Macrocycles have been targets of extensive synthetic efforts for decades because of their potent molecular recognition and self-assembly capabilities. Yet, efficient syntheses of macrocyclic molecules via irreversible covalent bonds remain challenging. Here, we report an efficient approach to large peptidomimetic macrocycles by using the in situ-generated β-turn structural motifs afforded in the amidothiourea moieties from the early steps of the reaction of 2 molecules of bilateral amino acid-based acylhydrazine with 2 molecules of diisothiocyanate. Four chiral and achiral peptidomimetic large macrocycles were successfully synthesized in high yields of 45-63% in a feasible one-pot reaction under sub-molar concentration conditions and were purified by simple filtration. X-ray crystallographic characterization of three macrocycles reveals an important feature that their four β-turn structures, each maintained by four 10-membered intramolecular hydrogen bonds, alternatively network the four aromatic arms. This affords an interesting conformation switching mode upon anion binding. Binding of SO42- to 1L or 1D that contains 4 alanine residues (with the lowest steric hinderance among the macrocycles) leads to an inside-out structural change of the host macrocycle, as confirmed by the X-ray crystal structure of 1L-SO42- and 1D-SO42- complexes, accompanied by an inversion of the CD signals. On the basis of the strong sulfate affinity of the macrocycles, we succeeded in the removal of sulfate anions from water via a macrocycle-mediated liquid-liquid extraction method. Our synthetic protocol can be easily extended to other macrocycles of varying arms and/or chiral amino acid residues; thus, a variety of structurally and functionally diverse macrocycles are expected to be readily made.
Collapse
Affiliation(s)
- Fei Gou
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Di Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Bohan Kou
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
25
|
Zhang J, Tanjedrew N, Wenzel M, Royla P, Du H, Kiatisevi S, Lindoy LF, Weigand JJ. Selective Separation of Lithium, Magnesium and Calcium using 4-Phosphoryl Pyrazolones as pH-Regulated Receptors. Angew Chem Int Ed Engl 2023; 62:e202216011. [PMID: 36625760 DOI: 10.1002/anie.202216011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Ensuring continuous and sustainable lithium supply requires the development of highly efficient separation processes such as LLE (liquid-liquid extraction) for both primary sources and certain waste streams. In this work, 4-phosphoryl pyrazolones are used in an efficient pH-controlled stepwise separation of Li+ from Ca2+ , Mg2+ , Na+ and K+ . The factors affecting LLE process, such as the substitution pattern of the extractant, diluent/water distribution, co-ligand, pH, and speciation of the metal complexes involved, were systematically investigated. The maximum extraction efficiency of Li+ at pH 6.0 was 94 % when Mg2+ and Ca2+ were previously separated at pH<5.0, proving that the separation of these ions is possible by simply modulating the pH of the aqueous phase. Our study points a way to separation of lithium from acid brine or from spent lithium ion battery leaching solutions, which supports the future supply of lithium in a more environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Narisara Tanjedrew
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hao Du
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Supavadee Kiatisevi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, Sydney, NSW-2006, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
26
|
He YC, Tong HB, Xu CG, Ren ZX, Wang YZ, Yan YM, Wang ML. Highly Selective Coextraction of H +/SO 42- Using a Strapped Calix[4]pyrrole. Org Lett 2023; 25:1737-1741. [PMID: 36877585 DOI: 10.1021/acs.orglett.3c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We report on the synthesis of a cage-type calix[4]pyrrole (1) bearing an additional basic pyridinebisthiazolamine group on the strap. The receptor in its protonated form shows strong affinity and selectivity for sulfate over a wide range of inorganic anions. With receptor 1 as a liquid-liquid extractant, H+/SO42- in the form of H2SO4 is almost quantitatively extracted from an aqueous solution containing HNO3 at a high concentration to CH2Cl2 in a recyclable manner.
Collapse
Affiliation(s)
- Ying-Chun He
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Hong-Bo Tong
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Cheng-Gang Xu
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhen-Xing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Yong-Zhao Wang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Yan-Mei Yan
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
27
|
Xu W, Nagata Y, Kumagai N. TEtraQuinolines: A Missing Link in the Family of Porphyrinoid Macrocycles. J Am Chem Soc 2023; 145:2609-2618. [PMID: 36689566 DOI: 10.1021/jacs.2c12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porphyrin contains four inwardly oriented nitrogen atoms. It is arguably the most ubiquitous multifunctional naturally occurring macrocycle that has inspired the design of novel nitrogen-containing heterocycles for decades. While cyclic tetramers of pyrrole, indole, and pyridine have been exploited as macrocycles in this category, quinoline has been largely neglected as a synthon. Herein, we report the synthesis of TEtraQuinoline (TEQ) as a 'missing link' in this N4 macrocycle family. In TEQs, four quinoline units are concatenated to produce an S4-symmetric architecture. TEQs are characterized by a highly rigid saddle shape, wherein the lone-pair orbitals of the four nitrogen atoms are not aligned in a planar fashion. Nevertheless, TEQs can coordinate a series of transition-metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Pd2+). TEQs are inherently fluorescence-silent but become strongly emissive upon protonation or complexation of Zn(II) cations (ϕ = 0.71). TEQ/Fe(II) complexes can catalyze dehydrogenation and oxygenation reactions with catalyst loadings as low as 0.1 mol %.
Collapse
Affiliation(s)
- Wei Xu
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuuya Nagata
- Institute of Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.,Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0025, Japan
| |
Collapse
|
28
|
Lee A, Yang JH, Oh JH, Hay BP, Lee K, Lynch VM, Sessler JL, Kim SK. Cyclo[2]carbazole[2]pyrrole: a preorganized calix[4]pyrrole analogue. Chem Sci 2023; 14:1218-1226. [PMID: 36756337 PMCID: PMC9891360 DOI: 10.1039/d2sc06376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
A cyclo[2]carbazole[2]pyrrole (2) consisting of two carbazoles and two pyrroles has been synthesized by directly linking the carbazole 1- and 8-carbon atoms to the pyrrole α-carbon atoms. Macrocycle 2 is an extensively conjugated 16-membered macrocyclic ring that is fixed in a pseudo-1,3-alternate conformation. This provides a preorganized anion binding site consisting of two pyrrole subunits. 1H NMR spectroscopic analysis revealed that only the two diagonally opposed pyrrole NH protons, as opposed to the carbazole protons, take part in anion binding. Nevertheless, cyclo[2]carbazole[2]pyrrole 2 binds representative anions with higher affinity in CD2Cl2 than calix[4]pyrrole (1), a well-studied non-conjugated tetrapyrrole macrocycle that binds anions via four pyrrolic NH hydrogen bond interactions. On the basis of computational studies, the higher chloride anion affinity of receptor 2 relative to 1 is rationalized in terms of a larger binding energy and a lower host strain energy associated with anion complexation. In the presence of excess fluoride or bicarbonate anions, compound 2 loses two pyrrolic NH protons to produce a stable dianionic macrocycle [2-2H]2- displaying a quenched fluorescence.
Collapse
Affiliation(s)
- Areum Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| | - Ju Ho Yang
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| | - Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| | | | - Kyounghoon Lee
- Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National UniversityJinju52828Korea
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin105 E. 24th, Street-Stop A5300AustinTexas 78712-1224USA
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin105 E. 24th, Street-Stop A5300AustinTexas 78712-1224USA
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| |
Collapse
|
29
|
Aoun P, Nyssen N, Richard S, Zhurkin F, Jabin I, Colasson B, Reinaud O. Selective Metal-ion Complexation of a Biomimetic Calix[6]arene Funnel Cavity Functionalized with Phenol or Quinone. Chemistry 2023; 29:e202202934. [PMID: 36321640 PMCID: PMC10107959 DOI: 10.1002/chem.202202934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/06/2022]
Abstract
In the biomimetic context, many studies have evidenced the importance of the 1st and 2nd coordination sphere of a metal ion for controlling its properties. Here, we propose to evaluate a yet poorly explored aspect, which is the nature of the cavity that surrounds the metal labile site. Three calix[6]arene-based aza-ligands are compared, that differ only by the nature of cavity walls, anisole, phenol or quinone (LOMe , LOH and LQ ). Monitoring ligand exchange of their ZnII complexes evidenced important differences in the metal ion relative affinities for nitriles, halides or carboxylates. It also showed a possible sharp kinetic control on both, metal ion binding and ligand exchange. Hence, this study supports the observations reported on biological systems, highlighting that the substitution of an amino-acid residue of the enzyme active site, at remote distance of the metal ion, can have strong impacts on metal ion lability, substrate/product exchange or selectivity.
Collapse
Affiliation(s)
- Pamela Aoun
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601 Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
| | - Nicolas Nyssen
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601 Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France.,Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B 1050, Brussels, Belgium
| | - Sarah Richard
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601 Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
| | - Fedor Zhurkin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601 Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B 1050, Brussels, Belgium
| | - Benoit Colasson
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601 Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
| | - Olivia Reinaud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601 Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
30
|
Wagay SA, Khan L, Ali R. Recent Advancements in Ion-Pair Receptors. Chem Asian J 2023; 18:e202201080. [PMID: 36412231 DOI: 10.1002/asia.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Over the past two decades, non-covalent chemistry has introduced various promising artificial receptors and revolutionized the host-guest chemistry. These versatile receptors have particularly been entertained in sensing and recognizing of diverse neutral molecules and/or ionic entities (e. g. anions, cations and ion-pair) of particular interest. Notably, supramolecular chemistry had given birth to a plethora of important molecules, explored in the chemical, biological, environmental, and pharmacological world to resolve the critical issues related to the human health while keeping environmental concerns in mind. Amongst the various types of supramolecular monotopic receptors (anions, cations, and neutral molecules), heteroditopic receptors (ion-pair receptors) consisting of distinct binding sites in one system for both cation and anion, have gained much interest from the scientific community in recent past because of their unique binding abilities. Interestingly, these promising artificial receptors have shown potential applications in sensing, recognition, transport and extraction processes besides their uses in salt/waste purification. Bearing the importance of these systems in mind, we intended to report the recent developments in ion-pair chemistry. Herein, we divided the whole document into three main sections; first one describes the introduction and history of the ion-pairs receptors. The second portion highlights the synthesis and applications of ion-pair receptors in sensing, recognition, molecular machines, photoswitching behaviour, extraction and transport properties, whereas the last part of this manuscript provides concluding remarks as well as future prospects of ion-pair receptors. We hope that this manuscript will be helpful to stimulating researchers around the globe to find out the hidden opportunities in this and related areas.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Lubna Khan
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| |
Collapse
|
31
|
Aryl- and Superaryl-Extended Calix[4]pyrroles: From Syntheses to Potential Applications. Top Curr Chem (Cham) 2023; 381:7. [PMID: 36607442 DOI: 10.1007/s41061-022-00419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/10/2022] [Indexed: 01/07/2023]
Abstract
The incorporation of aryl substituents at the meso-positions of calix[4]pyrrole (C4P) scaffolds produces aryl-extended (AE) and super-aryl-extended (SAE) calix[4]pyrroles. The cone conformation of the all-α isomers of "multi-wall" AE-C4Ps and SAE-C4Ps displays deep aromatic clefts or cavities. In particular, "four-wall" receptors feature an aromatic polar cavity closed at one end with four convergent pyrrole rings and fully open at the opposite end. This makes AE- and SAE-C4P scaffolds effective receptors for the molecular recognition of negatively charged ions and neutral guest molecules with donor-acceptor and hydrogen bonding motifs. In addition, adequately functionalized all-α isomers of multi wall AE- and SAE-C4P scaffolds self-assemble into uni-molecular and supra-molecular aggregates displaying capsular and cage-like structures. The self-assembly process requires the presence of template ions or molecules that lock the C4P cone conformation and complementing the inner polar functions and volumes of their cavities. We envisioned performing an in-depth revision of AE- and SAE-C4P scaffolds owing to their importance in different domains such as supramolecular chemistry, biology, material sciences and pharmaceutical chemistry. Herewith, besides the synthetic details on the elaboration of their structures, we also draw attention to their diverse applications. The organization of this review is mainly based on the number of "walls" present in the AE-C4P derivatives and their structural modifications. The sections are further divided based on the C4P functions and applications. The authors are convinced that this review will be of interest to researchers working in the general area of supramolecular chemistry as well as those involved in the study of the binding properties and applications of C4P derivatives.
Collapse
|
32
|
Kurashov IA, Kharlamova AD, Abel AS, Averin AD, Beletskaya IP. Polyoxa- and Polyazamacrocycles Incorporating 6,7-Diaminoquinoxaline Moiety: Synthesis and Application as Tunable Optical pH-Indicators in Aqueous Solution. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020512. [PMID: 36677571 PMCID: PMC9866286 DOI: 10.3390/molecules28020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Synthetic approach to fluorescent polyaza- and polyoxadiazamacrocycles comprising a structural fragment of 6,7-diamino-2,3-diphenylquinoxaline has been elaborated using Pd-catalyzed amination providing target compounds in yields up to 77%. A series of nine novel N- and N,O-containing macrocyclic ligands differing by the number of donor sites and cavity size has been obtained. These compounds possess well-pronounced fluorescent properties with emission maxima in a blue region in aprotic solvents and high quantum yields of fluorescence, while in proton media, fluorescence shifts towards the green region of the spectrum. Using macrocycles 5c and 5e as examples, we have shown that such compounds can serve as dual-channel (colorimetric and fluorimetric) pH indicators in water media, with pH transition point and response being dependent on the macrocycle structure due to different sequences of protonation steps.
Collapse
Affiliation(s)
- Igor A. Kurashov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Alisa D. Kharlamova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Anton S. Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
- Correspondence: (A.S.A.); (A.D.A.)
| | - Alexei D. Averin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
- Correspondence: (A.S.A.); (A.D.A.)
| | - Irina P. Beletskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| |
Collapse
|
33
|
Xiao T, Elmes R, Yao Y. Editorial: Host-guest chemistry of macrocycles- Volume II. Front Chem 2023; 11:1162019. [PMID: 36895319 PMCID: PMC9990904 DOI: 10.3389/fchem.2023.1162019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Robert Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland.,Synthesis and Solid-State Pharmaceutical Centre (SSPC), Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| |
Collapse
|
34
|
Rather IA, Riaz U, Ali R. Experimental and Computational Anion Binding Studies of meso-Substituted One-Walled Phthalimide-based Calix[4]pyrrole. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Molecular Pincers Using a Combination of N-H and C-H Donors for Anion Binding. Int J Mol Sci 2022; 24:ijms24010163. [PMID: 36613608 PMCID: PMC9820443 DOI: 10.3390/ijms24010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
A naphthalene imide (1) and a naphthalene (2) bearing two pyrrole units have been synthesized, respectively, as anion receptors. It was revealed by 1H NMR spectral studies carried out in CD3CN that receptors 1 and 2 bind various anions via hydrogen bonds using both C-H and N-H donors. Compared with receptor 2, receptor 1 shows higher affinity for the test anions because of the enhanced acidity of its pyrrole NH and naphthalene CH hydrogens by the electron-withdrawing imide substituent. Molecular mechanics computations demonstrate that the receptors contact the halide anions via only one of the two respective available N-H and C-H donors whereas they use all four donors for binding of the oxyanions such as dihydrogen phosphate and hydrogen pyrophosphate. Receptor 1, a push-pull conjugated system, displays a strong fluorescence centered at 625 nm, while receptor 2 exhibits an emission with a maximum peak at 408 nm. In contrast, upon exposure of receptors 1 and 2 to the anions in question, their fluorescence was noticeably quenched particularly with relatively basic anions including F-, H2PO4-, HP2O73-, and HCO3-.
Collapse
|
36
|
Yang P, Mahmoud ME, Xiang Y, Lin Z, Ma X, Christian JH, Bindra JK, Kinyon JS, Zhao Y, Chen C, Nisar T, Wagner V, Dalal NS, Kortz U. Host–Guest Chemistry in Discrete Polyoxo-12-Palladate(II) Cubes [MO 8Pd 12L 8] n− (M = Sc III, Co II, Cu II, L = AsO 43 –; M = Cd II, Hg II, L = PhAsO 32–): Structure, Magnetism, and Catalytic Hydrogenation. Inorg Chem 2022; 61:18524-18535. [DOI: 10.1021/acs.inorgchem.2c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Yang
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | | | - Yixian Xiang
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Zhengguo Lin
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
- College of Chemistry and Materials Science, Hebei Normal University, 050024 Shijiazhuang, P. R. China
| | - Xiang Ma
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Jonathan H. Christian
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jasleen K. Bindra
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jared S. Kinyon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yue Zhao
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Chaoqin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Talha Nisar
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Naresh S. Dalal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Ulrich Kortz
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
37
|
Kumar GD, Banasiewicz M, Wrzosek A, O'Mari O, Zochowska M, Vullev VI, Jacquemin D, Szewczyk A, Gryko DT. A sensitive zinc probe operating via enhancement of excited-state intramolecular charge transfer. Org Biomol Chem 2022; 20:7439-7447. [PMID: 36102673 DOI: 10.1039/d2ob01296k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel highly sensitive fluorescent probes for zinc cations based on the diketopyrrolopyrrole scaffold were designed and synthesized. Large bathochromic shifts (≈80 nm) of fluorescence are observed when the Zn2+-recognition unit (di-(2-picolyl)amine) is bridged with the fluorophore possessing an additional pyridine unit able to participate in the coordination process. This effect originates from the dipolar architecture and the increasing electron-withdrawing properties of the diketopyrrolopyrrole core upon addition of the cation. The new, greenish-yellow emitting probes, which operate via modulation of intramolecular charge transfer, are very sensitive to the presence of Zn2+. Introduction of a morpholine unit in the diketopyrrolopyrrole structure induces a selective six-fold increase of the emission intensity upon zinc coordination. Importantly, the presence of other divalent biologically relevant metal cations has negligible effects and typically even at a 100-fold higher concentration of Mg2+/Zn2+, the effect is comparable. Computational studies rationalize the strong bathochromic shift upon Zn2+-complexation. Decorating the probes with the triphenylphosphonium cation and morpholine unit enables selective localization in the mitochondria and the lysosome of cardiac H9C2 cells, respectively.
Collapse
Affiliation(s)
- G Dinesh Kumar
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Monika Zochowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Denis Jacquemin
- Nantes University, CNRS, CEISAM, UMR-6230, F-4400 Nantes, France.
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
38
|
Oh JH, Hay BP, Lynch VM, Li H, Sessler JL, Kim SK. Calix[4]pyrrole-Based Molecular Capsule: Dihydrogen Phosphate-Promoted 1:2 Fluoride Anion Complexation. J Am Chem Soc 2022; 144:16996-17009. [PMID: 36074582 DOI: 10.1021/jacs.2c06284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular capsule (1) consisting of two calix[4]pyrroles connected via ethylene diamide linkers has been prepared as an anion receptor. 1H NMR spectroscopic studies carried out in CD2Cl2 revealed that receptor 1 recognizes a variety of anions with different binding modes and stoichiometries. For instance, receptor 1 binds fluoride and acetate with 1:2 receptor/anion stoichiometry and other test anions with 1:1 stoichiometry in solution when their respective tetrabutylammonium (TBA+) salts were used. In contrast, with tetraethylammnium (TEA+) salts, receptor 1 forms 1:2 complexes with chloride and bromide in addition to fluoride, overcoming expected Columbic repulsions between the anions co-bound in close proximity. Receptor 1 is also able to bind oxoanions, such as oxalate (C2O42-), dihydrogen phosphate (H2PO4-), sulfate (SO42-), and hydrogen pyrophosphate (HP2O73-), in the form of 1:1 complexes as the result of presumed cooperation between the two calix[4]pyrrole subunits. The selectivity of receptor 1 for fluoride versus dihydrogen phosphate varies depending on their relative concentrations. For instance, in the presence of less than 1.0 equiv of an equimolar mixture of fluoride and dihydrogen phosphate, receptor 1 shows high selectivity for dihydrogen phosphate. In contrast, in the presence of ≥2.0 anion equiv, receptor 1 binds fluoride preferentially, forming a 1:2 complex. Moreover, when treated with F-, the preformed 1:1 H2PO4- complex of receptor 1 is converted to the corresponding 1:2 receptor/fluoride complex with the release of the prebound dihydrogen phosphate anion. As inferred from gas-phase computations, this seemingly counterintuitive behavior is rationalized in terms of the precomplexed dihydrogen phosphate serving to reduce the reorganization energy required to bind two fluoride anions. The presence of a water molecule in addition to the bound fluoride anions may also favor the formation of the 1:2 F- complex. The present study provides a new approach for fine-tuning the binding selectivity of polytopic anion receptors.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, Korea
| | - Benjamin P Hay
- Supramolecular Design Institute, Oak Ridge, Tennessee 37830, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th, Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th, Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, Korea
| |
Collapse
|
39
|
Sheetz EG, Zhang Z, Marogil A, Che M, Pink M, Carta V, Raghavachari K, Flood AH. High‐fidelity Recognition of Organotrifluoroborate Anions (R−BF
3
−
) as Designer Guest Molecules. Chemistry 2022; 28:e202201584. [DOI: 10.1002/chem.202201584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Edward G. Sheetz
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Zhao Zhang
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Alyssa Marogil
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Minwei Che
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Maren Pink
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Veronica Carta
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| |
Collapse
|
40
|
Toumia IB, Ponassi M, Barboro P, Iervasi E, Vargas GC, Banelli B, Fiordoro S, Ghedira LC, Kohnke FH, Izzotti A, Rosano C. Two calix[4]pyrroles as potential therapeutics for castration-resistant prostate cancer. Invest New Drugs 2022; 40:1185-1193. [PMID: 35976541 DOI: 10.1007/s10637-022-01294-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
Macrocyclic compounds meso-(p-acetamidophenyl)-calix[4]pyrrole and meso-(m-acetamidophenyl)-calix[4]pyrrole have previously been reported to exhibit cytotoxic properties towards lung cancer cells. Here, we report pre-clinical in vitro and in vivo studies showing that these calixpyrrole derivatives can inhibit cell growth in both PC3 and DU145 prostatic cancer cell lines. We explored the impact of these compounds on programmed cell death, as well as their ability to inhibit cellular invasion. In this study we have demonstrated the safety of these macrocyclic compounds by cytotoxicity tests on ex-vivo human peripheral blood mononuclear cells (PBMCs), and by in vivo subcutaneous administration. Preliminary in vivo tests demonstrated no hepato-, no nephro- and no genotoxicity in Balb/c mice compared to controls treated with cisplatin. These findings suggest these calixpyrroles might be novel therapeutic tools for the treatment of prostate cancer and of particular interest for the treatment of androgen-independent castration-resistant prostate cancer.
Collapse
Affiliation(s)
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Barboro
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | | | - Leila Chekir Ghedira
- Unit of Bioactive Natural Substances and Biotechnology UR17ES47, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | | |
Collapse
|
41
|
Guchhait T, Pradhan P, Panda L, Sreejit K. Rao M. Pyrrole‐Based Cryptand‐Like Cages: A Critical Overview of Synthetic Strategies and Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tapas Guchhait
- Department of Chemistry C. V. Raman Global University, Bhubaneswar Odisha 752054 India
| | - Pujarani Pradhan
- Department of Chemistry C. V. Raman Global University, Bhubaneswar Odisha 752054 India
| | - Lipsita Panda
- Department of Chemistry C. V. Raman Global University, Bhubaneswar Odisha 752054 India
| | - M. Sreejit K. Rao
- Department of Chemistry C. V. Raman Global University, Bhubaneswar Odisha 752054 India
| |
Collapse
|
42
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
43
|
Molteni L, Loro C, Christodoulou MS, Papis M, Foschi F, Beccalli EM, Broggini G. Ruthenium‐Catalyzed Decarboxylative Rearrangement of 4‐Alkenyl‐isoxazol‐5‐ones to Pyrrole Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Camilla Loro
- University of Insubria: Universita degli Studi dell'Insubria DISAT ITALY
| | | | - Marta Papis
- University of Insubria Department of Science and High Technology: Universita degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia DISAT ITALY
| | - Francesca Foschi
- University of Insubria Department of Science and High Technology: Universita degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia DISAT ITALY
| | | | - Gianluigi Broggini
- Universita degli Studi dell'Insubria Dip. di Scienza e Alta Tecnologia Via Valleggio 11 22100 Como ITALY
| |
Collapse
|
44
|
Xiong S, Nanda Kishore M, Zhou W, He Q. Recent advances in selective recognition of fluoride with macrocyclic receptors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Sun Q, Escobar L, Ballester P. A Dinuclear Metallobridged Super Aryl‐Extended Calix[4]pyrrole Cavitand. Angew Chem Int Ed Engl 2022; 61:e202202140. [DOI: 10.1002/anie.202202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu China
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Present address: Department of Chemistry Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5–13 81377 München Germany
| | - Pablo Ballester
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
46
|
Rather I, Sofi FA, Bhat MA, Ali R. Synthesis of Novel One-Walled meso-Phenylboronic Acid-Functionalized Calix[4]pyrrole: A Highly Sensitive Electrochemical Sensor for Dopamine. ACS OMEGA 2022; 7:15082-15089. [PMID: 35572746 PMCID: PMC9089685 DOI: 10.1021/acsomega.2c00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 05/29/2023]
Abstract
Facile access to new one-walled meso-substituted phenylboronic acid-functionalized calix[4]pyrrole (C4P) has been revealed for the first time, starting from cost-effective and easily accessible materials. The structures of both the intermediate dipyrromethane (DPM) and the targeted functionalized C4P have been confirmed by means of 1H-NMR, 13C-NMR, IR, and HRMS spectral data. The voltammetric investigations of the functionalized C4P films cast over a glassy carbon electrode (C4P-GCE) clearly establish the redox stability and redox accessibility of the boronic acid functional moiety present in the C4P framework. We demonstrate that the presence of the unique boronic acid functionality in the C4P endows it with an excellent potential for the highly sensitive electrochemical sensing of the neurotransmitter dopamine (DA). A linear correlation between the strength of the Faradaic signals corresponding to the electro-oxidation of DA over C4P-GCE and the concentration of DA was observed in a concentration range as wide as 0.165-2.302 μM. The C4P-GCE has revealed exceptional stability and reproducibility in the electrochemical sensing of DA, with a nanomolar level limit of detection as low as 15 nM.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Rather
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Feroz Ahmad Sofi
- Department
of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohsin Ahmad Bhat
- Department
of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Rashid Ali
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
47
|
Wang F, Bucher C, He Q, Jana A, Sessler JL. Oligopyrrolic Cages: From Classic Molecular Constructs to Chemically Responsive Polytopic Receptors. Acc Chem Res 2022; 55:1646-1658. [PMID: 35500276 DOI: 10.1021/acs.accounts.2c00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conspectus"Functional molecular systems", discrete and self-assembled constructs where control over molecular recognition, structure, bonding, transport, release, catalytic activity, etc., is readily achieved, are a topic of current interest. Within this broad paradigm, oligopyrrolic cages have garnered attention due to their responsive recognition features. Due to the presence of slightly polar pyrrole subunits which can also behave as hydrogen-bonding donors, these oligopyrrolic cages are potential receptors for various polarized species. In this Account, we summarize recent advances involving the syntheses and study of (1) covalent oligopyrrolic macrobicyclic cages, (2) oligopyrrolic metallacages, and (3) oligopyrrolic noncovalently linked cages. Considered in concert, these molecular constructs have allowed advances in applied supramolecular chemistry; to date, they have been exploited for selective guest encapsulation studies, anion binding and ion-channel formation, and gas absorption, among other applications. While key findings from others will be noted, in this Account will focus on our own contributions to the chemistry of discrete oligopyrrolic macrocycles and their use in supramolecular host-guest chemistry and sensing applications. In terms of specifics, we will detail how oligopyrrole cages with well-defined molecular geometries permit reversible guest binding under ambient conditions and how the incorporation of pyrrole subunits within larger superstructures allows effective control over anion/conjugate acid binding activity under ambient conditions. We will also provide examples that show how derivatization of these rudimentary macrocyclic cores with various sterically congested β-substituted oligopyrroles can provide entry into more complex supramolecular architectures. In addition, we will detail how hybrid systems that include heterocycles other than pyrrole, such as pyridine and naphthyridine, can be used to create self-assembled materials that show promise as gas-absorbing materials and colorimetric reversible sensors. Studies involving oligopyrrolic polymetallic cages and oligopyrrolic supramolecular cages will also be reviewed. First, we will discuss all-carbon-linked oligopyrrolic bicycles and continue on to present systems linked via amines and imines linkages. Finally, we will summarize recent work on pyrrolic cages created through the use of metal centers or various noncovalent interactions. We hope that this Account will provide researchers with an initial foundation for understanding oligopyrrolic cage chemistry, thereby allowing for further advances in the area. It is expected that the fundamental design and recognition principles made in the area of oligopyrrole cages, as exemplified by our contributions, will be of general use to researchers targeting the design of functional molecular systems. As such, we have structured this Account so as to summarize the past while setting the stage for the future.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 South Lushan Road, Yuelu District, Changsha 410082, P. R. China
| | - Christophe Bucher
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 Allée d’Italie, Lyon 69364, France
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 South Lushan Road, Yuelu District, Changsha 410082, P. R. China
| | - Atanu Jana
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
48
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
49
|
Sun Q, Escobar L, Ballester P. A Dinuclear Metallobridged Super Aryl‐Extended Calix[4]pyrrole Cavitand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu China
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Present address: Department of Chemistry Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5–13 81377 München Germany
| | - Pablo Ballester
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
50
|
Visualizing molecular weights differences in supramolecular polymers. Proc Natl Acad Sci U S A 2022; 119:2121746119. [PMID: 35197296 PMCID: PMC8892509 DOI: 10.1073/pnas.2121746119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Molecular weight determinations play a vital role in the characterization of supramolecular polymers. They are essential to assessing the degree of polymerization, which in turn can have a significant impact on the properties of the polymer. While numerous characterization methods have been developed to estimate the number-average molecular weight (Mn) of supramolecular polymers, a simple visual method could provide advantages in terms of ease of use. We have now developed a system wherein differences in the fluorescent signature, including changes in color, allow variations in the Mn of an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n to be readily monitored. The present visual differentiation strategy provides a tool that may be used to characterize supramolecular polymers. Issues of molecular weight determination have been central to the development of supramolecular polymer chemistry. Whereas relationships between concentration and optical features are established for well-behaved absorptive and emissive species, for most supramolecular polymeric systems no simple correlation exists between optical performance and number-average molecular weight (Mn). As such, the Mn of supramolecular polymers have to be inferred from various measurements. Herein, we report an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n that exhibits monotonic changes in the fluorescence color as a function of Mn. Based on theoretical estimates, the calculated average degree of polymerization (DPcal) increases from 16.9 to 84.5 as the monomer concentration increases from 0.08 mM to 2.00 mM. Meanwhile, the fluorescent colors of M1 + Zn(OTf)2 solutions were found to pass from green to yellow and to orange, corresponding to a red shift in the maximum emission band (λmax). Therefore, a relationship between DPcal and λmax could be established. Additionally, the anion-responsive nature of the present system meant that the extent of supramolecular polymerization could be regulated by introducing anions, with the resulting change in Mn being readily monitored via changes in the fluorescent emission features.
Collapse
|