1
|
Souza PAF, Kroptavich CR, Zhou S, Kahan TF. Oxidant concentrations and photochemistry in a vehicle cabin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39058373 DOI: 10.1039/d4em00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Indoor air quality (IAQ) in vehicles can be important to people's health, especially for those whose occupations require them to spend extensive time in vehicles. To date, research on vehicle IAQ has primarily focused on direct emissions as opposed to chemistry happening in vehicle cabins. In this work, we conducted time-resolved measurements of the oxidants and oxidant precursors ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO) inside the cabin of a 2012 Toyota Rav4 under varying ventilation conditions (i.e., car off, car on with passive ventilation, car on with mechanical ventilation via the recirculating fan, and car on with mechanical ventilation via the direct fan). Ozone levels inside the vehicle were significantly lower than outdoors under most conditions, and were approximately half the outdoor levels when the direct fan was in operation. Nitric oxide and NO2 concentrations were very low both inside the vehicle and outdoors. Nitrous acid levels in the vehicle were lower than reported values in other indoor environments, though much higher than expected outdoor levels. We also investigated the potential for photochemical production of radicals in the vehicle. Time- and wavelength-resolved solar irradiance spectra were collected, and steady state hydroxyl radical (OH) and nitrate radical (NO3) concentrations were calculated. Steady state OH concentrations were predicted to be similar to those in air masses in residences illuminated by sunlight, suggesting the importance of HONO photolysis in vehicles. Conversely, nitrate radicals (NO3) were not considered significant indoor oxidants in our study due to rapid titration by NO. Overall, our findings emphasize the importance of both air exchange and photochemistry in shaping the composition of air inside vehicles.
Collapse
Affiliation(s)
- Pedro A F Souza
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | - Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Tara F Kahan
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
2
|
Ran H, An J, Zhang J, Huang J, Qu Y, Chen Y, Xue C, Mu Y, Liu X. Impact of soil-atmosphere HONO exchange on concentrations of HONO and O 3 in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172336. [PMID: 38614350 DOI: 10.1016/j.scitotenv.2024.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and ∼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.
Collapse
Affiliation(s)
- Haiyan Ran
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingwei Zhang
- Department of Atmospheric Sciences, Yunnan University, Kunming 650091, China
| | - Junjie Huang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Deng H, Qiu J, Zhang R, Xu J, Qu Y, Wang J, Liu Y, Gligorovski S. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8393-8403. [PMID: 38691770 DOI: 10.1021/acs.est.3c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Qiu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Runqi Zhang
- Department of Materials Environmental Engineering, Shanxi Polytechnic College, Shanxi 237016, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jixuan Wang
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
4
|
Liu C, Liang L, Xu W, Ma Q. A review of indoor nitrous acid (HONO) pollution: Measurement techniques, pollution characteristics, sources, and sinks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171100. [PMID: 38387565 DOI: 10.1016/j.scitotenv.2024.171100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Indoor air quality is of major concern for human health and well-being. Nitrous acid (HONO) is an emerging indoor pollutant, and its indoor mixing ratios are usually higher than outdoor levels, ranging from a few to tens of parts per billion (ppb). HONO exhibits adverse effects to human health due to its respiratory toxicity and mutagenicity. Additionally, HONO can easily undergo photodissociation by ultraviolet light to produce hydroxyl radicals (OH•), which in turn trigger a series of further photochemical oxidation reactions of primary or secondary pollutants. The accumulation of indoor HONO can be attributed to both direct emissions from combustion sources, such as cooking, and secondary formation resulting from enhanced heterogeneous reactions of NOx on indoor surfaces. During the day, the primary sink of indoor HONO is photolysis to OH• and NO. Moreover, adsorption and/or reaction on indoor surfaces, and diffusion to the outside atmosphere contribute to HONO loss both during the day and at night. The level of indoor HONO is also affected by human occupancy, which can influence household factors such as temperature, humidity, light irradiation, and indoor surfaces. This comprehensive review article summarized the research progress on indoor HONO pollution based on indoor air measurements, laboratory studies, and model simulations. The environmental and health effects were highlighted, measurement techniques were summarized, pollution levels, sources and sinks, and household influencing factors were discussed, and the prospects in the future were proposed.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Linlin Liang
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wanyun Xu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Souza PAF, Zhou S, Kahan TF. Hydrogen peroxide emissions from surface cleaning in a single-family residence. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:781-790. [PMID: 37005869 DOI: 10.1039/d2em00434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High levels of reactive chemicals may be emitted to the indoor air during household surface cleaning, leading to poorer air quality and potential health hazards. Hydrogen peroxide (H2O2)-based cleaners have gained popularity in recent years, especially in times of COVID-19. Still, little is known regarding the effects of H2O2 cleaning on indoor air composition. In this work we monitored time-resolved H2O2 concentrations during a cleaning campaign in an occupied single-family residence using a cavity ring-down spectroscopy (CRDS) H2O2 analyzer. During the cleaning experiments, we investigated how unconstrained (i.e., "real-life") surface cleaning with a hydrogen peroxide solution influenced the indoor air quality of the house, and performed controlled experiments to investigate factors that could influence H2O2 levels including surface area and surface material, ventilation, and dwell time of the cleaning solution. Mean peak H2O2 concentrations observed following all surface cleaning events were 135 ppbv. The factors with the greatest effect on H2O2 levels were distance of the cleaned surface from the detector inlet, type of surface cleaned, and solution dwell time.
Collapse
Affiliation(s)
- Pedro A F Souza
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Tara F Kahan
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Liu P, Xue C, Ye C, Liu C, Zhang C, Wang J, Zhang Y, Liu J, Mu Y. The Lack of HONO Measurement May Affect the Accurate Diagnosis of Ozone Production Sensitivity. ACS ENVIRONMENTAL AU 2023; 3:18-23. [PMID: 37101842 PMCID: PMC10125324 DOI: 10.1021/acsenvironau.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 04/28/2023]
Abstract
Recently, deteriorating ozone (O3) pollution in China brought the precise diagnosis of O3 sensitive chemistry to the forefront. As a dominant precursor of OH radicals, atmospheric nitrous acid (HONO) plays an important role in O3 production. However, its measurement unavailability in many regions especially for second- and third-tier cities may lead to the misjudgment of the O3 sensitivity regime derived from observation-based models. Here, we systematically assess the potential impact of HONO on diagnosing the sensitivity of O3 production using a 0-dimension box model based on a comprehensive summer urban field campaign. The results indicated that the default mode (only the NO + OH reaction is included) in the model could underestimate ∼87% of observed HONO levels, leading to an obvious decrease (∼19%) of net O3 production in the morning, which was in line with the previous studies. The unconstrained HONO in the model was found to significantly push O3 production toward the VOC-sensitive regime. Additionally, it is unrealistic to change NO x but constrain HONO in the model due to the dependence of HONO formation on NO x . Assuming that HONO varied proportionally with NO x , a stronger NO x -sensitive condition could be achieved. Therefore, effective reduction of NO x should be given more attention together with VOC emission control for O3 mitigation.
Collapse
Affiliation(s)
- Pengfei Liu
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
| | - Chaoyang Xue
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
| | - Can Ye
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
| | - Chengtang Liu
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
| | - Chenglong Zhang
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
- University
of Chinese Academy of Sciences; Beijing100049, China
| | - Jinhe Wang
- Resources
and Environment Innovation Research Institute, School of Municipal
and Environmental Engineering, Shandong
Jianzhu University, Ji’nan250101, China
| | - Yuanyuan Zhang
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
- University
of Chinese Academy of Sciences; Beijing100049, China
| | - Junfeng Liu
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
- University
of Chinese Academy of Sciences; Beijing100049, China
| | - Yujing Mu
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing100085, China
- University
of Chinese Academy of Sciences; Beijing100049, China
| |
Collapse
|
7
|
Reidy E, Bottorff BP, Rosales CM, Cardoso-Saldaña FJ, Arata C, Zhou S, Wang C, Abeleira A, Hildebrandt Ruiz L, Goldstein AH, Novoselac A, Kahan TF, Abbatt JPD, Vance ME, Farmer DK, Stevens PS. Measurements of Hydroxyl Radical Concentrations during Indoor Cooking Events: Evidence of an Unmeasured Photolytic Source of Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:896-908. [PMID: 36603843 PMCID: PMC9850917 DOI: 10.1021/acs.est.2c05756] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/11/2023]
Abstract
The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.
Collapse
Affiliation(s)
- Emily Reidy
- Department
of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Brandon P. Bottorff
- Department
of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Colleen Marciel
F. Rosales
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | | | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, California94720, United States
| | - Shan Zhou
- Department
of Chemistry, Syracuse University, Syracuse, New York13244, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Andrew Abeleira
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado80523, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, University
of Texas, Austin, Texas78712, United
States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, California94720, United States
| | - Atila Novoselac
- Department
of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, Texas78712, United States
| | - Tara F. Kahan
- Department
of Chemistry, Syracuse University, Syracuse, New York13244, United States
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SaskatchewanS7N 5E6, Canada
| | | | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado, Boulder, Colorado80309, United States
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado80523, United States
| | - Philip S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| |
Collapse
|
8
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S. The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15377-15388. [PMID: 36279129 DOI: 10.1021/acs.est.2c04609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Zebin Mai
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Shichao Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou510640, China
| |
Collapse
|
10
|
Bottorff B, Wang C, Reidy E, Rosales C, Farmer DK, Vance ME, Abbatt JPD, Stevens P. Comparison of Simultaneous Measurements of Indoor Nitrous Acid: Implications for the Spatial Distribution of Indoor HONO Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13573-13583. [PMID: 36137564 PMCID: PMC9535926 DOI: 10.1021/acs.est.2c02196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios. The instruments measured HONO at different locations in a house featuring a typical air change rate (ACR) (0.5 h-1) and an enhanced mixing rate (∼8 h-1). Despite the distance between the instruments, measurements from the two instruments agreed to within their respective uncertainties (slope = 0.85, R2 = 0.92), indicating that the lifetime of HONO is long enough for it to be quickly distributed indoors, although spatial gradients occurred during ventilation periods. This suggests that emissions of HONO from any source can mix throughout the house and can contribute to OH radical production in sunlit regions, enhancing the oxidative capacity indoors. Measurement discrepancies were likely due to interferences with the LP/LIF instrument as well as calibration uncertainties associated with both instruments.
Collapse
Affiliation(s)
- Brandon Bottorff
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School
of Environment Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emily Reidy
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colleen Rosales
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Philip
S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Deng H, Lakey PSJ, Wang Y, Li P, Xu J, Pang H, Liu J, Xu X, Li X, Wang X, Zhang Y, Shiraiwa M, Gligorovski S. Daytime SO 2 chemistry on ubiquitous urban surfaces as a source of organic sulfur compounds in ambient air. SCIENCE ADVANCES 2022; 8:eabq6830. [PMID: 36170374 PMCID: PMC9519037 DOI: 10.1126/sciadv.abq6830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 05/11/2023]
Abstract
The reactions of sulfur dioxide (SO2) with surface-bound compounds on atmospheric aerosols lead to the formation of organic sulfur (OS) compounds, thereby affecting the air quality and climate. Here, we show that the heterogeneous reaction of SO2 with authentic urban grime under near-ultraviolet sunlight irradiation leads to a large suite of various organic compounds including OS released in the gas phase. Calculations indicate that at the core area of Guangzhou, building surface uptake of SO2 is 15 times larger than uptake of SO2 on aerosol surfaces, yielding ~20 ng m-3 of OS that represents an important fraction of the observed OS compounds (60 to 200 ng m-3) in ambient aerosols of Chinese megacities. This chemical pathway occurring during daytime can contribute to the observed fraction of OS compounds in aerosols and improve the understanding of haze formation and urban air pollution.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pascale S. J. Lakey
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yuzhong Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
12
|
Li P, Pang H, Wang Y, Deng H, Liu J, Loisel G, Jin B, Li X, Vione D, Gligorovski S. Inorganic Ions Enhance the Number of Product Compounds through Heterogeneous Processing of Gaseous NO 2 on an Aqueous Layer of Acetosyringone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5398-5408. [PMID: 35420794 DOI: 10.1021/acs.est.1c08283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols represent important pollutants that can participate in the formation of secondary organic aerosols (SOAs) through chemical reactions with atmospheric oxidants. In this study, we determine the influence of ionic strength, pH, and temperature on the heterogeneous reaction of NO2 with an aqueous film consisting of acetosyringone (ACS), as a proxy for methoxyphenols. The uptake coefficient of NO2 (50 ppb) on ACS (1 × 10-5 mol L-1) is γ = (9.3 ± 0.09) × 10-8 at pH 5, and increases by one order of magnitude to γ = (8.6 ± 0.5) × 10-7 at pH 11. The lifetime of ACS due to its reaction with NO2 is largely affected by the presence of nitrate ions and sulfate ions encountered in aqueous aerosols. The analysis performed by membrane inlet single-photon ionization-time-of-flight mass spectrometry (MI-SPI-TOFMS) reveals an increase in the number of product compounds and a change of their chemical composition upon addition of nitrate ions and sulfate ions to the aqueous thin layer consisting of ACS. These outcomes indicate that inorganic ions can play an important role during the heterogeneous oxidation processes in aqueous aerosol particles.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
13
|
Zhou S, Kahan TF. Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gas-phase species in the UTest house during HOMEChem. INDOOR AIR 2022; 32:e12964. [PMID: 34854500 DOI: 10.1111/ina.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
We made intensive measurements of wavelength-resolved spectral irradiance in a test house during the HOMEChem campaign and report diurnal profiles and two-dimensional spatial distribution of photolysis rate constants (J) of several important indoor photolabile gases. Results show that sunlight entering through windows, which was the dominant source of ultraviolet (UV) light in this house, led to clear diurnal cycles, and large time- and location-dependent variations in local gas-phase photochemical activity. Local J values of several key indoor gases under direct solar illumination were 1.8-7.4 times larger-and more strongly dependent on time, solar zenith angle, and incident angle of sunlight relative to the window-than under diffuse sunlight. Photolysis rate constants were highly spatially heterogeneous and fast photochemical reactions in the gas phase were generally confined to within tens of cm of the region that were directly sunlit. Opening windows increased UV photon fluxes by 3 times and increased predicted local hydroxyl radical (OH) concentrations in the sunlit region by 4.5 times to 3.2 × 107 molec cm-3 due to higher J values and increased contribution from O3 photolysis. These results can be used to improve the treatment of photochemistry in indoor chemistry models and are a valuable resource for future studies that use the publicly available HOMEChem measurements.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Zhou S, Kowal SF, Cregan AR, Kahan TF. Factors affecting wavelength-resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry. INDOOR AIR 2021; 31:1187-1198. [PMID: 33373097 DOI: 10.1111/ina.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 05/25/2023]
Abstract
We measured wavelength-resolved ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects of variables such as light source, solar angles, cloud cover, window type, and electric light color temperature on indoor photon fluxes. The majority of the 77 windows and window samples investigated completely attenuated sunlight at wavelengths shorter than 320 nm; despite variations among individual windows leading to differences in indoor HONO photolysis rate constants (JHONO ) and local hydroxyl radical (OH) concentrations of up to a factor of 50, wavelength-resolved transmittance was similar between windows in residential and non-residential buildings. We report mathematical relationships that predict indoor solar UV irradiance as a function of solar zenith angle, incident angle of sunlight on windows, and distance from windows and surfaces for direct and diffuse sunlight. Using these relationships, we predict elevated indoor steady-state OH concentrations (0.80-7.4 × 106 molec cm-3 ) under illumination by direct and diffuse sunlight and fluorescent tubes near windows or light sources. However, elevated OH concentrations at 1 m from the source are only predicted under direct sunlight. We predict that reflections from indoor surfaces will have minor contributions to room-averaged indoor UV irradiance. These results may improve parameterization of indoor chemistry models.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Alyssa R Cregan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Deng H, Liu J, Wang Y, Song W, Wang X, Li X, Vione D, Gligorovski S. Effect of Inorganic Salts on N-Containing Organic Compounds Formed by Heterogeneous Reaction of NO 2 with Oleic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7831-7840. [PMID: 34086442 DOI: 10.1021/acs.est.1c01043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acids are ubiquitous constituents of grime on urban and indoor surfaces and they represent important surfactants on organic aerosol particles in the atmosphere. Here, we assess the heterogeneous processing of NO2 on films consisting of pure oleic acid (OA) or a mixture of OA and representative salts for urban grime and aerosol particles, namely Na2SO4 and NaNO3. The uptake coefficients of NO2 on OA under light irradiation (300 nm < λ < 400 nm) decreased with increasing relative humidity (RH), from (1.4 ± 0.1) × 10-6 at 0% RH to (7.1 ± 1.6) × 10-7 at 90% RH. The uptake process of NO2 on OA gives HONO as a reaction product, and the highest HONO production was observed upon the heterogeneous reaction of NO2 with OA in the presence of nitrate (NO3-) ions. The formation of gaseous nitroaromatic compounds was also enhanced in the presence of NO3- ions upon light-induced heterogeneous processing of NO2 with OA, as revealed by membrane inlet single-photon ionization time-of-flight mass spectrometry (MI-SPI-TOFMS). These results suggest that inorganic salts can affect the heterogeneous conversion of gaseous NO2 on fatty acids and enhance the formation of HONO and other N-containing organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
16
|
Xu W, Yang W, Han C, Yang H, Xue X. Significant influences of TiO 2 crystal structures on NO 2 and HONO emissions from the nitrates photolysis. J Environ Sci (China) 2021; 102:198-206. [PMID: 33637244 DOI: 10.1016/j.jes.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1-20 wt.%), irradiation intensity (80-400 W/m2) and temperature (278-308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.
Collapse
Affiliation(s)
- Wenwen Xu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
17
|
Liu J, Deng H, Lakey PSJ, Jiang H, Mekic M, Wang X, Shiraiwa M, Gligorovski S. Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO 2 Transformation on Glass Windows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15680-15688. [PMID: 33232600 DOI: 10.1021/acs.est.0c05624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrous acid (HONO) is an important gaseous pollutant contributing to indoor air pollution because it causes adverse health effects and is the main source of hydroxyl radicals (OH). Here, we present direct measurements of HONO produced through light-induced heterogeneous reactions of NO2 with grime adsorbed on glass window. The uptake coefficients of NO2 [γ(NO2)] on the glass plates from the kitchen increased markedly from (2.3 ± 0.1) × 10-6 at 0% RH to (4.1 ± 0.5) × 10-6 at 90% RH. We report a significant quantity of daytime HONO produced in the kitchen, compared to the living room and bedroom. Kinetic modeling suggests that phase state and bulk diffusivity play important roles in the NO2 uptake; the best fit to the measured uptake coefficients is obtained with fixed diffusion coefficients. Photon scattering may be occurring at the surface of the films, leading to enhanced photon-excitation rates of polycyclic aromatic hydrocarbons. By taking these effects into account, the results from this study indicate that the HONO yields obtained in this study can explain the missing HONO in the photochemical models describing the indoor air chemistry.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
18
|
Wickliffe JK, Stock TH, Howard JL, Frahm E, Simon-Friedt BR, Montgomery K, Wilson MJ, Lichtveld MY, Harville E. Increased long-term health risks attributable to select volatile organic compounds in residential indoor air in southeast Louisiana. Sci Rep 2020; 10:21649. [PMID: 33303920 PMCID: PMC7730171 DOI: 10.1038/s41598-020-78756-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) represent a broad class of chemicals, many of which can be found in indoor air including residential indoor air. VOCs derive from a variety of sources including cleaning products, cooking practices, fragrances and fresheners, hobbies and at-home work behaviors. This study examined residential indoor air in homes (n = 99) in southeast Louisiana using passive organic vapor monitors and gas chromatography/mass spectrometry to determine if select VOCs were present, at what concentrations, and if those posed any potential long-term health risks. Twenty-nine VOCs were targeted in cross-sectional analyses using a 48-h sampling period. Twelve VOCs were detected in most of the homes sampled including xylenes, pinenes, benzene, toluene, ethylbenzene, hexane, pentane, chloroform, and carbon tetrachloride. Concentrations of alkanes and BTEX compounds were highly correlated (Spearman's r > 0.63, p < 0.0001). Using health risk measures (i.e. reference concentrations [RfCs] and inhalation unit risks [IURs]) available from the USEPA non-cancer risk assessments and cancer risk assessments were developed for some of these VOCs. Alkanes and BTEX compounds likely come from the same indoor source(s). Using existing health standards published by the USEPA, no unacceptable non-cancer risks were evident except under extremely high concentrations. Lifetime cancer risks, on the other hand, may well be considered unacceptable for chloroform and benzene (upper IUR) and for the combination of chloroform, benzene, and carbon tetrachloride. These exceeded a 1 in 10,000 cancer risk threshold in 35-50% of our simulations. Further study of residential indoor air in low-income women's homes in this area is needed. Including a larger number of VOCs may reveal yet more potential health risks.
Collapse
Affiliation(s)
- Jeffrey K Wickliffe
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA.
| | - Thomas H Stock
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center At Houston, 1200 Pressler Street, Houston, TX, 77030, USA
| | - Jessi L Howard
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA
| | - Ericka Frahm
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA
| | - Bridget R Simon-Friedt
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA
| | - Krista Montgomery
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA
| | - Mark J Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA
| | - Maureen Y Lichtveld
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100 #8360, New Orleans, LA, 70112, USA
| | - Emily Harville
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| |
Collapse
|
19
|
Zeng J, Mekic M, Xu X, Loisel G, Zhou Z, Gligorovski S, Li X. A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13478-13487. [PMID: 33085459 DOI: 10.1021/acs.est.0c05100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emissions of secondary products through reactions of oxidants, ozone (O3), and hydroxyl radical (·OH) with human skin lipids have become increasingly important in indoor environments. Here, we evaluate the secondary organic compounds formed through heterogeneous reactions of gaseous O3 with hand skin lipids by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a commercial secondary electrospray ionization (SESI) source. More than 600 ions were detected over a period of less than 40 min real-time measurements, among which 53 ions were characterized with a significant increasing trend in signal intensity at the presence of O3. Based on the detected ions, we suggest detailed reaction pathways initiated by ozone oxidation of squalene that results in primary and secondary ozonides; we noticed for the first time that these products may be further cleaved by direct reaction of nucleophilic ammonia (NH3), emitted from human skin. Finally, we estimate the fate of secondarily formed carbonyl compounds with respect to their gas-phase reactions with ·OH, O3, and NO3 and compared with their removal by air exchange rate (AER) with outdoors. The obtained results suggest that human presence is a source of an important number of organic compounds, which can significantly influence the air quality in indoor environments.
Collapse
Affiliation(s)
- Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| |
Collapse
|
20
|
Liu J, Deng H, Li S, Jiang H, Mekic M, Zhou W, Wang Y, Loisel G, Wang X, Gligorovski S. Light-Enhanced Heterogeneous Conversion of NO 2 to HONO on Solid Films Consisting of Fluorene and Fluorene/Na 2SO 4: An Impact on Urban and Indoor Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11079-11086. [PMID: 32598136 DOI: 10.1021/acs.est.0c02627] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as constituents of urban grime and indoor surfaces can impact the photochemical conversion of nitrogen dioxide (NO2) to nitrous acid (HONO) thereby impacting the oxidation capacity of the atmosphere. In this study we investigate the effect of relative humidity (RH%), light intensity, and NO2 concentrations on uptake coefficients (γ) of NO2 on solid film consisting of fluorene (FL) and a mixture of FL and Na2SO4 as a proxy for urban and indoor grime at ambient pressure and temperature. γ(NO2) on solid FL increased markedly from (5.7 ± 1.7) × 10-7 at 0% RH to (4.6 ± 1.0) × 10-6 at 90% RH. The NO2 to HONO conversion yield, (ΔHONO/ΔNO2)%, increases with RH from 40% at 0% RH up to 80% at 60-90% RH, indicating that the water molecules favor the formation of HONO up to 60% RH. These results suggest that the heterogeneous photochemical reaction of NO2 on FL and FL/Na2SO4 can be an important source of HONO in the urban environment and indoor atmosphere and should be considered in photochemical models.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| |
Collapse
|
21
|
Fu Z, Xie HB, Elm J, Guo X, Fu Z, Chen J. Formation of Low-Volatile Products and Unexpected High Formaldehyde Yield from the Atmospheric Oxidation of Methylsiloxanes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7136-7145. [PMID: 32401014 DOI: 10.1021/acs.est.0c01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With stricter regulation of atmospheric volatile organic compounds (VOCs) originating from fossil fuel-based vehicles and industries, the use of volatile chemical products (VCPs) and the transformation mechanism of VCPs have become increasingly important to quantify air quality. Volatile methylsiloxanes (VMS) are an important class of VCPs and high-production chemicals. Using quantum chemical calculations and kinetics modeling, we investigated the reaction mechanism of peroxy radicals of VMS, which are key intermediates in determining the atmospheric chemistry of VMS. L2-RSiCH2O2• and D3-RSiCH2O2• derived from hexamethyldisiloxane and hexamethylcyclotrisiloxane, respectively, were selected as representative model systems. The results indicated that L2-RSiCH2O2• and D3-RSiCH2O2• follow a novel Si-C-O rearrangement-driven autoxidation mechanism, leading to the formation of low volatile silanols and high yield of formaldehyde at low NO/HO2• conditions. At high NO/HO2• conditions, L2-RSiCH2O2• and D3-RSiCH2O2• react with NO/HO2• to form organic nitrate, hydroperoxide, and active alkoxy radicals. The alkoxy radicals further follow a Si-C-O rearrangement step to finally form formate esters. The novel Si-C-O rearrangement mechanism of both peroxy and alkoxy radicals are supported by available experimental studies on the oxidation of VMS. Notably, the high yield of formaldehyde is estimated to significantly contribute to formaldehyde pollution in the indoor environment, especially during indoor cleaning.
Collapse
Affiliation(s)
- Zihao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xirui Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G2R3, Canada
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Møller KH, Otkjær RV, Chen J, Kjaergaard HG. Double Bonds Are Key to Fast Unimolecular Reactivity in First-Generation Monoterpene Hydroxy Peroxy Radicals. J Phys Chem A 2020; 124:2885-2896. [DOI: 10.1021/acs.jpca.0c01079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Rasmus V. Otkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
23
|
Mattila JM, Lakey PSJ, Shiraiwa M, Wang C, Abbatt JPD, Arata C, Goldstein AH, Ampollini L, Katz EF, DeCarlo PF, Zhou S, Kahan TF, Cardoso-Saldaña FJ, Ruiz LH, Abeleira A, Boedicker EK, Vance ME, Farmer DK. Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1730-1739. [PMID: 31940195 DOI: 10.1021/acs.est.9b05767] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.
Collapse
Affiliation(s)
- James M Mattila
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Pascale S J Lakey
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Chen Wang
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Caleb Arata
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California 94720 , United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California 94720 , United States
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
| | - Laura Ampollini
- Department of Civil, Architectural, and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Erin F Katz
- Department of Chemistry , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Peter F DeCarlo
- Department of Civil, Architectural, and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemistry , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Shan Zhou
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| | - Tara F Kahan
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
- Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Felipe J Cardoso-Saldaña
- Center for Energy and Environmental Resources , The University of Texas at Austin , Austin , Texas 78758 , United States
| | - Lea Hildebrandt Ruiz
- Center for Energy and Environmental Resources , The University of Texas at Austin , Austin , Texas 78758 , United States
| | - Andrew Abeleira
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Erin K Boedicker
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Marina E Vance
- Department of Mechanical Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Delphine K Farmer
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
24
|
Won Y, Waring M, Rim D. Understanding the Spatial Heterogeneity of Indoor OH and HO 2 due to Photolysis of HONO Using Computational Fluid Dynamics Simulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14470-14478. [PMID: 31693359 DOI: 10.1021/acs.est.9b06315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Indoor photolysis of nitrous acid (HONO) generates hydroxyl radicals (OH), and since OH is fast reacting, it may be confined within the HONO-photolyzing indoor volume of light. This study investigated the HONO-photolysis-induced formation of indoor OH, the transformation of OH to hydroperoxy radicals (HO2), and resulting spatial distributions of those radicals and their oxidation products. To do so, a computational fluid dynamics (CFD) model framework was established to simulate HONO photolysis in a room and subsequent reactions associated with OH and HO2 under a typical range of indoor lighting and ventilation conditions. The results showed that OH and HO2 were essentially confined in the volume of HONO-photolyzing light, but oxidation products were relatively well distributed throughout the room. As the light volume increased, more total in-room OH was produced, thereby increasing oxidation product concentrations. Spatial distributions of OH and HO2 varied by the type of artificial light (e.g., fluorescent versus incandescent), due to differences in photon flux as a function of light source and the distance from the source. The HO2 generation rate and air change rate made notable impacts on product concentrations.
Collapse
Affiliation(s)
- Youngbo Won
- Department of Architectural Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Michael Waring
- Department of Civil, Architectural and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Donghyun Rim
- Department of Architectural Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|