1
|
Denton MCJ, Smith LD, Xu W, Pugsley J, Toghill A, Kattnig DR. Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect. Nat Commun 2024; 15:10823. [PMID: 39737951 DOI: 10.1038/s41467-024-55124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor. Contrary to expectations, we find that this tightly bound radical pair can respond to Earth-strength magnetic fields, provided that the recombination reaction is strongly asymmetric-a scenario invoking the quantum Zeno effect. These findings present a plausible mechanism for weak magnetic field effects in biology, suggesting that even closely associated radical pairs, like those involving superoxide, may play a role in magnetic sensing.
Collapse
Affiliation(s)
- Matt C J Denton
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Luke D Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Wenhao Xu
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Jodeci Pugsley
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Amelia Toghill
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Daniel R Kattnig
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK.
| |
Collapse
|
2
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Avian cryptochrome 4 binds superoxide. Comput Struct Biotechnol J 2024; 26:11-21. [PMID: 38204818 PMCID: PMC10776438 DOI: 10.1016/j.csbj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O2 • - ) is generated in the re-oxidation with molecular oxygen. The resulting O2 • - -containing radical pairs have also been hypothesised to underpin various magnetosensitive traits, but due to fast spin relaxation when tumbling in solution would require immobilisation. We here describe our insights in the binding of superoxide to cryptochrome 4 from C. livia based on extensive all-atom molecular dynamics studies and density-functional theory calculations. The positively charged "crypt" region that leads to the flavin binding pocket transiently binds O2 • - at 5 flexible binding sites centred on arginine residues. Typical binding times amounted to tens of nanoseconds, but exceptional binding events extended to several hundreds of nanoseconds and slowed the rotational diffusion, thereby realising rotational correlation times as large as 1 ns. The binding sites are particularly efficient in scavenging superoxide escaping from a putative generation site close to the flavin-cofactor, possibly implying a functional relevance. We discuss our findings in view of a potential magnetosensitivity of biological flavin semiquinone/superoxide radical pairs.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
3
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
4
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Aguida B, Babo J, Baouz S, Jourdan N, Procopio M, El-Esawi MA, Engle D, Mills S, Wenkel S, Huck A, Berg-Sørensen K, Kampranis SC, Link J, Ahmad M. 'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle. FRONTIERS IN PLANT SCIENCE 2024; 15:1340304. [PMID: 38495372 PMCID: PMC10940379 DOI: 10.3389/fpls.2024.1340304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024]
Abstract
Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.
Collapse
Affiliation(s)
- Blanche Aguida
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Jonathan Babo
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Soria Baouz
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Maria Procopio
- Department of Biophysics, Faculty of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
| | | | - Dorothy Engle
- Biology Department, Xavier University, Cincinnati, OH, United States
| | - Stephen Mills
- Chemistry Department, Xavier University, Cincinnati, OH, United States
| | - Stephan Wenkel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander Huck
- DTU Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sotirios C. Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Justin Link
- Physics and Engineering Department, Cincinnati, OH, United States
| | - Margaret Ahmad
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
- Biology Department, Xavier University, Cincinnati, OH, United States
| |
Collapse
|
6
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
7
|
Vecheck AM, McNamee CM, Reijo Pera R, Usselman RJ. Magnetic Field Intervention Enhances Cellular Migration Rates in Biological Scaffolds. Bioengineering (Basel) 2023; 11:9. [PMID: 38247887 PMCID: PMC10813414 DOI: 10.3390/bioengineering11010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The impact of magnetic fields on cellular function is diverse but can be described at least in part by the radical pair mechanism (RPM), where magnetic field intervention alters reactive oxygen species (ROS) populations and downstream cellular signaling. Here, cellular migration within three-dimensional scaffolds was monitored in an applied oscillating 1.4 MHz radiofrequency (RF) magnetic field with an amplitude of 10 µT and a static 50 µT magnetic field. Given that cellular bioenergetics can be altered based on applied RF magnetic fields, this study focused on a magnetic field configuration that increased cellular respiration. Results suggest that RF accelerated cell clustering and elongation after 1 day, with increased levels of clustering and cellular linkage after 7 days. Cell distribution analysis within the scaffolds revealed that the clustering rate during the first day was increased nearly five times in the RF environment. Electron microscopy provided additional topological information and verified the development of fibrous networks, with a cell-derived matrix (CDM) visualized after 7 days in samples maintained in RF. This work demonstrates time-dependent cellular migration that may be influenced by quantum biology (QB) processes and downstream oxidative signaling, enhancing cellular migration behavior.
Collapse
Affiliation(s)
- Amy M. Vecheck
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Cameron M. McNamee
- Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | - Robert J. Usselman
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
- Computational Research At Florida Tech (CRAFT), Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
8
|
Sarimov RM, Serov DA, Gudkov SV. Hypomagnetic Conditions and Their Biological Action (Review). BIOLOGY 2023; 12:1513. [PMID: 38132339 PMCID: PMC10740674 DOI: 10.3390/biology12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
9
|
Salerno KM, Domenico J, Le NQ, Balakrishnan K, McQuillen RJ, Stiles CD, Solov'yov IA, Martino CF. Long-Time Oxygen and Superoxide Localization in Arabidopsis thaliana Cryptochrome. J Chem Inf Model 2023; 63:6756-6767. [PMID: 37874902 DOI: 10.1021/acs.jcim.3c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O2•- is an exemplary ROS that may be formed through electron transfer from FAD to O2, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of Arabidopsis thaliana cryptochrome 1 (AtCRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O2-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.
Collapse
Affiliation(s)
- K Michael Salerno
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Janna Domenico
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Nam Q Le
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Krithika Balakrishnan
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ryan J McQuillen
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Christopher D Stiles
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
| | - Carlos F Martino
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
10
|
Thoradit T, Thongyoo K, Kamoltheptawin K, Tunprasert L, El-Esawi MA, Aguida B, Jourdan N, Buddhachat K, Pooam M. Cryptochrome and quantum biology: unraveling the mysteries of plant magnetoreception. FRONTIERS IN PLANT SCIENCE 2023; 14:1266357. [PMID: 37860259 PMCID: PMC10583551 DOI: 10.3389/fpls.2023.1266357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.
Collapse
Affiliation(s)
- Thawatchai Thoradit
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kanjana Thongyoo
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Lalin Tunprasert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | | | - Blanche Aguida
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
11
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Krylov VV, Osipova EA. Molecular Biological Effects of Weak Low-Frequency Magnetic Fields: Frequency-Amplitude Efficiency Windows and Possible Mechanisms. Int J Mol Sci 2023; 24:10989. [PMID: 37446167 DOI: 10.3390/ijms241310989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
This review covers the phenomenon of resonance-like responses of biological systems to low-frequency magnetic fields (LFMF). The historical development of this branch of magnetobiology, including the most notable biophysical models that explain the resonance-like responses of biological systems to LFMF with a specific frequency and amplitude, is given. Two groups can be distinguished among these models: one considers ion-cofactors of proteins as the primary targets for the LFMF influence, and the other regards the magnetic moments of particles in biomolecules. Attention is paid to the dependence of resonance-like LFMF effects on the cell type. A radical-pair mechanism of the magnetic field's influence on biochemical processes is described with the example of cryptochrome. Conditions for this mechanism's applicability to explain the biological effects of LFMF are given. A model of the influence of LFMF on radical pairs in biochemical oscillators, which can explain the frequency-amplitude efficiency windows of LFMF, is proposed.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Elena A Osipova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| |
Collapse
|
13
|
Dhiman SK, Wu F, Galland P. Effects of weak static magnetic fields on the development of seedlings of Arabidopsis thaliana. PROTOPLASMA 2023; 260:767-786. [PMID: 36129584 DOI: 10.1007/s00709-022-01811-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
To study magnetoreception of Arabidopsis thaliana, we analysed several developmental responses including cryptochrome-independent seed germination and the phytochrome- and cryptochrome-dependent hypocotyl elongation and photo-accumulation of anthocyanins and chlorophylls in weak static magnetic fields ranging from near null to 122 μT. A field of 50 μT accelerated seed germination by about 20 h relative to samples maintained in a near-null field. The double mutant, cry1cry2, lacking cryptochromes 1 and 2 displayed the same magnetic field-induced germination acceleration under blue light as the wild-type strain. Magnetic field-induced germination acceleration was masked in the presence of exogenous sucrose. Stimulus-response curves for hypocotyl elongation in a range between near-null to 122 μT indicated maxima near 9 and 60 μT for the wild-type strain as well as mutant cry1cry2. The photo-accumulation of anthocyanins and chlorophylls could be effectively modulated by magnetic fields in the presence of low-irradiance red and blue light, respectively. The findings indicate that Arabidopsis thaliana possesses light-independent mechanisms of magnetic field reception, which remain presently unidentified. Our results are in better agreement with predictions of the level crossing mechanism (LCM) of magnetoreception rather than those of the cryptochrome-associated radical-pair mechanism (RPM).
Collapse
Affiliation(s)
- Sunil Kumar Dhiman
- Kirori Mal College, Delhi University (North Campus), Delhi, 110007, India.
| | - Fan Wu
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| |
Collapse
|
14
|
Bradlaugh AA, Fedele G, Munro AL, Hansen CN, Hares JM, Patel S, Kyriacou CP, Jones AR, Rosato E, Baines RA. Essential elements of radical pair magnetosensitivity in Drosophila. Nature 2023; 615:111-116. [PMID: 36813962 PMCID: PMC9977682 DOI: 10.1038/s41586-023-05735-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.
Collapse
Affiliation(s)
- Adam A Bradlaugh
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Giorgio Fedele
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Anna L Munro
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Celia Napier Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - John M Hares
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Pelican Healthcare, Cardiff, UK
| | - Sanjai Patel
- Manchester Fly Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, UK
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Richard A Baines
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
15
|
Parmagnani AS, Betterle N, Mannino G, D’Alessandro S, Nocito FF, Ljumovic K, Vigani G, Ballottari M, Maffei ME. The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production. Int J Mol Sci 2023; 24:ijms24032896. [PMID: 36769217 PMCID: PMC9917513 DOI: 10.3390/ijms24032896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Plants evolved in the presence of the Earth's magnetic field (or geomagnetic field, GMF). Variations in MF intensity and inclination are perceived by plants as an abiotic stress condition with responses at the genomic and metabolic level, with changes in growth and developmental processes. The reduction of GMF to near null magnetic field (NNMF) values by the use of a triaxial Helmholtz coils system was used to evaluate the requirement of the GMF for Lima bean (Phaseolus lunatus L.) photosynthesis and reactive oxygen species (ROS) production. The leaf area, stomatal density, chloroplast ultrastructure and some biochemical parameters including leaf carbohydrate, total carbon, protein content and δ13C were affected by NNMF conditions, as were the chlorophyll and carotenoid levels. RubisCO activity and content were also reduced in NNMF. The GMF was required for the reaction center's efficiency and for the reduction of quinones. NNMF conditions downregulated the expression of the MagR homologs PlIScA2 and PlcpIScA, implying a connection between magnetoreception and photosynthetic efficiency. Finally, we showed that the GMF induced a higher expression of genes involved in ROS production, with increased contents of both H2O2 and other peroxides. Our results show that, in Lima bean, the GMF is required for photosynthesis and that PlIScA2 and PlcpIScA may play a role in the modulation of MF-dependent responses of photosynthesis and plant oxidative stress.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D’Alessandro
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Fabio F. Nocito
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kristina Ljumovic
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-6705967
| |
Collapse
|
16
|
Parmagnani AS, D'Alessandro S, Maffei ME. Iron-sulfur complex assembly: Potential players of magnetic induction in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111483. [PMID: 36183809 DOI: 10.1016/j.plantsci.2022.111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron-sulfur (Fe-S) clusters are involved in fundamental biological reactions and represent a highly regulated process involving a complex sequence of mitochondrial, cytosolic and nuclear-catalyzed protein-protein interactions. Iron-sulfur complex assembly (ISCA) scaffold proteins are involved in Fe-S cluster biosynthesis, nitrogen and sulfur metabolism. ISCA proteins are involved in abiotic stress responses and in the pigeon they act as a magnetic sensor by forming a magnetosensor (MagS) complex with cryptochrome (Cry). MagR gene exists in the genomes of humans, plants, and microorganisms and the interaction between Cry and MagR is highly conserved. Owing to the extensive presence of ISCA proteins in plants and the occurrence of homology between animal and human MagR with at least four Arabidopsis ISCAs and several ISCAs from different plant species, we believe that a mechanism similar to pigeon magnetoperception might be present in plants. We suggest that plant ISCA proteins, homologous of the animal MagR, are good candidates and could contribute to a better understanding of plant magnetic induction. We thus urge more studies in this regard to fully uncover the plant molecular mechanisms underlying MagR/Cry mediated magnetic induction and the possible coupling between light and magnetic induction.
Collapse
Affiliation(s)
- Ambra S Parmagnani
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D'Alessandro
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Massimo E Maffei
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy.
| |
Collapse
|
17
|
Smith LD, Chowdhury FT, Peasgood I, Dawkins N, Kattnig DR. Driven Radical Motion Enhances Cryptochrome Magnetoreception: Toward Live Quantum Sensing. J Phys Chem Lett 2022; 13:10500-10506. [PMID: 36332112 PMCID: PMC9677492 DOI: 10.1021/acs.jpclett.2c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The mechanism underlying magnetoreception has long eluded explanation. A popular hypothesis attributes this sense to the quantum coherent spin dynamics and spin-selective recombination reactions of radical pairs in the protein cryptochrome. However, concerns about the validity of the hypothesis have been raised because unavoidable inter-radical interactions, such as the strong electron-electron dipolar coupling, appear to suppress its sensitivity. We demonstrate that sensitivity can be restored by driving the spin system through a modulation of the inter-radical distance. It is shown that this dynamical process markedly enhances geomagnetic field sensitivity in strongly coupled radical pairs via Landau-Zener-Stückelberg-Majorana transitions between singlet and triplet states. These findings suggest that a "live" harmonically driven magnetoreceptor can be more sensitive than its "dead" static counterpart.
Collapse
|
18
|
Ramsay J, Kattnig DR. Radical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis. PLoS Comput Biol 2022; 18:e1010519. [PMID: 36108063 PMCID: PMC9514667 DOI: 10.1371/journal.pcbi.1010519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 08/27/2022] [Indexed: 12/03/2022] Open
Abstract
Adult hippocampal neurogenesis and hippocampus-dependent cognition in mice have been found to be adversely affected by hypomagnetic field exposure. The effect concurred with a reduction of reactive oxygen species in the absence of the geomagnetic field. A recent theoretical study suggests a mechanistic interpretation of this phenomenon in the framework of the Radical Pair Mechanism. According to this model, a flavin-superoxide radical pair, born in the singlet spin configuration, undergoes magnetic field-dependent spin dynamics such that the pair's recombination is enhanced as the applied magnetic field is reduced. This model has two ostensible weaknesses: a) the assumption of a singlet initial state is irreconcilable with known reaction pathways generating such radical pairs, and b) the model neglects the swift spin relaxation of free superoxide, which abolishes any magnetic sensitivity in geomagnetic/hypomagnetic fields. We here suggest that a model based on a radical triad and the assumption of a secondary radical scavenging reaction can, in principle, explain the phenomenon without unnatural assumptions, thus providing a coherent explanation of hypomagnetic field effects in biology.
Collapse
Affiliation(s)
- Jess Ramsay
- Living Systems Institute and Department of Physics, University of Exeter, Exeter, Devon, United Kingdom
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
19
|
Kyriacou CP, Rosato E. Genetic analysis of cryptochrome in insect magnetosensitivity. Front Physiol 2022; 13:928416. [PMID: 36035470 PMCID: PMC9399412 DOI: 10.3389/fphys.2022.928416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
The earth's magnetic field plays an important role in the spectacular migrations and navigational abilities of many higher animals, particularly birds. However, these organisms are not amenable to genetic analysis, unlike the model fruitfly, Drosophila melanogaster, which can respond to magnetic fields under laboratory conditions. We therefore review the field of insect magnetosensitivity focusing on the role of the Cryptochromes (CRYs) that were first identified in Arabidopsis and Drosophila as key molecular components of circadian photo-entrainment pathways. Physico-chemical studies suggest that photo-activation of flavin adenine dinucleotide (FAD) bound to CRY generates a FADo- Trpo+ radical pair as electrons skip along a chain of specific Trp residues and that the quantum spin chemistry of these radicals is sensitive to magnetic fields. The manipulation of CRY in several insect species has been performed using gene editing, replacement/rescue and knockdown methods. The effects of these various mutations on magnetosensitivity have revealed a number of surprises that are discussed in the light of recent developments from both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
20
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
21
|
Sudsiri CJ, Jumpa N, Ritchie RJ. Stimulation of propagation of para-rubber tree grafts using electromagnetic field irradiation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Pooam M, Jourdan N, Aguida B, Dahon C, Baouz S, Terry C, Raad H, Ahmad M. Exposure to 1.8 GHz radiofrequency field modulates ROS in human HEK293 cells as a function of signal amplitude. Commun Integr Biol 2022; 15:54-66. [PMID: 35126804 PMCID: PMC8816398 DOI: 10.1080/19420889.2022.2027698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The modern telecommunications industry is ubiquitous throughout the world, with a significant percentage of the population using cellular phones on a daily basis. The possible physiological consequences of wireless emissions in the GHz range are therefore of major interest, but remain poorly understood. Here, we show that exposure to a 1.8 GHz carrier frequency in the amplitude range of household telecommunications induces the formation of ROS (Reactive Oxygen Species) in human HEK293 cultured cells. The ROS concentrations detected by fluorescent imaging techniques increased significantly after 15 minutes of RF field exposure, and were localized to both nuclear and cytosolic cellular compartments. qPCR analysis showed altered gene expression of both anti-oxidative (SOD, GPX, GPX, and CAT) and oxidative (Nox-2) enzymes. In addition, multiple genes previously identified as responsive to static magnetic fields were found to also be regulated by RF, suggesting common features in response mechanisms. By contrast, many RF effects showed evidence of hormesis, whereby biological responsivity does not occur linearly as a function of signal amplitude. Instead, biphasic dose response curves occur with ‘blind’ spots at certain signal amplitudes where no measureable response occurs. We conclude that modulation of intracellular ROS can be a direct consequence of RF exposure dependent on signal frequency and amplitude. Since changes in intracellular ROS may have both harmful and beneficial effects, these could provide the basis for many reported physiological effects of RF exposure.
Collapse
Affiliation(s)
- Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | - Colin Terry
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Haider Raad
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Margaret Ahmad
- Sorbonne Université - CNRS, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals. J Chem Phys 2022; 156:025101. [PMID: 35032990 DOI: 10.1063/5.0078115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair. However, recent studies have suggested that magnetosensitivity could be markedly enhanced for a radical triad, the primary radical pair of which undergoes a spin-selective recombination reaction with a third radical. Here, we test the practicality of this supposition for the reoxidation reaction of the reduced FAD cofactor in cryptochrome, which has been implicated with light-independent magnetoreception but appears irreconcilable with the classical radical pair mechanism (RPM). Based on the available realistic cryptochrome structures, we predict the magnetosensitivity of radical triad systems comprising the flavin semiquinone, the superoxide, and a tyrosine or ascorbyl scavenger radical. We consider many hyperfine-coupled nuclear spins, the relative orientation and placement of the radicals, their coupling by the electron-electron dipolar interaction, and spin relaxation in the superoxide radical in the limit of instantaneous decoherence, which have not been comprehensively considered before. We demonstrate that these systems can provide superior magnetosensitivity under realistic conditions, with implications for dark-state cryptochrome magnetoreception and other biological magneto- and isotope-sensitive radical recombination reactions.
Collapse
Affiliation(s)
- Jean Deviers
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
24
|
Binhi VN, Rubin AB. Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells 2022; 11:274. [PMID: 35053390 PMCID: PMC8773520 DOI: 10.3390/cells11020274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
This review contains information on the development of magnetic biology, one of the multidisciplinary areas of biophysics. The main historical facts are presented and the general observed properties of magnetobiological phenomena are listed. The unavoidable presence of nonspecific magnetobiological effects in the everyday life of a person and society is shown. Particular attention is paid to the formation of theoretical concepts in magnetobiology and the state of the art in this area of research. Some details are provided on the molecular mechanisms of the nonspecific action of a magnetic field on organisms. The prospects of magnetobiology for the near and distant future are discussed.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Andrei B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia;
| |
Collapse
|
25
|
Bera K, Dutta P, Sadhukhan S. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. PLANT CELL REPORTS 2022; 41:53-73. [PMID: 34654949 DOI: 10.1007/s00299-021-02798-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Seed priming has long been explored as an effective value-added potential technique that results in improved germination, reduced seedling emergence time, shortened crop duration, increased stress tolerance and eventually increased higher grain production. However, the wider applicability of water or chemical-based conventional methods of seed priming is often restricted considering its deleterious effects on post-treatment storability or agricultural pollution due to the persistence of chemicals in plant systems or in the environment. In this context, the utilization of physical methods of seed priming for enhancing plant productivity has created a new horizon in the domain of seed technology. Being eco-friendly and cost-effective approaches, priming with extra-terrestrial or physical agents such as ionizing radiation such as X-rays and gamma rays and non-ionizing radiation such as ultrasonic wave, magnetic field, microwaves, and infrared light offers many advantages along with ensuring enhanced production over conventional methods. Ultraviolet radiations, bridging between ionizing and non-ionizing radiation, are important electromagnetic waves that would also be an effective priming agent. Non-ionizing radiation has certain biological advantages over ionizing radiation since it does not generate charged ions while passing through a subject, but has enough energy to cause biological effects. Extensive research works to study the effects of various non-ionizing physical priming methods are required before their wider exploitation in agriculture. With this background, this review aims to highlight the current understanding of non-ionizing physical methods of seed priming and its applicability to combat present-day challenges to achieve agro-ecological resilience.
Collapse
Affiliation(s)
- Kuntal Bera
- Department of Seed Science and Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, 736165, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Puspendu Dutta
- Department of Seed Science and Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, 736165, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India.
| |
Collapse
|
26
|
Zhang X, Bisbis M, Heuvelink E, Jiang W, Marcelis LFM. Green light reduces elongation when partially replacing sole blue light independently from cryptochrome 1a. PHYSIOLOGIA PLANTARUM 2021; 173:1946-1955. [PMID: 34453337 PMCID: PMC9293030 DOI: 10.1111/ppl.13538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Although green light is sometimes neglected, it can have several effects on plant growth and development. Green light is probably sensed by cryptochromes (crys), one of the blue light photoreceptor families. The aim of this study is to investigate the possible interaction between green and blue light and the involvement of crys in the green light response of plant photomorphogenesis. We hypothesize that green light effects on morphology only occur when crys are activated by the presence of blue light. Wild-type Moneymaker (MM), cry1a mutant (cry1a), and two CRY2 overexpressing transgenic lines (CRY2-OX3 and CRY2-OX8) of tomato (Solanum lycopersicum) were grown in a climate chamber without or with green light (30 μmol m-2 s-1 ) on backgrounds of sole red, sole blue and red/blue mixture, with all treatments having the same photosynthetic photon flux density of 150 μmol m-2 s-1 . Green light showed no significant effects on biomass accumulation, nor on leaf characteristics such as leaf area, specific leaf area, and chlorophyll content. However, in all genotypes, green light significantly decreased stem length on a sole blue background, whereas green light hardly affected stem length on sole red and red/blue mixture background. MM, cry1a, and CRY2-OX3/8 plants all exhibited similar responses of stem elongation to green light, indicating that cry1a, and probably cry2, is not involved in this green light effect. We conclude that partially replacing blue light by green light reduces elongation and that this is independent of cry1a.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
- Horticulture and Product Physiology GroupWageningen UniversityWageningenThe Netherlands
| | - Mehdi Bisbis
- Horticulture and Product Physiology GroupWageningen UniversityWageningenThe Netherlands
- Leibnitz Institute for Vegetable and Ornamental ProductionGermany
| | - Ep Heuvelink
- Horticulture and Product Physiology GroupWageningen UniversityWageningenThe Netherlands
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
27
|
Babcock N, Kattnig DR. Radical Scavenging Could Answer the Challenge Posed by Electron-Electron Dipolar Interactions in the Cryptochrome Compass Model. JACS AU 2021; 1:2033-2046. [PMID: 34841416 PMCID: PMC8611662 DOI: 10.1021/jacsau.1c00332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Many birds are endowed with a visual magnetic sense that may exploit magnetosensitive radical recombination processes in the protein cryptochrome. In this widely accepted but unproven model, geomagnetic sensitivity is suggested to arise from variations in the recombination rate of a pair of radicals, whose unpaired electron spins undergo coherent singlet-triplet interconversion in the geomagnetic field by coupling to nuclear spins via hyperfine interactions. However, simulations of this conventional radical pair mechanism (RPM) predicted only tiny magnetosensitivities for realistic conditions because the RPM's directional sensitivity is strongly suppressed by the intrinsic electron-electron dipolar (EED) interactions, casting doubt on its viability as a magnetic sensor. We show how this RPM-suppression problem is overcome in a three-radical system in which a third "scavenger" radical reacts with one member of the primary pair. We use this finding to predict substantial magnetic field effects that exceed those of the RPM in the presence of EED interactions in animal cryptochromes.
Collapse
Affiliation(s)
- Nathan
Sean Babcock
- Quantum
Biology Laboratory, Howard University, 2400 Sixth Street NW, Washington District of Columbia, 20059, United States of America
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Daniel R. Kattnig
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
28
|
Li Y, Shi Y, Li M, Fu D, Wu S, Li J, Gong Z, Liu H, Yang S. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. THE PLANT CELL 2021; 33:3555-3573. [PMID: 34427646 PMCID: PMC8566302 DOI: 10.1093/plcell/koab215] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
Light and temperature are two key environmental factors that coordinately regulate plant growth and development. Although the mechanisms that integrate signaling mediated by cold and red light have been unraveled, the roles of the blue light photoreceptors cryptochromes in plant responses to cold remain unclear. In this study, we demonstrate that the CRYPTOCHROME2 (CRY2)-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis thaliana. We show that phosphorylated forms of CRY2 induced by blue light are stabilized by cold stress and that cold-stabilized CRY2 competes with the transcription factor HY5 to attenuate the HY5-COP1 interaction, thereby allowing HY5 to accumulate at cold temperatures. Furthermore, our data demonstrate that B-BOX DOMAIN PROTEIN7 (BBX7) and BBX8 function as direct HY5 targets that positively regulate freezing tolerance by modulating the expression of a set of cold-responsive genes, which mainly occurs independently of the C-repeat-binding factor pathway. Our study uncovers a mechanistic framework by which CRY2-mediated blue-light signaling enhances freezing tolerance, shedding light on the molecular mechanisms underlying the crosstalk between cold and light signaling pathways in plants.
Collapse
Affiliation(s)
- Youping Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minze Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shifeng Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
29
|
Netušil R, Tomanová K, Chodáková L, Chvalová D, Doležel D, Ritz T, Vácha M. Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness. J Exp Biol 2021; 224:272037. [PMID: 34477876 DOI: 10.1242/jeb.243000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
Sensitivity to magnetic fields is dependent on the intensity and color of light in several animal species. The light-dependent magnetoreception working model points to cryptochrome (Cry) as a protein cooperating with its co-factor flavin, which possibly becomes magnetically susceptible upon excitation by light. The type of Cry involved and what pair of magnetosensitive radicals are responsible is still elusive. Therefore, we developed a conditioning assay for the firebug Pyrrhocoris apterus, an insect species that possesses only the mammalian cryptochrome (Cry II). Here, using the engineered Cry II null mutant, we show that: (i) vertebrate-like Cry II is an essential component of the magnetoreception response, and (ii) magnetic conditioning continues even after 25 h in darkness. The light-dependent and dark-persisting magnetoreception based on Cry II may inspire new perspectives in magnetoreception and cryptochrome research.
Collapse
Affiliation(s)
- Radek Netušil
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Kateřina Tomanová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Lenka Chodáková
- Biology Centre of the Czech Academy of Sciences, České Budějovice 37005, Czech Republic
| | - Daniela Chvalová
- Biology Centre of the Czech Academy of Sciences, České Budějovice 37005, Czech Republic
| | - David Doležel
- Biology Centre of the Czech Academy of Sciences, České Budějovice 37005, Czech Republic
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, USA
| | - Martin Vácha
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
30
|
Pooam M, Aguida B, Drahy S, Jourdan N, Ahmad M. Therapeutic application of light and electromagnetic fields to reduce hyper-inflammation triggered by COVID-19. Commun Integr Biol 2021; 14:66-77. [PMID: 33995820 PMCID: PMC8096326 DOI: 10.1080/19420889.2021.1911413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 - related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called 'cytokine storms' are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by ROS (Reactive Oxygen Species). Both light (Photobiomodulation) and magnetic fields (e.g., Pulsed Electro Magnetic Field) stimulation are noninvasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either Pulsed Electromagnetic Fields (PEMF), or to Low-Level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects, and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID-19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID-19 patients both in the home and in the hospital.
Collapse
Affiliation(s)
- Marootpong Pooam
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Blanche Aguida
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
| | - Soria Drahy
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
| | - Nathalie Jourdan
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
| | - Margaret Ahmad
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
- Xavier University, Cincinnati, Ohio, U.S.A
| |
Collapse
|
31
|
Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep 2021; 11:9195. [PMID: 33911161 PMCID: PMC8080623 DOI: 10.1038/s41598-021-88695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The geomagnetic field (GMF) is one of the environmental stimuli that plants experience continuously on Earth; however, the actions of the GMF on plants are poorly understood. Here, we carried out a time-course microarray experiment to identify genes that are differentially regulated by the GMF in shoot and roots. We also used qPCR to validate the activity of some genes selected from the microarray analysis in a dose-dependent magnetic field experiment. We found that the GMF regulated genes in both shoot and roots, suggesting that both organs can sense the GMF. However, 49% of the genes were regulated in a reverse direction in these organs, meaning that the resident signaling networks define the up- or downregulation of specific genes. The set of GMF-regulated genes strongly overlapped with various stress-responsive genes, implicating the involvement of one or more common signals, such as reactive oxygen species, in these responses. The biphasic dose response of GMF-responsive genes indicates a hormetic response of plants to the GMF. At present, no evidence exists to indicate any evolutionary advantage of plant adaptation to the GMF; however, plants can sense and respond to the GMF using the signaling networks involved in stress responses.
Collapse
Affiliation(s)
- Ivan A Paponov
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
32
|
Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon 2021; 7:e06363. [PMID: 33732922 PMCID: PMC7937662 DOI: 10.1016/j.heliyon.2021.e06363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Up now, the communication between brains of different humans or animals has been confirmed and confined by the sensory medium and motor facilities of body. Recently, direct brain-to-brain communication (DBBC) outside the conventional five senses has been verified between animals and humans. Nevertheless, no empirical studies or serious discussion have been performed to elucidate the mechanism behind this process. The validation of DBBC has been documented via recording similar pattern of action potentials occurring in the brain cortex of two animals. With regard to action potentials in brain neurons, the magnetic field resulting from the action potentials created in neurons is one of the tools where the brain of one animal can affect the brain of another. It has been shown that different animals, even humans, have the power to understand the magnetic field. Cryptochrome, which exists in the retina and in different regions of the brain, has been confirmed to be able to perceive magnetic fields and convert magnetic fields to action potentials. Recently, iron particles (Fe3O4) believed to be functioning as magnets have been found in various parts of the brain, and are postulated as magnetic field receptors. Newly developed supersensitive magnetic sensors made of iron magnets that can sense the brain's magnetic field have suggested the idea that these Fe3O4 particles or magnets may be capable of perceiving the brain's extremely weak magnetic field. The present study suggests that it is possible the extremely week magnetic field in one animal's brain to transmit vital and accurate information to another animal's brain.
Collapse
|
33
|
Dateki M, Imamura O, Arai M, Shimizu H, Takishima K. A novel strategy of selective gene delivery by using a uniform magnetic field. Biotechnol J 2021; 16:e2000233. [PMID: 33226197 DOI: 10.1002/biot.202000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/11/2020] [Indexed: 11/08/2022]
Abstract
The application of a magnetic field to enhance the transfection efficiency has been reported to be mainly dependent on the magnetic force generated by a magnetic field gradient to attract paramagnetic bead-conjugated carrier and polynucleotide complexes. This strategy has the advantage of targeting a point or an area on the culture vessel. However, it is difficult to target deeply placed tissues in vivo. Uniform magnetic field-correlated effect is applicable to such a purpose. Here, we attempted to establish a novel procedure for uniform magnetic field-dependent enhancement of transfection efficiency. We examined the effect of a 1.5 mT uniform magnetic field on cellular reactive oxygen species (ROS) level and transfection efficiency mediated by a ROS-sensitive transfection carrier. Our experimental results revealed that a 1.5 mT uniform magnetic field transiently decreased cellular ROS levels and strongly enhanced transfection efficiency mediated by polyethylenimine (PEI). The uniform magnetic field-dependent enhancement of PEI-mediated in vivo transfection was confirmed in the livers of mice. Local intensification of a uniform magnetic field in a culture dish resulted in selective gene delivery into cells on the target area. Although further examination and improvement are necessary for this procedure, our findings provide a novel option for spatial control of gene delivery.
Collapse
Affiliation(s)
- Minori Dateki
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Osamu Imamura
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Masaaki Arai
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Hidehisa Shimizu
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kunio Takishima
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
34
|
Islam M, Vigani G, Maffei ME. The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121729. [PMID: 33302398 PMCID: PMC7762565 DOI: 10.3390/plants9121729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The Geomagnetic field (GMF) is a typical component of our planet. Plant perception of the GMF implies that any magnetic field (MF) variation would induce possible metabolic changes. In this work was we assessed the role of the GMF on Arabidopsis thaliana Col0 mineral nutrition and lipid metabolism during plant development. We reduced the local GMF (about 40 μT) to Near Null Magnetic Field (NNMF, about 30 nT) to evaluate the effects of GMF on Arabidopsis in a time-course (from rosette to seed-set) experiment by studying the lipid content (fatty acids, FA; and surface alkanes, SA) and mineral nutrients. The expression of selected genes involved in lipid metabolism was assessed by Real-Time PCR (qPCR). A progressive increase of SA with carbon numbers between 21 and 28 was found in plants exposed to NNMF from bolting to flowering developmental stages, whereas the content of some FA significantly (p < 0.05) increased in rosette, bolting and seed-set developmental stages. Variations in SA composition were correlated to the differential expression of several Arabidopsis 3-ketoacyl-CoAsynthase (KCS) genes, including KCS1, KCS5, KCS6, KCS8, and KCS12, a lipid transfer protein (LTPG1) and a lipase (LIP1). Ionomic analysis showed a significant variation in some micronutrients (Fe, Co, Mn and Ni) and macronutrients (Mg, K and Ca) during plant development of plants exposed to NNMF. The results of this work show that A. thaliana responds to variations of the GMF which are perceived as is typical of abiotic stress responses.
Collapse
|
35
|
Pooam M, Jourdan N, El Esawi M, Sherrard RM, Ahmad M. HEK293 cell response to static magnetic fields via the radical pair mechanism may explain therapeutic effects of pulsed electromagnetic fields. PLoS One 2020; 15:e0243038. [PMID: 33270696 PMCID: PMC7714230 DOI: 10.1371/journal.pone.0243038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/15/2020] [Indexed: 01/01/2023] Open
Abstract
PEMF (Pulsed Electromagnetic Field) stimulation has been used for therapeutic purposes for over 50 years including in the treatment of memory loss, depression, alleviation of pain, bone and wound healing, and treatment of certain cancers. However, the underlying cellular mechanisms mediating these effects have remained poorly understood. In particular, because magnetic field pulses will induce electric currents in the stimulated tissue, it is unclear whether the observed effects are due to the magnetic or electric component of the stimulation. Recently, it has been shown that PEMFs stimulate the formation of ROS (reactive oxygen species) in human cell cultures by a mechanism that requires cryptochrome, a putative magnetosensor. Here we show by qPCR analysis of ROS-regulated gene expression that simply removing cell cultures from the Earth’s geomagnetic field by placing them in a Low-Level Field condition induces similar effects on ROS signaling as does exposure of cells to PEMF. This effect can be explained by the so-called Radical Pair mechanism, which provides a quantum physical means by which the rates and product yields (e.g. ROS) of biochemical redox reactions may be modulated by magnetic fields. Since transient cancelling of the Earth’s magnetic field can in principle be achieved by PEMF exposure, we propose that the therapeutic effects of PEMFs may be explained by the ensuing modulation of ROS synthesis. Our results could lead to significant improvements in the design and therapeutic applications of PEMF devices.
Collapse
Affiliation(s)
- Marootpong Pooam
- Sorbonne Université – CNRS, UMR8256 - IBPS, Paris, France
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Mohamed El Esawi
- Sorbonne Université – CNRS, UMR8256 - IBPS, Paris, France
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Margaret Ahmad
- Sorbonne Université – CNRS, UMR8256 - IBPS, Paris, France
- Xavier University, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Arabidopsis cryptochrome is responsive to Radiofrequency (RF) electromagnetic fields. Sci Rep 2020; 10:11260. [PMID: 32647192 PMCID: PMC7347919 DOI: 10.1038/s41598-020-67165-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
How living systems respond to weak electromagnetic fields represents one of the major unsolved challenges in sensory biology. Recent evidence has implicated cryptochrome, an evolutionarily conserved flavoprotein receptor, in magnetic field responses of organisms ranging from plants to migratory birds. However, whether cryptochromes fulfill the criteria to function as biological magnetosensors remains to be established. Currently, theoretical predictions on the underlying mechanism of chemical magnetoreception have been supported by experimental observations that exposure to radiofrequency (RF) in the MHz range disrupt bird orientation and mammalian cellular respiration. Here we show that, in keeping with certain quantum physical hypotheses, a weak 7 MHz radiofrequency magnetic field significantly reduces the biological responsivity to blue light of the cryptochrome receptor cry1 in Arabidopsis seedlings. Using an in vivo phosphorylation assay that specifically detects activated cryptochrome, we demonstrate that RF exposure reduces conformational changes associated with biological activity. RF exposure furthermore alters cryptochrome-dependent plant growth responses and gene expression to a degree consistent with theoretical predictions. To our knowledge this represents the first demonstration of a biological receptor responding to RF exposure, providing important new implications for magnetosensing as well as possible future applications in biotechnology and medicine.
Collapse
|