1
|
Gao B, Ding Y, Cai Z, Wu S, Wang J, Ling N, Ye Q, Chen M, Zhang Y, Wei X, Ye Y, Wu Q. Dual-recognition colorimetric platform based on porous Au@Pt nanozymes for highly sensitive washing-free detection of Staphylococcus aureus. Mikrochim Acta 2024; 191:438. [PMID: 38951285 DOI: 10.1007/s00604-024-06460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.
Collapse
Affiliation(s)
- Bao Gao
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhihe Cai
- Guangdong Huankai Biotechnology Co., LTD, Guangdong, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Na Ling
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Qingping Wu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China.
| |
Collapse
|
2
|
Sedlacek O, Egghe T, Khashayar P, Purino M, Lopes P, Vanfleteren J, De Geyter N, Hoogenboom R. Multifunctional Poly(2-ethyl-2-oxazoline) Copolymers Containing Dithiolane and Pentafluorophenyl Esters as Effective Reactive Linkers for Gold Surface Coatings. Bioconjug Chem 2023; 34:2311-2318. [PMID: 38055023 DOI: 10.1021/acs.bioconjchem.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Surface functionalization with biological macromolecules is an important task for the development of sensor materials, whereby the interaction with other biological materials should be suppressed. In this work, we developed a novel multifunctional poly(2-ethyl-2-oxazoline)-dithiolane conjugate as a versatile linker for gold surface immobilization of amine-containing biomolecules, containing poly(2-ethyl-2-oxazoline) as antifouling polymer, dithiolane for surface immobilization, and activated esters for protein conjugation. First, a well-defined carboxylic acid containing copoly(2-ethyl-2-oxazoline) was synthesized by cationic ring-opening copolymerization of 2-ethyl-2-oxazoline with a methyl ester-containing 2-oxazoline monomer, followed by postpolymerization modifications. The side-chain carboxylic groups were then converted to amine-reactive pentafluorophenyl (PFP) ester groups. Part of the PFP groups was used for the attachment of the dithiolane moiety, which can efficiently bind to gold surfaces. The final copolymer contained 1.4 mol% of dithiolane groups and 4.5 mol% of PFP groups. The copolymer structure was confirmed by several analytical techniques, including NMR spectroscopy and size-exclusion chromatography. The kinetics of the PFP ester aminolysis and hydrolysis demonstrated significantly faster amidation compared to hydrolysis, which is essential for subsequent protein conjugation. Successful coating of gold surfaces with the polymer was confirmed by spectroscopic ellipsometry, showing a polymer brush thickness of 4.77 nm. Subsequent modification of the coated surfaces was achieved using bovine serum albumin as a model protein. This study introduces a novel reactive polymer linker for gold surface functionalization and offers a versatile polymer platform for various applications including biosensing and surface functionalization.
Collapse
Affiliation(s)
- Ondrej Sedlacek
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, Ghent 9000, Belgium
| | - Patricia Khashayar
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 216, Zwijnaarde, Ghent 9052, Belgium
| | - Martin Purino
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium
| | - Paula Lopes
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 216, Zwijnaarde, Ghent 9052, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 216, Zwijnaarde, Ghent 9052, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, Ghent 9000, Belgium
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium
| |
Collapse
|
3
|
Seera SD, Pester CW. Surface-Initiated PET-RAFT via the Z-Group Approach. ACS POLYMERS AU 2023; 3:428-436. [PMID: 38107417 PMCID: PMC10722567 DOI: 10.1021/acspolymersau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) is a user-friendly and versatile approach for polymer brush engineering. For SI-RAFT, synthetic strategies follow either surface-anchoring of radical initiators (e.g., azo compounds) or anchoring RAFT chain transfer agents (CTAs) onto a substrate. The latter can be performed via the R-group or Z-group of the CTA, with the previous scientific focus in literature skewed heavily toward work on the R-group approach. This contribution investigates the alternative: a Z-group approach toward light-mediated SI photoinduced electron transfer RAFT (SI-PET-RAFT) polymerization. An appropriate RAFT CTA is synthesized, immobilized onto SiO2, and its ability to control the growth (and chain extension) of polymer brushes in both organic and aqueous environments is investigated with different acrylamide and methacrylate monomers. O2 tolerance allows Z-group SI-PET-RAFT to be performed under ambient conditions, and patterning surfaces through photolithography is illustrated. Polymer brushes are characterized via X-ray photoelectron spectroscopy (XPS), ellipsometry, and water contact angle measurements. An examination of polymer brush grafting density showed variation from 0.01 to 0.16 chains nm-2. Notably, in contrast to the R-group SI-RAFT approach, this chemical approach allows the growth of intermittent layers of polymer brushes underneath the top layer without changing the properties of the outermost surface.
Collapse
Affiliation(s)
- Sai Dileep
Kumar Seera
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Christian W. Pester
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Brió Pérez M, Hempenius MA, de Beer S, Wurm FR. Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth. Macromolecules 2023; 56:8856-8865. [PMID: 38024158 PMCID: PMC10653273 DOI: 10.1021/acs.macromol.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Polymer brushes are widely used as versatile surface modifications. However, most of them are designed to be long-lasting by using nonbiodegradable materials. This generates additional plastic waste and hinders the reusability of substrates. To address this, we present a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization (SI-ROP) from stable PGMA-based macroinitiators. This yields polyester brush coatings (up to 50 nm in thickness) that hydrolyze with controlled patterns and can be regrown on the same substrate after degradation. We chose polyesters of different hydrolytic stability and degradation mechanism, i.e., poly(lactic acid) (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB), which are grown from poly(glycidyl methacrylate) (PGMA)-based macroinitiators for strong surface binding and initiating site reuse. Brush degradation is monitored via thickness changes in pH-varied buffer solutions and seawater with PHB brushes showing rapid degradation in all solutions. PLA and PCL brushes show higher stability in solutions of up to pH 8, while all coatings fully degrade after 14 days in seawater. These brushes offer surface modifications with well-defined degradation patterns that can be regrown after degradation, making them an interesting alternative to (meth)acrylate-based, nondegradable polymers brushes.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mark A. Hempenius
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Laktionov MY, Zhulina EB, Klushin L, Richter RP, Borisov OV. Selective Colloid Transport across Planar Polymer Brushes. Macromol Rapid Commun 2023; 44:e2200980. [PMID: 36915225 DOI: 10.1002/marc.202200980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Indexed: 03/16/2023]
Abstract
Polymer brushes are attractive as surface coatings for a wide range of applications, from fundamental research to everyday life, and also play important roles in biological systems. How colloids (e.g., functional nanoparticles, proteins, viruses) bind and move across polymer brushes is an important yet under-studied problem. A mean-field theoretical approach is presented to analyze the binding and transport of colloids in planar polymer brushes. The theory explicitly considers the effect of solvent strength on brush conformation and of colloid-polymer affinity on colloid binding and transport. The position-dependent free energy of the colloid insertion into the polymer brush which controls the rate of colloid transport across the brush is derived. It is shown how the properties of the brush can be adjusted for brushes to be highly selective, effectively serving as tuneable gates with respect to colloid size and affinity to the brush-forming polymer. The most important parameter regime simultaneously allowing for high brush permeability and selectivity corresponds to a condition when the repulsive and attractive contributions to the colloid insertion free energy nearly cancel. This theory should be useful to design sensing and purification devices with enhanced selectivity and to better understand mechanisms underpinning the functions of biological polymer brushes.
Collapse
Affiliation(s)
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy Prospect, Saint Petersburg, 199004, Russia
| | - Leonid Klushin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy Prospect, Saint Petersburg, 199004, Russia
- Department of Physics, American University of Beirut, P.O. Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Oleg V Borisov
- ITMO University, 49 Kronverksky Prospekt, Saint Petersburg, 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy Prospect, Saint Petersburg, 199004, Russia
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, University of Pau et des Pays de l'Adour UMR 5254, Pau, 64053, France
| |
Collapse
|
6
|
Brotherton EE, Johnson EC, Smallridge MJ, Hammond DB, Leggett GJ, Armes SP. Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications. Macromolecules 2023; 56:2070-2080. [PMID: 36938510 PMCID: PMC10018759 DOI: 10.1021/acs.macromol.2c02471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | | | - Deborah B. Hammond
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
7
|
Zhou X, Zheng B. Surface modification for improving immunoassay sensitivity. LAB ON A CHIP 2023; 23:1151-1168. [PMID: 36636910 DOI: 10.1039/d2lc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on which the immunoassay is performed. In this review article, we summarize the recent progress in surface modification strategies for improving the sensitivity of immunoassays. The surface modification strategies can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating techniques to prevent nonspecific binding and reduce background noise. The techniques include hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels, and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the surface modification techniques for digital immunoassays. In the end, the challenges and the future perspectives of the surface modification techniques for immunoassays are presented.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
8
|
Conrad JC, Robertson ML. Shaping the Structure and Response of Surface-Grafted Polymer Brushes via the Molecular Weight Distribution. JACS AU 2023; 3:333-343. [PMID: 36873679 PMCID: PMC9975839 DOI: 10.1021/jacsau.2c00638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Breadth in the molecular weight distribution is an inherent feature of synthetic polymer systems. While in the past this was typically considered as an unavoidable consequence of polymer synthesis, multiple recent studies have shown that tailoring the molecular weight distribution can alter the properties of polymer brushes grafted to surfaces. In this Perspective, we describe recent advances in synthetic methods to control the molecular weight distribution of surface-grafted polymers and highlight studies that reveal how shaping this distribution can generate novel or enhanced functionality in these materials.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L. Robertson
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Wu D, Yin X, Zhao Y, Wang Y, Li D, Yang F, Wang L, Chen Y, Wang J, Yang H, Liu X, Liu F, Zhang T. Tinware-Inspired Aerobic Surface-Initiated Controlled Radical Polymerization (SI-Sn 0CRP) for Biocompatible Surface Engineering. ACS Macro Lett 2023; 12:71-76. [PMID: 36576724 DOI: 10.1021/acsmacrolett.2c00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface anchored polymer brushes prepared by surface-initiated controlled radical polymerization (SI-CRP) have raised considerable interest in biomaterials and bioengineering. However, undesired residues of noxious transition metal catalysts critically restrain their widespread biomedical applications. Herein, we present a robust and biocompatible surface-initiated controlled radical polymerization catalyzed by a Sn(0) sheet (SI-Sn0CRP) under ambient conditions. Through this approach, microliter volumes of vinyl monomers with diverse functions (heterocyclic, ionic, hydrophilic, and hydrophobic) could be efficiently converted to homogeneous polymer brushes. The excellent controllability of SI-Sn0CRP strategy is further demonstrated by the exquisite fabrication of predetermined block and patterned polymer brushes through chain extension and photolithography, respectively. Additionally, in virtue of intrinsic biocompatibility of Sn, the resultant polymer brushes present transcendent affinity toward blood and cell, in marked contrast to those of copper-based approaches. This strategy could provide an avenue for the controllable fabrication of biocompatible polymer brushes toward biological applications.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Fuchao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Long Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Liu
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
10
|
Nagy B, Ekblad T, Fragneto G, Ederth T. Structure of Self-Initiated Photopolymerized Films: A Comparison of Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14004-14015. [PMID: 36377414 PMCID: PMC9671054 DOI: 10.1021/acs.langmuir.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Self-initiated photografting and photopolymerization (SI-PGP) uses UV illumination to graft polymers to surfaces without additional photoinitiators using the monomers as initiators, "inimers". A wider use of this method is obstructed by a lack of understanding of the resulting, presumably heterogeneous, polymer structure and of the parallel degradation under continuous UV illumination. We have used neutron reflectometry to investigate the structure of hydrated SI-PGP-prepared poly(HEMA-co-PEG10MA) (poly(2-hydroxyethyl methacrylate-co-(ethylene glycol)10 methacrylate)) films and compared parabolic, sigmoidal, and Gaussian models for the polymer volume fraction distributions. Results from fitting these models to the data suggest that either model can be used to approximate the volume fraction profile to similar accuracy. In addition, a second layer of deuterated poly(methacrylic acid) (poly(dMAA)) was grafted over the existing poly(HEMA-co-PEG10MA) layer, and the resulting double-grafted films were also studied by neutron reflectometry to shed light on the UV-polymerization process and the inevitable UV-induced degradation which competes with the grafting.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Tobias Ekblad
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Giovanna Fragneto
- Institut
Laue-Langevin, 71 avenue des Martyrs, BP 156, 38042Grenoble, France
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| |
Collapse
|
11
|
Hager R, Forsich C, Duchoslav J, Burgstaller C, Stifter D, Weghuber J, Lanzerstorfer P. Microcontact Printing of Biomolecules on Various Polymeric Substrates: Limitations and Applicability for Fluorescence Microscopy and Subcellular Micropatterning Assays. ACS APPLIED POLYMER MATERIALS 2022; 4:6887-6896. [PMID: 36277174 PMCID: PMC9578008 DOI: 10.1021/acsapm.2c00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Polymeric materials play an emerging role in biosensing interfaces. Within this regard, polymers can serve as a superior surface for binding and printing of biomolecules. In this study, we characterized 11 different polymer foils [cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), DI-Acetate, Lumirror 4001, Melinex 506, Melinex ST 504, polyamide 6, polyethersulfone, polyether ether ketone, and polyimide] to test for the applicability for surface functionalization, biomolecule micropatterning, and fluorescence microscopy approaches. Pristine polymer foils were characterized via UV-vis spectroscopy. Functional groups were introduced by plasma activation and epoxysilane-coating. Polymer modification was evaluated by water contact angle measurement and X-ray photoelectron spectroscopy. Protein micropatterns were fabricated using microcontact printing. Functionalized substrates were characterized via fluorescence contrast measurements using epifluorescence and total internal reflection fluorescence microscopy. Results showed that all polymer substrates could be chemically modified with epoxide functional groups, as indicated by reduced water contact angles compared to untreated surfaces. However, transmission and refractive index measurements revealed differences in important optical parameters, which was further proved by fluorescence contrast measurements of printed biomolecules. COC, COP, and PMMA were identified as the most promising alternatives to commonly used glass coverslips, which also showed superior applicability in subcellular micropatterning experiments.
Collapse
Affiliation(s)
- Roland Hager
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Christian Forsich
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Jiri Duchoslav
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Christoph Burgstaller
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- Transfercenter
für Kunststofftechnik GmbH, 4600 Wels, Austria
| | - David Stifter
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Julian Weghuber
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- FFoQSI—Austrian
Competence Center for Feed and Food Quality, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| |
Collapse
|
12
|
Higaki Y, Furusawa R, Otsu T, Yamada NL. Zwitterionic Poly(carboxybetaine) Brush/Albumin Conjugate Films: Structure and Lubricity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9278-9284. [PMID: 35866870 DOI: 10.1021/acs.langmuir.2c01040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial cartilages build up a highly lubricious system with the harmony of biomacromolecules and water. Bioconjugate thin films composed of a zwitterionic poly(carboxybetaine methacrylate) (PCB) brush platform and bovine serum albumin (BSA) were designed. BSA conjugation to the PCB brush chains was achieved by carbodiimide chemistry to give PCB brush/BSA conjugate films. The PCB brush/BSA conjugate films exhibited adaptable interfacial properties due to the amphiphilic nature of BSA. Neutron reflectivity showed that BSAs were localized at the liquid side of the conjugate films in PBS and the BSA conjugation slightly reduced the water content of the top layer, while the swollen state of the carpet PCB brush layer remained unchanged. The PCB brush/BSA conjugate films showed improved lubricity in the boundary lubrication mode but slightly worse fluid lubrication induction properties. This conjugate film could be a model system for the investigation of zwitterion/protein composite interfaces and is worth developing biomaterials that require lubrication in vivo.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Riku Furusawa
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takefumi Otsu
- Department of Innovative Engineering, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan
| |
Collapse
|
13
|
Zimmermann R, Duval JF, Werner C, Sterling JD. Quantitative insights into electrostatics and structure of polymer brushes from microslit electrokinetic experiments and advanced modelling of interfacial electrohydrodynamics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Gao D, Cheng F, Wang X, Yang H, Liu C, Li C, Yang EM, Cheng G, He W. Developing G value as an indicator for assessing the molecular status of immobilized antibody. Colloids Surf B Biointerfaces 2022; 217:112593. [PMID: 35665639 DOI: 10.1016/j.colsurfb.2022.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Antibody-functionalized nanoparticles (Ab-NPs) are widely used in bioassays due to their excellent affinity, specificity toward antigen, and ease of operation. However, the uncontrollable molecular status of antibodies on NPs severely limits their applications. This work aims at developing a simple method to evaluate the antigen-binding activity of Ab-NPs using two parameters, i.e., antibody adsorption amount and antigen-binding strength. Herein, we proposed a mathematical expression, G, to quantitively describe the amount and strength of Ab-NPs. G value could be used to assess the antigen-binding performance of NPs influenced by surface and solution factors. Seven types of polymers with different surface properties, including four positively and three negatively charged polymer brushes, were grown from silica NPs via surface-initiated atom transfer radical polymerization (SI-ATRP). A pair of antigen and antibody, human chorionic gonadotropin (hCG) and anti-hCG, were selected to screen the antibody immobilization property of polymer brushes. Among them, the G values of 2 polymer-NPs with opposite charges reached maximum, resulting in low detection limits for hCG, where pDMAEA-NP and pMMA-NP represent Poly[N,N-(dimethylamino)ethyl acrylate]-NP and poly(methyl methacrylate)-NP, respectively. The G value of Ab-NPs makes it feasible to estimate the molecular status of the adsorbed antibodies on surfaces, thus showing great potential for in vitro biosensing and bioseparation.
Collapse
Affiliation(s)
- Dongdong Gao
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, Ningbo 315211, China.
| | - Xinglong Wang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | | | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
15
|
Liu G, Sun X, Li X, Wang Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers (Basel) 2022; 14:826. [PMID: 35215740 PMCID: PMC8878960 DOI: 10.3390/polym14040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/11/2023] Open
Abstract
Polymers with different structures and morphology have been extensively used to construct functionalized surfaces for a wide range of applications because the physicochemical properties of polymers can be finely adjusted by their molecular weights, polydispersity and configurations, as well as the chemical structures and natures of monomers. In particular, the specific functions of polymers can be easily achieved at post-synthesis by the attachment of different kinds of active molecules such as recognition ligand, peptides, aptamers and antibodies. In this review, the recent advances in the bioanalytical and biomedical applications of polymer modified substrates were summarized with subsections on functionalization using branched polymers, polymer brushes and polymer hydrogels. The review focuses on their applications as biosensors with excellent analytical performance and/or as nonfouling surfaces with efficient antibacterial activity. Finally, we discuss the perspectives and future directions of polymer modified substrates in the development of biodevices for the diagnosis, treatment and prevention of diseases.
Collapse
Affiliation(s)
- Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| |
Collapse
|
16
|
Activation and Stabilization of Lipase B from Candida antarctica by Immobilization on Polymer Brushes with Optimized Surface Structure. Appl Biochem Biotechnol 2022; 194:3384-3399. [PMID: 35357660 PMCID: PMC9270307 DOI: 10.1007/s12010-022-03913-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
A reusable support system for the immobilization of lipases is developed using hybrid polymer-inorganic core shell nanoparticles. The biocatalyst core consists of a silica nanoparticle. PMMA is grafted from the nanoparticle as polymer brush via ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization), which allows defining the surface properties by chemical synthesis conditions. Lipase B from Candida antarctica is immobilized on the hybrid particles. The activity and stability of the biocatalyst are analyzed by spectroscopic activity analysis. It is shown that the hydrophobic PMMA brushes provide an activating surface for the lipase giving a higher specific activity than the enzyme in solution. Varying the surface structure from disordered to ordered polymer brushes reveals that the reusability of the biocatalyst is more effectively optimized by the surface structure than by the introduction of crosslinking with glutaraldehyde (GDA). The developed immobilization system is highly suitable for biocatalysis in non-native media which is shown by a transesterification assay in isopropyl alcohol and an esterification reaction in n-heptane.
Collapse
|
17
|
Ni-Chelated Poly(acrylic acid)-Grafted Magnetic Agarose Bead for Affinity-Based Separation of Proteins. Macromol Res 2021. [DOI: 10.1007/s13233-021-9096-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ma Y, Hadjesfandiari N, Doschak M, Devine D, Tonelli M, Unsworth L. Peptide-Modified Surfaces for Binding Carbamylated Proteins from Plasma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12335-12345. [PMID: 34644097 DOI: 10.1021/acs.langmuir.1c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbamylation of blood proteins is a common post-translational modification that occurs upon kidney dysfunction that is strongly associated with deleterious outcomes for patients treated using hemodialysis. In this study, we focused on the removal of two representative carbamylated plasma proteins, carbamylated albumin (cHSA) and fibrinogen (cFgn), through adsorption onto a surface functionalized with a specific peptide (cH2p1). Surfaces modified with poly(hydroxyethyl methacrylate) (p(HEMA)) were prepared using surface-initiated atom transfer radical polymerization (SI-ATRP) techniques and functionalized with cH2p1. cH2p1-functionalized surfaces showed selective binding toward cHSA and cFgn, compared to their native protein form, with NH-cH2p1 of superior selectivity than CO-cH2p1. The adsorption capacity of carbamylated protein on NH-cH2p1 was maintained in diluted plasma, and ultralow adsorption of native Fgn was observed. Similar to unmodified p(HEMA) surfaces, NH-cH2p1 showed a low platelet adhesion and activation, suggesting that the designed surface does not adversely affect platelets.
Collapse
Affiliation(s)
- Yuhao Ma
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada T6G 2R3
| | - Narges Hadjesfandiari
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada V6T 1Z4
- The Centre for Blood Research, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Michael Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada T6G 2R3
| | - Dana Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada V6T 1Z4
- The Centre for Blood Research, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Canada T2N 1N4
| | - Larry Unsworth
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada T6G 2R3
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada T6G 2R3
| |
Collapse
|
19
|
Miclotte MJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O’Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS POLYMERS AU 2021; 1:47-58. [PMID: 34476421 PMCID: PMC8389998 DOI: 10.1021/acspolymersau.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/28/2022]
Abstract
The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature (T CP) and flocculation temperature (T CFT) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both T CP and T CFT of these nanoparticles upon varying the degree of betainization. Although T CP was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between T CFT and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.
Collapse
Affiliation(s)
- Matthieu
P. J. Miclotte
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stefan B. Lawrenson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
20
|
|
21
|
Li J, Li T, Ma X, Su Z, Yin J, Jiang X. Regulating the Interlayer Spacing of 2D Lamellar Polymeric Membranes via Molecular Engineering of 2D Nanosheets. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Li
- School of Chemistry& Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Li
- School of Chemistry& Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Ma
- School of Chemistry& Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong Su
- School of Chemistry& Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yin
- School of Chemistry& Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuesong Jiang
- School of Chemistry& Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Gil Alvaradejo G, Glassner M, Kumar R, Trouillet V, Welle A, Wang Y, de la Rosa VR, Sekula-Neuner S, Hirtz M, Hoogenboom R, Delaittre G. Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s. Macromol Rapid Commun 2021; 41:e2000320. [PMID: 33463837 DOI: 10.1002/marc.202000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Indexed: 11/07/2022]
Abstract
New functional initiators for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines are described to introduce a thiol moiety at the α terminus. Both tosylate and nosylate initiators carrying a thioacetate group are obtained in multigram scale, from commercial reagents in two steps, including a phototriggered thiol-ene radical addition. The nosylate derivative gives access to a satisfying control over the cationic ring-opening polymerization of 2-ethyl-2-oxazoline, with dispersity values lower than 1.1 during the entire course of the polymerization, until full conversion. Cleavage of the thioacetate end group is rapidly achieved using triazabicyclodecene, thereby leading to a mercapto terminus. The latter gives access to a new subgeneration of α-functional poly(2-oxazoline)s (butyl ester, N-hydroxysuccinimidyl ester, furan) by Michael addition with commercial (meth)acrylates. The amenability of the mercapto-poly(2-ethyl-2-oxazoline) for covalent surface patterning onto acrylated surfaces is demonstrated in a microchannel cantilever spotting (µCS) experiment, characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS).
Collapse
Affiliation(s)
- Gabriela Gil Alvaradejo
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Mathias Glassner
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Ravi Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Alexander Welle
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Yangxin Wang
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Sylwia Sekula-Neuner
- n.able GmbH, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Organic Functional Molecules, Organic Chemistry, University of Wuppertal, Gaußstrasse 20, Wuppertal, 42119, Germany
| |
Collapse
|
23
|
Trachsel L, Romio M, Grob B, Zenobi-Wong M, Spencer ND, Ramakrishna SN, Benetti EM. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS NANO 2020; 14:10054-10067. [PMID: 32628438 DOI: 10.1021/acsnano.0c03239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties. The intrinsic architecture characterizing cyclic poly(2-oxazoline)-based polyacid brushes leads to a broad variation in swelling and nanomechanical properties in response to pH change, in comparison with their linear analogues of identical composition and molecular weight. In addition, cyclic glycopolymer brushes derived from polyacids reveal an enhanced exposure of galactose units at the surface, due to their expanded topology, and thus display an increased lectin-binding ability with respect to their linear counterparts. This combination of amplified responsiveness and augmented protein-binding capacity renders cyclic brushes invaluable building blocks for the design of "smart" materials and functional biointerfaces.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matteo Romio
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M Benetti
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Sim XM, Wang CG, Liu X, Goto A. Multistimuli Responsive Reversible Cross-Linking-Decross-Linking of Concentrated Polymer Brushes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28711-28719. [PMID: 32515964 DOI: 10.1021/acsami.0c07508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poly(furfuryl methacrylate) (PFMA) brushes were cross-linked using bismaleimide cross-linkers via the Diels-Alder (DA) reaction at 70 °C, generating cross-linked PFMA brushes (PFMA brush gels). The cross-linked PFMA brushes were decross-linked at 110 °C via the retro-Diels-Alder (rDA) reaction, offering the temperature-responsive reversible PFMA brush gels. The wettability of the brush was tunable by cross-linking and decross-linking. The use of a disulfide containing bismaleimide as a cross-linker gave the S-S bond at the cross-linking point. The S-S bond was cleaved upon thermal or photo stimulus and regenerated through oxidative stimulus, offering another reversible decross-linking/cross-linking pathway of the PFMA brush gel. The use of photo stimulus together with photomasks further offered patterned brushes with the cross-linked and decross-linked domains. The combination of the DA/rDA reactions and the reversible S-S bond cleavage provided multistimuli-responsive brush gels for switching the surface properties in unique manners. The reversible cross-linking, multiresponsiveness, access to patterned structures, and metal-free synthetic procedure are attractive features in the present approach for creating smart functional surfaces.
Collapse
Affiliation(s)
- Xuan Ming Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Chen-Gang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xu Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
25
|
Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 2020; 63:200-209. [PMID: 32387643 DOI: 10.1016/j.copbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.
Collapse
|
26
|
Yan W, Dadashi-Silab S, Matyjaszewski K, Spencer ND, Benetti EM. Surface-Initiated Photoinduced ATRP: Mechanism, Oxygen Tolerance, and Temporal Control during the Synthesis of Polymer Brushes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas D. Spencer
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
27
|
Poręba R, los Santos Pereira A, Pola R, Jiang S, Pop‐Georgievski O, Sedláková Z, Schönherr H. “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment. Macromol Biosci 2020; 20:e1900354. [DOI: 10.1002/mabi.201900354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Rafał Poręba
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Andres los Santos Pereira
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Robert Pola
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Siyu Jiang
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and Biology, University of Siegen Adolf‐Reichwein‐Str. 2 57076 Siegen Germany
| | - Ognen Pop‐Georgievski
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and Biology, University of Siegen Adolf‐Reichwein‐Str. 2 57076 Siegen Germany
| |
Collapse
|
28
|
Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903285. [PMID: 31782843 PMCID: PMC6986790 DOI: 10.1002/adma.201903285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/17/2019] [Indexed: 05/11/2023]
Abstract
"Nonfouling" polymer brush surfaces can greatly improve the performance of in vitro diagnostic (IVD) assays due to the reduction of nonspecific protein adsorption and consequent improvement of signal-to-noise ratios. The development of synthetic polymer brush architectures that suppress adventitious protein adsorption is reviewed, and their integration into surface plasmon resonance and fluorescent sandwich immunoassay formats is discussed. Also, highlighted is a novel, self-contained immunoassay platform (the D4 assay) that transforms time-consuming laboratory-based assays into a user-friendly and point-of-care format with a sensitivity and specificity comparable or better than standard enzyme-linked immunosorbent assay (ELISA) directly from unprocessed samples. These advancements clearly demonstrate the utility of nonfouling polymer brushes as a substrate for ultrasensitive and robust diagnostic assays that may be suitable for clinical testing, in field and laboratory settings.
Collapse
Affiliation(s)
- Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cassio M Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
29
|
Schmidt AC, Turgut H, Le D, Beloqui A, Delaittre G. Making the best of it: nitroxide-mediated polymerization of methacrylates via the copolymerization approach with functional styrenics. Polym Chem 2020. [DOI: 10.1039/c9py01458f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The addition of 5 mol% of functional styrenics imparts control to the SG1-mediated polymerization of methacrylates and provides access to nanostructured functional methacrylic materials.
Collapse
Affiliation(s)
- Aaron C. Schmidt
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Hatice Turgut
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Dao Le
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Ana Beloqui
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|
30
|
Posel Z, Posocco P. Tuning the Properties of Nanogel Surfaces by Grafting Charged Alkylamine Brushes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1514. [PMID: 31652985 PMCID: PMC6915512 DOI: 10.3390/nano9111514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Nanogels are chemically crosslinked polymeric nanoparticles endowed with high encapsulation ability, tunable size, ease of preparation, and responsiveness to external stimuli. The presence of specific functional groups on their surfaces provides an opportunity to tune their surface properties and direct their behavior. In this work, we used mesoscale modeling to describe conformational and mechanical properties of nanogel surfaces formed by crosslinked polyethylene glycol and polyethyleneimine, and grafted by charged alkylamine brushes of different lengths. Simulations show that both number of chains per area and chain length can be used to tune the properties of the coating. Properly selecting these two parameters allows switching from a hydrated, responsive coating to a dried, highly charged layer. The results also suggest that the scaling behavior of alkylamine brushes, e.g., the transition from a mushroom to semi-dilute brush, is only weakly coupled with the shielding ability of the coating and much more with its compressibility.
Collapse
Affiliation(s)
- Zbyšek Posel
- Department of Informatics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic.
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy.
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
31
|
Yan W, Ramakrishna SN, Romio M, Benetti EM. Bioinert and Lubricious Surfaces by Macromolecular Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13521-13535. [PMID: 31532689 DOI: 10.1021/acs.langmuir.9b02316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.
Collapse
Affiliation(s)
- Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Matteo Romio
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
32
|
Wang H, Pemberton JE. Direct Nanoscopic Measurement of Laminar Slip Flow Penetration of Deformable Polymer Brush Surfaces: Synergistic Effect of Grafting Density and Solvent Quality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13646-13655. [PMID: 31558025 DOI: 10.1021/acs.langmuir.9b02357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A detailed quantitative nanoscopic description of soft surfaces under dynamic flow is lacking, despite its importance. To better understand the role of surface texture in nanoscopic mass transport in complex media, we used Förster resonance energy transfer in combination with total internal reflectance fluorescence microscopy (FRET-TIRFM) to directly measure laminar slip flow penetration depth (slip length) on poly(N-isopropylacrylamide) (pNIPAM) thin films (50-110 nm) of different grafting densities (0.60, 0.38, and 0.27 chain/nm2) in solvents of different qualities created via cononsolvency in situ. Nontrivial synergistic interplay of grafting density and solvent quality on slip length was observed. Slip lengths are typically tens of nm (40-100 nm), increasing and then reaching a plateau with applied linear flow velocity (192-2,952 μm/s) regardless of experimental system. Slip length was systematically larger for lower density films, but the effect of grafting density was more significant in a good solvent than a poor solvent. Interestingly, however, the stagnant film thickness (polymer swollen thickness minus the slip length) collapsed to almost a singular value for a given grafting density regardless of solvent quality, likely suggesting a large gradient of segmental mobility at nonequilibrium. Moreover, we found that slip flow penetrates into soft pNIPAM surfaces more deeply in a good solvent than in a poor solvent and that this behavior was general and independent of grafting density. This behavior is counter to the notion that less interaction between a fluid (probe) and a solid surface promotes slip.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Biochemistry University of Arizona , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
33
|
Whitfield R, Truong NP, Messmer D, Parkatzidis K, Rolland M, Anastasaki A. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem Sci 2019; 10:8724-8734. [PMID: 33552458 PMCID: PMC7844732 DOI: 10.1039/c9sc03546j] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The width and shape of molecular weight distributions can significantly affect the properties of polymeric materials and thus are key parameters to control. This mini-review aims to critically summarise recent approaches developed to tailor molecular weight distributions and highlights the strengths and limitations of each technique. Special emphasis will also be given to applications where tuning the molecular weight distribution has been used as a strategy to not only enhance polymer properties but also to increase the fundamental understanding behind complex mechanisms and phenomena.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Nghia P Truong
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Daniel Messmer
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Manon Rolland
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Athina Anastasaki
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| |
Collapse
|
34
|
Yan W, Fantin M, Ramakrishna S, Spencer ND, Matyjaszewski K, Benetti EM. Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu 0-Mediated Surface-Initiated ATRP. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27470-27477. [PMID: 31276375 DOI: 10.1021/acsami.9b09529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP) is a highly versatile, oxygen-tolerant, and extremely controlled polymer-grafting technique that enables the modification of flat inorganic surfaces, as well as porous organic and polymeric supports of different compositions. Exploiting the intimate contact between a copper plate, acting as a source of catalyst and reducing agent, and an initiator-bearing support, Cu0 SI-ATRP enables the rapid growth of biopassive, lubricious brushes from large flat surfaces, as well as from various organic supports, including cellulose fibers and elastomers, using microliter volumes of reaction mixtures, and without the need for deoxygenation of reaction mixtures or an inert atmosphere. Thanks to a detailed analysis of its mechanism and the parameters governing the polymerization process, polymer brush growth by Cu0 SI-ATRP can be precisely modulated and adapted to be applied to morphologically and chemically different substrates, setting up the basis for translating SI-ATRP methods from academic studies into technologically relevant surface-modification approaches.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Marco Fantin
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Shivaprakash Ramakrishna
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Nicholas D Spencer
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Edmondo M Benetti
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
- Laboratory for Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5 , St. Gallen CH-9014 , Switzerland
| |
Collapse
|
35
|
Yan W, Fantin M, Spencer ND, Matyjaszewski K, Benetti EM. Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu 0-Mediated SI-ATRP under Environmental Conditions. ACS Macro Lett 2019; 8:865-870. [PMID: 35619512 DOI: 10.1021/acsmacrolett.9b00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exceptional features of Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP), and its potential for implementation in technologically relevant surface functionalizations are demonstrated thanks to a comprehensive understanding of its mechanism. Cu0 SI-ATRP enables the synthesis of multifunctional polymer brushes with a remarkable degree of control, over extremely large areas and without the need for inert atmosphere or deoxygenation of monomer solutions. When a polymerization mixture is placed between a flat copper plate and an ATRP-initiator-functionalized substrate, the vertical distance between these two overlaying surfaces determines the tolerance of the grafting process toward the oxygen, while the composition of the polymerization solution emerges as the critical parameter regulating polymer-grafting kinetics. At very small distances between the copper plate and the initiating surfaces, the oxygen dissolved in the solution is rapidly consumed via oxidation of the metallic substrate. In the presence of ligand, copper species diffuse to the surface-immobilized initiators and trigger a rapid growth of polymer brushes. Concurrently, the presence and concentration of added CuII regulates the generation of CuI-based activators through comproportionation with Cu0. Hence, under oxygen-tolerant conditions, the extent of comproportionation, together with the solvent-dependent rate constant of activation (kact) of ATRP are the main determinants of the growth rate of polymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas D. Spencer
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Edmondo M. Benetti
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
36
|
Michalek L, Mundsinger K, Barner L, Barner-Kowollik C. Quantifying Solvent Effects on Polymer Surface Grafting. ACS Macro Lett 2019; 8:800-805. [PMID: 35619509 DOI: 10.1021/acsmacrolett.9b00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When grafting polymers onto surfaces, the reaction conditions critically influence the resulting interface properties, including the grafting density and molar mass distribution (MMD) on the surface. Herein, we show theoretically and experimentally that the application of poor solvents is beneficial for the "grafting-to" approach. We demonstrate the effect by grafting poly(methyl methacrylate) chains on silica nanoparticles in different solvents and compare the MMD of the polymer in solution before and after grafting via size exclusion chromatography (SEC). The shorter polymer chains are preferentially grafted onto the surface, leading to a distortion effect between the MMD in solution and on surfaces. The molecular weight distortion effect is significantly higher for ethyl acetate (good solvent quality, difference in Mw surface to solution 14%) than for N,N-dimethylacetamide (poor solvent quality, 6%). The difference in MMD on the surface to the solution significantly affects both the surface properties (e.g. the grafting densities) and their determination.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
| |
Collapse
|