1
|
Cheng S, Yang N, Cui Y, Wang W, Xiao Y, Dai J, Ren J, Wang Y, Wang J, Chen Z, Yu Y, Hou J. Design and Synthesis of Completely Nonfused Medium-Wide-Bandgap Acceptors for Efficient Organic Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1725-1733. [PMID: 39701939 DOI: 10.1021/acsami.4c17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Medium-wide-bandgap (MWBG) organic photovoltaic (OPV) cells have emerged as a promising category with distinctive application possibilities, especially in environments characterized by specific light conditions, such as indoor spaces. However, there are few high-efficiency MWBG acceptors, and most of them are constructed through high-cost fused central units, which limits the industrialization of MWBG OPV cells. Here, two completely nonfused MWBG acceptors, TBT-38 and TBT-43 with different alkoxy substituent positions on the thiophene rings, are synthesized. Due to the simple synthetic route and high yield, TBT-38 achieves the lowest material-only cost among high-efficiency MWBG acceptors. When blended with high-performance donor PBQx-TF, the TBT-43-based OPV cell exhibits a power conversion efficiency (PCE) of only 8.33%. In contrast, primarily due to higher exciton dissociation efficiency, charge transport capability, and favorable morphology, the TBT-38-based OPV cell delivers a PCE of 13.5% under one sun illumination, which is one of the highest results for completely nonfused OPV cells with absorption onset below 800 nm. Besides, the PBQx-TF:TBT-38-based OPV cell exhibits a PCE of 24.1% under indoor lighting. Our work presents a practical strategy for designing cost-efficient MWBG acceptors.
Collapse
Affiliation(s)
- Shuohan Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangbo Dai
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yang N, Zhang T, Wang S, An C, Seibt S, Wang G, Wang J, Yang Y, Wang W, Xiao Y, Yao H, Zhang S, Ma W, Hou J. An Ortho-Bisalkyloxylated Benzene-Based Fully Non-fused Electron Acceptor for Efficient Organic Photovoltaic Cells. SMALL METHODS 2024; 8:e2300036. [PMID: 37092533 DOI: 10.1002/smtd.202300036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
To develop the low-cost nonfullerene acceptors (NFAs), two fully non-fused NFAs (TBT-2 and TBT-6) with ortho-bis((2-ethylhexyl)oxy)benzene unit and different side chains onto thiophene-bridges are synthesized through highly efficient synthetic procedures. Both acceptors show good planarity, low optical gaps (≈1.51 eV), and deep highest occupied molecular orbital levels (≤-5.77 eV). More importantly, the single-crystal structure of TBT-2 shows compact molecular arrangement due to the existence of intramolecular interactions between adjacent aromatic units and strong π-π stacking between intermolecular terminal groups. When the two acceptors are fabricated organic photovoltaic (OPV) cells by combining with a wide optical gap polymer donor, the TBT-6 with strong crystallization forms large domain sizes in bulk heterojunction (BHJ) blend. As a result, the TBT-6-based OPV cell shows a low power conversion efficiency (PCE) of 9.53%. In contrast, the TBT-2 with proper crystallization facilitates morphological optimization in the BHJ blend. Consequently, the TBT-2-based OPV cell gives an outstanding PCE of 13.25%, which is one of the best values among OPV cells with similar optical gaps. Overall, this work provides a practical molecular design strategy for developing high-performance and low-cost electron acceptors.
Collapse
Affiliation(s)
- Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Susanne Seibt
- Australian Synchrotron, ANSTO, Clayton, Victoria, 3168, Australia
| | - Guanlin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Zhou D, Wang Y, Yang S, Quan J, Deng J, Wang J, Li Y, Tong Y, Wang Q, Chen L. Recent Advances of Benzodithiophene-Based Donor Materials for Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306854. [PMID: 37828639 DOI: 10.1002/smll.202306854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yanyan Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jiawei Deng
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Qian Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
4
|
Yan F, Lei D, Li J, Duan H, Dou X. A Deep Understanding on the Effective Generation of Twisted Intramolecular Charge Transfer by Protonation in Thiazolo[5,4- d]thiazole Derivatives. J Phys Chem A 2023; 127:902-912. [PMID: 36669096 DOI: 10.1021/acs.jpca.2c07349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The exploration of the intrinsic relationship between the phototautomerization and photoelectric properties is of great significance for the application of the emerging novel organic materials, such as the (bi)heterocyclic thiazolo[5,4-d]thiazole derivatives (TzTz). Here, by introducing the chemical-controlling protonation, a barrierless spontaneous rotation movement of the designed TzTz derivative (2,5-diyl-amino-thiazolo[5,4-d]thiazole, DA-TzTz) was ensured through the facilitation of the excited-state intramolecular proton transfer (ESIPT) triggered twisted intramolecular charge transfer (TICT) process by the enhancement of the intramolecular hydrogen bonds, steric hindrance effect, and conjugative effect. It is further verified that the hetero S atoms could mostly effect the proton accepting ability of -N═ through comparing with the influences to the intramolecular H-bond between the protonated/nonprotonated amino groups and the -N═ atoms brought by the replacement of them with N or O atoms. As a result, the dissociation and rearrangement of the π conjugation in DA-TzTz accompanying with the variation of the optoelectronic characteristics was benefited from the establishment of the preferential charge-transfer and separation. We expect this tentative study could establish a new concept of designing an efficient charge-transfer and separation method, paving the way for the development of the TzTz derivatives and other optoelectronic organic materials.
Collapse
Affiliation(s)
- Fei Yan
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang830046, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi830011, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Haiming Duan
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang830046, China
| | - Xincun Dou
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang830046, China.,Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
5
|
Comí M, Moncho S, Attar S, Barłóg M, Brothers E, Bazzi HS, Al-Hashimi M. Structural-Functional Properties of Asymmetric Fluoro-Alkoxy Substituted Benzothiadiazole Homopolymers with Flanked Chalcogen-Based Heterocycles. Macromol Rapid Commun 2023; 44:e2200731. [PMID: 36285613 DOI: 10.1002/marc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 11/08/2022]
Abstract
The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.
Collapse
Affiliation(s)
- Marc Comí
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salvador Moncho
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salahuddin Attar
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Maciej Barłóg
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Edward Brothers
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar.,Department of Materials Science & Engineering, Texas A&M University, 209 Reed MacDonald Building, College Station, TX, 77843-3003, USA
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| |
Collapse
|
6
|
Nogueira SL, Santos Silva H, Lère-Porte JP, Serein-Spirau F, Jarrosson T, Tozoni JR, Marletta A, Silva RA. Optical gap energy study of poly(thienylene-2,5-dialkoxyphenylene) in solid-state films. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120951. [PMID: 35131620 DOI: 10.1016/j.saa.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Optical gap energy (Egap) in luminescent π-conjugated polymers presents several difficulties in its determination, particularly when using CW conventional optical spectroscopy, absorption and emission. This happens due to several physicochemical parameter's dependence. Among others, the molecular conformation, intramolecular interactions, structural defects, polymer processability and solvent interaction stand out. In addition, there is a distribution of conjugated segments along the polymeric main chains that differentiate optical absorption transition from emission processes. In other words, these processes do not necessarily occur in the same conjugated segment owing to the very efficient ratios of energy transfer or charge migration in these materials. In this work we present a systematic study of the determination of Egap for the polymer poly(thienylene-2,5-dialkoxyphenylene). We present a comparison between the solution and solid-state film, clearly showing the presence of a polymer-polymer interaction as aggregate species. The goal of this paper is to isolate and aggregate the contribution determination of each species through systematic analysis of optical spectra, as well as to obtain, even on film, the Egap of the isolated polymer which is very similar to the polymer solution at about 2.37 eV. The intersection theory and the voltammetry methods corroborate the experiment and the discussion of the results obtained.
Collapse
Affiliation(s)
- S L Nogueira
- Centro Universitário de Patos de Minas - UNIPAM, 31708-054 Patos de Minas, MG, Brazil; Instituto de Física, Universidade Federal de Uberlândia, MG, Brasil.
| | | | - J P Lère-Porte
- Institut Charles Gerhardt, Equipe AM(2)N - Architectures Moléculaires et Matériaux Nanostructurés. ENSCM, Montpellier - France
| | - F Serein-Spirau
- Institut Charles Gerhardt, Equipe AM(2)N - Architectures Moléculaires et Matériaux Nanostructurés. ENSCM, Montpellier - France
| | - T Jarrosson
- Institut Charles Gerhardt, Equipe AM(2)N - Architectures Moléculaires et Matériaux Nanostructurés. ENSCM, Montpellier - France
| | - J R Tozoni
- Instituto de Física, Universidade Federal de Uberlândia, MG, Brasil
| | - A Marletta
- Instituto de Física, Universidade Federal de Uberlândia, MG, Brasil
| | - R A Silva
- Instituto de Física, Universidade Federal de Uberlândia, MG, Brasil
| |
Collapse
|
7
|
Zhang T, An C, Cui Y, Zhang J, Bi P, Yang C, Zhang S, Hou J. A Universal Nonhalogenated Polymer Donor for High-Performance Organic Photovoltaic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105803. [PMID: 34647376 DOI: 10.1002/adma.202105803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Nonhalogenated polymers have great potential in the commercialization of organic photovoltaic (OPV) cells due to their advantage in low-cost preparation. However, non-halogenated polymers usually have high highest occupied molecular orbital (HOMO) energy levels and inferior self-aggregation properties in solution, thus resulting in low power conversion efficiencies (PCEs). Herein, two nonhalogenated polymers, PB1 and PB2, are prepared. When the polymers are used to fabricate OPV cells with BTP-eC9, the PB1-based device only gives a PCE of 5.3%, while the PB2-based device shows an outstanding PCE of 17.7%. After the introduction of PBDB-TF as the third component, the PB2:PBDB-TF:BTP-eC9-based device with an optimal weight ratio of 0.5:0.5:1 achieves a PCE up to 18.4%. More importantly, PB2 exhibits good compatibility with various nonfullerene acceptors to achieve better PCEs than those of classical polymer (PBDB-T and PBDB-TF)-based devices. When PB2 is combined with a wide-bandgap electron acceptor (F-BTA3), this device shows excellent PCE of 27.1% and 24.6% for 1 and 10 cm2 devices, respectively, under light intensity of 1000 lux light-emitting diode illumination. These results provide new insight in the rational design of novel nonhalogenated polymer donors for further development of low-cost materials and broadening the application of OPV cells.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinses Academy of Sciences, Beijing, 100049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianqi Zhang
- CAS key laboratory of nanosystem and hierarchical fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenyi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinses Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Nakao N, Ogawa S, Kim HD, Ohkita H, Mikie T, Saito M, Osaka I. Pronounced Backbone Coplanarization by π-Extension in a Sterically Hindered Conjugated Polymer System Leads to Higher Photovoltaic Performance in Non-Fullerene Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56420-56429. [PMID: 34783522 DOI: 10.1021/acsami.1c17199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving both the backbone order and solubility of π-conjugated polymers, which are often in a trade-off relationship, is imperative for maximizing the performance of organic solar cells. Here, we studied three different π-conjugated polymers based on thiazolothiazole (PSTz1 and POTz1) and benzobisthiazole (PNBTz1) that were combined with a benzodithiophene unit in the backbone, where PNBTz1 was newly synthesized. Because of the steric hindrance between the side chains located on neighboring heteroaromatic rings, POTz1 had a much less coplanar backbone than PSTz1 in which such a steric hindrance is absent. However, POTz1 showed higher photovoltaic performance in solar cells that used Y6 as the acceptor material. This was likely due to the significantly higher solubility of POTz1 than PSTz1, resulting in a better morphology. Interestingly, PNBTz1 was found to have markedly higher backbone coplanarity than POTz1, despite having similar steric hindrance between the side chains, most likely owing to the more extended π-electron system, whereas PNBTz1 had good solubility comparable to POTz1. As a result, PNBTz1 exhibited higher photovoltaic performance than POTz1 in the Y6-based cells: specifically, the fill factor was significantly enhanced. Our results indicate that the backbone order and solubility can be achieved by the careful molecular design, which indeed leads to higher photovoltaic performance.
Collapse
Affiliation(s)
- Naoya Nakao
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Soichiro Ogawa
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hyung Do Kim
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tsubasa Mikie
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masahiko Saito
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Itaru Osaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
9
|
Saito M, Ogawa S, Osaka I. Contrasting Effect of Side-Chain Placement on Photovoltaic Performance of Binary and Ternary Blend Organic Solar Cells in Benzodithiophene-Thiazolothiazole Polymers. CHEMSUSCHEM 2021; 14:5032-5041. [PMID: 34498412 DOI: 10.1002/cssc.202101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
π-Conjugated polymers are important materials for organic photovoltaics. While search for new backbone systems is central to the development of π-conjugated polymers, side-chain engineering is also imperative. Here, two benzodithiophene-thiazolothiazole copolymers, PSTz1 and POTz1, were synthesized, for which the side-chain placement was different. Due to less steric hindrance between the side chains, PSTz1 had a more coplanar backbone than POTz1. This led to significant differences in trend of the performance for the binary and ternary blend cells that used a fullerene (PC71 BM) and/or non-fullerene (ITIC) as the acceptor materials. Whereas PSTz1 showed higher photovoltaic performance in the PC71 BM-based cell, POTz1 showed higher performance in the ITIC-based cell. Furthermore, in the ternary blend cell, whereas increase in the PC71 BM content improved the photovoltaic performance for the PSTz1 system, it was detrimental to the performance for the POTz1 system. These results could be a good guideline for maximizing the performance of organic photovoltaics.
Collapse
Affiliation(s)
- Masahiko Saito
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, 7398527, Japan
| | - Soichiro Ogawa
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, 7398527, Japan
| | - Itaru Osaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, 7398527, Japan
| |
Collapse
|
10
|
Chang C, Huang H, Tsai H, Lin S, Liu P, Chen W, Hsu F, Nie W, Chen Y, Wang L. Facile Fabrication of Self-Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002718. [PMID: 33717841 PMCID: PMC7927620 DOI: 10.1002/advs.202002718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Crystallinity and crystal orientation have a predominant impact on a materials' semiconducting properties, thus it is essential to manipulate the microstructure arrangements for desired semiconducting device performance. Here, ultra-uniform hole-transporting material (HTM) by self-assembling COOH-functionalized P3HT (P3HT-COOH) is fabricated, on which near single crystal quality perovskite thin film can be grown. In particular, the self-assembly approach facilitates the P3HT-COOH molecules to form an ordered and homogeneous monolayer on top of the indium tin oxide (ITO) electrode facilitate the perovskite crystalline film growth with high quality and preferred orientations. After detailed spectroscopy and device characterizations, it is found that the carboxylic acid anchoring groups can down-shift the work function and passivate the ITO surface, retarding the interface carrier recombination. As a result, the device made with the self-assembled HTM show high open-circuit voltage over 1.10 V and extend the lifetime over 4,300 h when storing at 30% relative humidity. Moreover, the cell works efficiently under much reduced light power, making it useful as power source under dim-light conditions. The demonstration suggests a new facile way of fabricating monolayer HTM for high efficiency perovskite devices, as well as the interconnecting layer needed for tandem cell.
Collapse
Affiliation(s)
- Chi‐Yuan Chang
- Center for Condensed Matter SciencesNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
- Department of PhysicsNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
| | - Hsin‐Hsiang Huang
- Center for Condensed Matter SciencesNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
- Materials Science Division and Center for Molecular EngineeringArgonne National LaboratoryLemontIL60439USA
- Department of Material Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
| | - Hsinhan Tsai
- Center for Integrated Nanotechnologies, Materials Physics and Application DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Shu‐Ling Lin
- Center for Condensed Matter SciencesNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
| | - Pang‐Hsiao Liu
- Center for Condensed Matter SciencesNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
- Department of Material Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
| | - Wei Chen
- Materials Science Division and Center for Molecular EngineeringArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fang‐Chi Hsu
- Department of Material Science and EngineeringNational United University1, LiendaMiaoli36003Taiwan
| | - Wanyi Nie
- Center for Integrated Nanotechnologies, Materials Physics and Application DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Yang‐Fang Chen
- Center for Condensed Matter SciencesNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
- Department of PhysicsNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
| | - Leeyih Wang
- Center for Condensed Matter SciencesNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
- Institute of Polymer Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt Rd.Taipei10617Taiwan
| |
Collapse
|
11
|
Lv Q, An C, Zhang T, Zhou P, Hou J. Effect of alkyl side chains of twisted conjugated polymer donors on photovoltaic performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Liu Y, Wang XY, Wang ZY, Lu Y, Cheng XF, Tang B, Wang JY, Pei J. Systematically investigating the effect of the aggregation behaviors in solution on the charge transport properties of BDOPV-based polymers with conjugation-break spacers. Polym Chem 2021. [DOI: 10.1039/d0py01491e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugation-break spacers in conjugated polymers significantly affect the aggregation behavior in solution and in the solid state, which further influences the charge transport properties and doping efficiency.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center of Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center of Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center of Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiu-Fen Cheng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center of Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center of Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
13
|
Xu G, Rao H, Liao X, Zhang Y, Wang Y, Xing Z, Hu T, Tan L, Chen L, Chen Y. Reducing Energy Loss and Morphology Optimization Manipulated by Molecular Geometry Engineering for Hetero‐junction Organic Solar Cells. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guodong Xu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
- Department of Physics Chemistry and Biology (IFM), Linköping University Linköping SE‐581 83 Sweden
| | - Huan Rao
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| | - Xunfan Liao
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University 99 Ziyang Avenue Nanchang Jiangxi 330022 China
| | - Youdi Zhang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| | - Yuming Wang
- Department of Physics Chemistry and Biology (IFM), Linköping University Linköping SE‐581 83 Sweden
| | - Zhi Xing
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| | - Ting Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| | - Licheng Tan
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University Nanchang Jiangxi 330031 China
| |
Collapse
|
14
|
Wang ZY, Yao ZF, Lu Y, Ding L, Yu ZD, You HY, Wang XY, Zhou YY, Zou L, Wang JY, Pei J. Precise tracking and modulating aggregation structures of conjugated copolymers in solutions. Polym Chem 2020. [DOI: 10.1039/d0py00456a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Different backbone shape of BDOPV-based polymers generates distinct aggregation structures in dilute solutions, which could be retained into the solid-state microstructures, further exhibiting different electron mobility and doping efficiency.
Collapse
|
15
|
Xue C, Tang Y, Liu S, Feng H, Li S, Xia D. Achieving efficient polymer solar cells based on benzodithiophene–thiazole-containing wide band gap polymer donors by changing the linkage patterns of two thiazoles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02483j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated polymers with different combinations of two thiazoles were synthesized to study their photovoltaic performances.
Collapse
Affiliation(s)
- Changguo Xue
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Yu Tang
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shihui Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - He Feng
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shiqin Li
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|