1
|
Habib S, Talhami M, Hassanein A, Mahdi E, Al-Ejji M, Hassan MK, Altaee A, Das P, Hawari AH. Advances in functionalization and conjugation mechanisms of dendrimers with iron oxide magnetic nanoparticles. NANOSCALE 2024; 16:13331-13372. [PMID: 38967017 DOI: 10.1039/d4nr01376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Iron oxide magnetic nanoparticles (MNPs) are crucial in various areas due to their unique magnetic properties. However, their practical use is often limited by instability and aggregation in aqueous solutions. This review explores the advanced technique of dendrimer functionalization to enhance MNP stability and expand their application potential. Dendrimers, with their symmetric and highly branched structure, effectively stabilize MNPs and provide tailored functional sites for specific applications. We summarize key synthetic modifications, focusing on the impacts of dendrimer size, surface chemistry, and the balance of chemical (e.g., coordination, anchoring) and physical (e.g., electrostatic, hydrophobic) interactions on nanocomposite properties. Current challenges such as dendrimer toxicity, control over dendrimer distribution on MNPs, and the need for biocompatibility are discussed, alongside potential solutions involving advanced characterization techniques. This review highlights significant opportunities in environmental, biomedical, and water treatment applications, stressing the necessity for ongoing research to fully leverage dendrimer-functionalized MNPs. Insights offered here aim to guide further development and application of these promising nanocomposites.
Collapse
Affiliation(s)
- Salma Habib
- Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Mohammed Talhami
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Amani Hassanein
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Elsadig Mahdi
- Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Makri K, Pispas S. Block and Statistical Copolymers of Methacrylate Monomers with Dimethylamino and Diisopropylamino Groups on the Side Chains: Synthesis, Chemical Modification and Self-Assembly in Aqueous Media. Polymers (Basel) 2024; 16:1284. [PMID: 38732753 PMCID: PMC11085793 DOI: 10.3390/polym16091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The synthesis of amphiphilic diblock and statistical (random) copolymers of poly(dimethylamino ethyl methacrylate) and poly((2-(diisopropylamino) ethyl methacrylate) using the reversible addition-fragmentation chain transfer polymerization technique (RAFT polymerization) is reported. The precursor copolymers were chemically modified to create derivative copolymers of polyelectrolyte and polyampholyte nature with novel solution properties. Moreover, their molecular and physicochemical characteristics, as well as their self-assembly in aqueous media as a function of molecular architecture and composition, are investigated by using size exclusion chromatography, spectroscopic characterization techniques and light scattering techniques. Furthermore, the behavior and properties of the obtained micelles and aggregates were studied, depending on the pH, temperature and ionic strength of the aqueous solutions. The response of the systems to changes in these parameters shows interesting behavior and new properties that are useful for their utilization as nanocarriers of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
3
|
Indumathy B, Sathiyanathan P, Prasad G, Reza MS, Prabu AA, Kim H. A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers. Polymers (Basel) 2023; 15:polym15112517. [PMID: 37299316 DOI: 10.3390/polym15112517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Since the last decade, hyperbranched polymers (HBPs) have gained wider theoretical interest and practical applications in sensor technology due to their ease of synthesis, highly branched structure but dimensions within nanoscale, a larger number of modified terminal groups and lowering of viscosity in polymer blends even at higher HBP concentrations. Many researchers have reported the synthesis of HBPs using different organic-based core-shell moieties. Interestingly, silanes, as organic-inorganic hybrid modifiers of HBP, are of great interest as they resulted in a tremendous improvement in HBP properties like increasing thermal, mechanical and electrical properties compared to that of organic-only moieties. This review focuses on the research progress in organofunctional silanes, silane-based HBPs and their applications since the last decade. The effect of silane type, its bi-functional nature, its influence on the final HBP structure and the resultant properties are covered in detail. Methods to enhance the HBP properties and challenges that need to be overcome in the near future are also discussed.
Collapse
Affiliation(s)
- Balaraman Indumathy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Ponnan Sathiyanathan
- Department of Advanced Materials Engineering for Information & Electronics, College of Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Gajula Prasad
- School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, 1600, Cheonan-si 31253, Republic of Korea
| | - Mohammad Shamim Reza
- Department of Advanced Materials Engineering for Information & Electronics, College of Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Hongdoo Kim
- Department of Advanced Materials Engineering for Information & Electronics, College of Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
4
|
Istratov V, Gomzyak V, Vasnev V, Baranov OV, Mezhuev Y, Gritskova I. Branched Amphiphilic Polylactides as a Polymer Matrix Component for Biodegradable Implants. Polymers (Basel) 2023; 15:polym15051315. [PMID: 36904556 PMCID: PMC10007683 DOI: 10.3390/polym15051315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The combination of biocompatibility, biodegradability, and high mechanical strength has provided a steady growth in interest in the synthesis and application of lactic acid-based polyesters for the creation of implants. On the other hand, the hydrophobicity of polylactide limits the possibilities of its use in biomedical fields. The ring-opening polymerization of L-lactide, catalyzed by tin (II) 2-ethylhexanoate in the presence of 2,2-bis(hydroxymethyl)propionic acid, and an ester of polyethylene glycol monomethyl ester and 2,2-bis(hydroxymethyl)propionic acid accompanied by the introduction of a pool of hydrophilic groups, that reduce the contact angle, were considered. The structures of the synthesized amphiphilic branched pegylated copolylactides were characterized by 1H NMR spectroscopy and gel permeation chromatography. The resulting amphiphilic copolylactides, with a narrow MWD (1.14-1.22) and molecular weight of 5000-13,000, were used to prepare interpolymer mixtures with PLLA. Already, with the introduction of 10 wt% branched pegylated copolylactides, PLLA-based films had reduced brittleness, hydrophilicity, with a water contact angle of 71.9-88.5°, and increased water absorption. An additional decrease in the water contact angle, of 66.1°, was achieved by filling the mixed polylactide films with 20 wt% hydroxyapatite, which also led to a moderate decrease in strength and ultimate tensile elongation. At the same time, the PLLA modification did not have a significant effect on the melting point and the glass transition temperature; however, the filling with hydroxyapatite increased the thermal stability.
Collapse
Affiliation(s)
- Vladislav Istratov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Bauman Moscow State Technical University, Baumanskaya 2-ya Str., 5/1, 105005 Moscow, Russia
- Correspondence: (V.I.); (Y.M.)
| | - Vitaliy Gomzyak
- Department of Chemistry and Technology of Macromolecular Compounds, MIREA—Russian Technological University (RTU MIREA), Vernadskogo Avenue 78, 119454 Moscow, Russia
| | - Valerii Vasnev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Oleg V. Baranov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Yaroslav Mezhuev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
- Correspondence: (V.I.); (Y.M.)
| | - Inessa Gritskova
- Department of Chemistry and Technology of Macromolecular Compounds, MIREA—Russian Technological University (RTU MIREA), Vernadskogo Avenue 78, 119454 Moscow, Russia
| |
Collapse
|
5
|
Mohammadi E, Jamal Tabatabaei Rezaei S, Nedaei K, Ramazani A, Ramazani A. PEGylated Redox/pH Dual‐Responsive Dendritic Prodrugs Based on Boltorn® H40 for Tumor Triggered Paclitaxel Delivery. ChemistrySelect 2023. [DOI: 10.1002/slct.202204246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Elham Mohammadi
- Laboratory of Novel Drug Delivery Systems Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology School of Medicine Zanjan University of Medical Sciences 4537138791 Zanjan Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences 4537138791 Zanjan Iran
| | - Ali Ramazani
- Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| |
Collapse
|
6
|
Balafouti A, Pispas S. Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1045. [PMID: 36770053 PMCID: PMC9921860 DOI: 10.3390/ma16031045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/12/2023]
Abstract
In this study, reversible addition-fragmentation chain transfer (RAFT) polymerization is utilized in order to synthesize novel hyperbranched poly(oligoethylene glycol) methyl ether methacrylate-co-tert-butyl methacrylate-co-methacrylic acid) (H-[P(OEGMA-co-tBMA-co-MAA)]) copolymers in combination with selective hydrolysis reactions. The copolymers showing amphiphilicity induced by the polar OEGMA and hydrophobic tBMA monomeric units, and polyelectrolyte character due to MAA units, combined with unique macromolecular architecture were characterized by physicochemical techniques, such as size exclusion chromatography (SEC) and 1H-NMR spectroscopy. The hyperbranched copolymers were investigated in terms of their ability to self-assemble into nanostructures when dissolved in aqueous media. Dynamic light scattering and fluorescence spectroscopy revealed multimolecular aggregates of nanoscale dimensions with low critical aggregation concentration, the size and mass of which depend on copolymer composition and solution conditions, whereas zeta potential measurements indicated pH sensitive features. In addition, aiming to evaluate their potential use as nanocarriers, the copolymers were studied in terms of their drug encapsulation and protein complexation ability utilizing curcumin and lysozyme, as a model hydrophobic drug and a model cationic protein, respectively.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
7
|
Structure determination of hyperbranched polyester BOLTORN H40 by 1D- and 2D-NMR spectroscopy. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Bera S, Barman R, Ghosh S. Hyperbranched vs. linear poly(disulfide) for intracellular drug delivery. Polym Chem 2022. [DOI: 10.1039/d2py00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication reports comparative studies between amphiphilic hyperbranched and linear poly(disulfide) with regard to their aggregation and glutathione-responsive intracellular drug delivery.
Collapse
Affiliation(s)
- Sukanya Bera
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| |
Collapse
|
9
|
Fan LF, Hou CL, Wang X, Yan LT, Wu DC. Tunable Multiple Morphological Transformation of Supramolecular Hyperbranched Polymers Based on an A2B6-type POSS Monomer. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Ansari I, Singh P, Mittal A, Mahato RI, Chitkara D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials 2021; 275:120953. [PMID: 34218051 DOI: 10.1016/j.biomaterials.2021.120953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Designing grafted biodegradable polymers with tailored multi-functional properties is one of the most researched fields with extensive biomedical applications. Among many biodegradable polymers, polycarbonates have gained much attention due to their ease of synthesis, high drug loading, and excellent biocompatibility profiles. Among various monomers, 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) derived cyclic carbonate monomers have been extensively explored in terms of their synthesis as well as their polymerization. Since the late 90s, significant advancements have been made in the design of bis-MPA derived cyclic carbonate monomers as well as in their reaction schemes. Currently, bis-MPA derived polycarbonates have taken a form of an entire platform with a multitude of applications, the latest being in the field of nanotechnology, targeted drug, and nucleic acid delivery. The present review outlines an up to date developments that have taken place in the last two decades in the design, synthesis, and biomedical applications of bis-MPA derived cyclic carbonates and their (co)polymers.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
11
|
Star-hyperbranched waterborne polyurethane based on D-glucose-poly(ε-caprolactone) core as a biomaterial candidate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Marín-Valls R, Hernández K, Bolte M, Parella T, Joglar J, Bujons J, Clapés P. Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. J Am Chem Soc 2020; 142:19754-19762. [PMID: 33147013 DOI: 10.1021/jacs.0c09994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.
Collapse
Affiliation(s)
- Roser Marín-Valls
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
| | - Teodor Parella
- Servei de Ressonancia Magnetica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|