1
|
He B, Hu Y, Qin Y, Zhang Y, Luo X, Wang Z, Xue W. Design, synthesis and antiviral activity of indole derivatives containing quinoline moiety. Mol Divers 2024:10.1007/s11030-024-10894-w. [PMID: 39046564 DOI: 10.1007/s11030-024-10894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/09/2024] [Indexed: 07/25/2024]
Abstract
A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC50 values of 84.4 and 65.7 μg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 μg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) of 0.00519 μmol/L, which was superior to that of NNM (1. 65320 μmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.
Collapse
Affiliation(s)
- Bangcan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yishan Qin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yufang Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Wang Q, Xing L, Zhang Y, Gong C, Zhou Y, Zhang N, He B, Xue W. Antiviral activity evaluation and action mechanism of myricetin derivatives containing thioether quinoline moiety. Mol Divers 2024; 28:1039-1055. [PMID: 36933104 DOI: 10.1007/s11030-023-10631-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
A variety of myricetin derivatives containing thioether quinoline moiety were designed and synthesized. Their structures of title compounds were determined by 1H NMR, 13C NMR, 19F NMR, and HRMS. Single-crystal X-ray diffraction experiments were carried out with B4. Antiviral activity indicated that some of the target compounds exhibited remarkable anti-tobacco mosaic virus (TMV) activity. In particular, compound B6 possessed significant activity. The half maximal effective concentration (EC50) value of the curative activity of compound B6 was 169.0 μg/mL, which was superior to the control agent ningnanmycin (227.2 μg/mL). Meanwhile, the EC50 value of the protective activity of compound B6 was 86.5 μg/mL, which was better than ningnanmycin (179.2 μg/mL). Microscale thermophoresis (MST) indicated that compound B6 had a strong binding capability to the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) value of 0.013 μmol/L, which was superior to that of myricitrin (61.447 μmol/L) and ningnanmycin (3.215 μmol/L). And the molecular docking studies were consistent with the experimental results. Therefore, these novel myricetin derivatives containing thioether quinoline moiety could become potential alternative templates for novel antiviral agents.
Collapse
Affiliation(s)
- Qifan Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
3
|
Zhan W, Zhou R, Mao P, Yuan C, Zhang T, Liu Y, Tian J, Wang H, Xue W. Synthesis, antifungal activity and mechanism of action of novel chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole. Mol Divers 2024; 28:461-474. [PMID: 36964852 DOI: 10.1007/s11030-022-10593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 03/26/2023]
Abstract
A series of chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole was designed and synthesized. Structures of all compounds were characterized by 1H NMR, 13C NMR, 19F NMR, and HRMS. The biological activities of the compounds were determined with the mycelial growth rate method, and further studies showed that some compounds had good antifungal activities at the concentration of 100 μg/mL. The EC50 value of compound L31 was 15.9 μg/mL against Phomopsis sp., which were better than that of azoxystrobin (EC50 value was 69.4 μg/mL). In addition, the mechanism of action of compound L31 shown that compound can affect mycelial growth by disrupting membrane integrity against Phomopsis sp., and that the higher the concentration of the compound is, the greater the disruption of membrane integrity is.
Collapse
Affiliation(s)
- Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Piao Mao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chunmei Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tao Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jiao Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China.
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
4
|
Zhang N, Zeng W, Sun Z, Zhou Q, Meng K, Hu Y, Qin Y, Xue W. Design, synthesis, and bioactivity studies of chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine. Fitoterapia 2024; 172:105739. [PMID: 37952763 DOI: 10.1016/j.fitote.2023.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
In this study, 30 chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine were designed and synthesized. The results of antibacterial activity showed that EC50 values of N26 against Xoo, Pcb was 36.41, 38.53 μg/mL, respectively, which were better than those of thiodiazole copper, whose EC50 values were 60.62, 106.75 μg/mL, respectively. The bacterial inhibitory activity of N26 against Xoo was verified by SEM. Antibacterial mechanism between N26 and Xoo was preliminarily explored, the experimental results showed that when the drug concentration was 100 mg/L, N26 had a good cell membrane permeability of Xoo, and it can inhibit the production of EPS content and extracellular enzyme content to disrupt the integrity of the Xoo biofilms achieving the effect of inhibiting Xoo. At 200 mg/L, N26 can protect and inhibit the lesions of post-harvested potatoes in vivo. The activities of N1-N30 against TMV were determined with half leaf dry spot method. The EC50 values of the curative and protective activity of N22 was 77.64 and 81.55 μg/mL, respectively, which were superior to those of NNM (294.27, 175.88 μg/mL, respectively). MST experiments demonstrated that N22 (Kd = 0.0076 ± 0.0007 μmol/L) had a stronger binding ability with TMV-CP, which was much higher than that of NNM (Kd = 0.7372 ± 0.2138 μmol/L). Molecular docking results showed that N22 had a significantly higher affinity with TMV-CP than NNM.
Collapse
Affiliation(s)
- Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kaini Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuzhi Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yishan Qin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Patan A, Aanandhi M V, P G. Molecular dynamics simulation approach of hybrid chalcone-thiazole complex derivatives for DNA gyrase B inhibition: lead generation. RSC Adv 2023; 13:24291-24308. [PMID: 37583661 PMCID: PMC10424056 DOI: 10.1039/d3ra00732d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Compounds bearing thiazole and chalcone groups have been reported to be excellent leads for antibacterial, antitubercular and anticancer activities. In view of this, we performed quantitative structure-activity relationship studies using QSARINS for dataset preparation and for developing validated QSAR models that can predict novel series of thiazole-chalcone hybrids and further evaluate them for bioactivities. The molecular descriptors AATS8i, AVP-1, MoRSEE17 and GATSe7 were found to be active in predicting the structure-activity relationship. Molecular docking and dynamics simulation studies of the developed leads have shown insights into structural analysis. Furthermore, computational studies using AutoDock and Desmond predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compound 178 generated through this study creates a route for the optimization and development of novel drugs against tuberculosis infections. RMSD, RMSF, RoG, H-bond and SASA analysis confirmed the stable binding of compound 178 with the 6J90 structure. In addition, MM-PBSA and MM-GBSA also confirm the docking results. We propose the designed compound 178 as the best theoretical lead, which may further be experimentally studied for selective inhibition.
Collapse
Affiliation(s)
- Afroz Patan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, VISTAS Chennai Tamil Nadu India
| | - Vijey Aanandhi M
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, VISTAS Chennai Tamil Nadu India
| | - Gopinath P
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM University Hyderabad Telangana India
| |
Collapse
|
6
|
Bai L, Wei C, Zhang J, Song R. Design, Synthesis, and Anti-PVY Biological Activity of 1,3,5-Triazine Derivatives Containing Piperazine Structure. Int J Mol Sci 2023; 24:ijms24098280. [PMID: 37175986 PMCID: PMC10179359 DOI: 10.3390/ijms24098280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, a commercial agent with antivirus activity and moroxydine hydrochloride were employed to perform a lead optimization. A series of 1,3,5-triazine derivatives with piperazine structures were devised and synthesized, and an evaluation of their anti-potato virus Y (PVY) activity revealed that several of the target compounds possessed potent anti-PVY activity. The synthesis of compound C35 was directed by a 3D-quantitative structure-activity relationship that used the compound's structural parameters. The assessment of the anti-PVY activity of compound C35 revealed that its curative, protective, and inactivation activities (53.3 ± 2.5%, 56.9 ± 1.5%, and 85.8 ± 4.4%, respectively) were comparable to the positive control of ningnanmycin (49.1 ± 2.4%, 50.7 ± 4.1%, and 82.3 ± 6.4%) and were superior to moroxydine hydrochloride (36.7 ± 2.7%, 31.4 ± 2.0%, and 57.1 ± 1.8%). In addition, molecular docking demonstrated that C35 can form hydrogen bonds with glutamic acid at position 150 (GLU 150) of PVY CP, providing a partial theoretical basis for the antiviral activity of the target compounds.
Collapse
Affiliation(s)
- Lian Bai
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| | - Chunle Wei
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| | - Jian Zhang
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| | - Runjiang Song
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| |
Collapse
|
7
|
Synthesis and evaluation of anti-yellow fever virus activity of new 6-aryl-3-R-amino-1,2,4-triazin-5(4H)-ones. Eur J Med Chem 2023; 248:115117. [PMID: 36657300 DOI: 10.1016/j.ejmech.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Yellow fever disease is one of public health concerns in the tropics. Despite its significant medicinal and economic impact among large groups of the population, there is a lack of effective treatment against yellow fever. In this regard, here we describe the synthesis of a series of new 6-aryl-3-R-amino-1,2,4-triazin-5(4H)-ones and evaluation of their in vitro inhibitory activity against yellow fever virus. Among all tested compounds 4 derivatives possessing strong inhibitory activity at μM concentrations were identified. All the active compounds revealed a good toxicity profile. These facts make the compounds interesting candidates for further evaluation of their efficacy in the treatment of yellow fever virus infection in vivo.
Collapse
|
8
|
Sun N, Gong C, Zhou Y, Zhang Y, Zhang N, Xing L, Xue W. Design, Synthesis, and Bioactivity of Chalcone Derivatives Containing Indanone. ACS OMEGA 2023; 8:2556-2563. [PMID: 36687075 PMCID: PMC9850732 DOI: 10.1021/acsomega.2c07071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
A series of chalcone derivatives containing indanone were designed and synthesized by aldehyde-ketone condensation and etherification. The activity test demonstrated that the majority of the compounds had good therapeutic and protective activities against tobacco mosaic virus (TMV) at a concentration of 500 μg/mL when being tested. Among them, the target compounds N2 and N7 showed good therapeutic activities against TMV with EC50 values of 70.7 and 89.9 μg/mL, respectively, which were better than that of ningnanmycin (158.3 μg/mL). N2 and N10 showed better protective activities against TMV with EC50 values of 60.8 and 120.3 μg/mL, which were superior to that of ningnanmycin (175.6 μg/mL). A hydrogen bond interaction was observed between N2 and ARG-341 with a bond length of 3.08 Å and a hydrogen bond was observed between ningnanmycin and ASP-66 with a bond length of 3.72 Å. In contrast, the hydrogen bond length of compound N2 was shorter and its binding was closer. Meanwhile, when the heartleaf tobacco was being treated with N2, its increasing rate of malondialdehyde slowed and its content of defense enzymes significantly increased, again reflecting the good activity of N2 against TMV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Xue
- . Tel.: +86-851-88292090. Fax: +86-851-88292090
| |
Collapse
|
9
|
Thamarai A, Raja M, Sakthivel S, Kumaran S, Muthu S, Narayana B, Ramesh P, Sevvanthi S, Javed S, Naick BN, Irfan A. The chemical reactivity and antimalarial investigation of crystal structure (2E)-3-(biphenyl-4-yl)-1-(4-chlorophenyl)prop-2-en-1-one and hydroxyphenyl, nitrophenyl substituted chalcone derivative molecules. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Peng F, Liu T, Zhu Y, Liu F, Cao X, Wang Q, Liu L, Xue W. Novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives: synthesis and biological activity. PEST MANAGEMENT SCIENCE 2023; 79:274-283. [PMID: 36148624 DOI: 10.1002/ps.7197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND With the long-term use of traditional bactericides and antiviral agents, drug resistance has become increasingly prominent, resulting in impaired crop growth and yields. Based on this, the introduction of small molecular active groups into natural products has become the direction of research for green pesticides. RESULTS In this study, novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives were explored. Among them, D4 exhibited good inhibitory effects on plant bacteria. It is worth mentioning that D4 (15 μg ml-1 ) exhibited an excellent median effective concentration (EC50 ) value against Xanthomonas oryzae pv. oryzae (Xoo), which was better than bismerthiazol (73 μg ml-1 ) and thiodiazole copper (100 μg ml-1 ). The EC50 for D4 was much lower than the two positive controls (bismerthiazol, thiodiazole copper), making D4 more potent in this assay of bacterial growth inhibition. In addition, mechanism research using scanning electron microscopy revealed that D4 could cause deformation or rupture of the cell membranes of Xoo and Pseudomonas syringae pv. actinidiae. Moreover, D4 exhibited the best EC50 for in vivo curative (132 μg ml-1 ) and protective (101 μg ml-1 ) activities against tobacco mosaic virus, which were more effective than ningnanmycin. Microscale thermophoresis data suggested that D4 [dissociation constant (Kd ) = 0.038 ± 0.011 μmol L-1 ] exhibited a stronger binding capacity than the control agent ningnanmycin (Kd = 4.707 ± 2.176 μmol L-1 ). CONCLUSION The biological activity data and mode of action demonstrated that D4 had the best antibacterial and antiviral effects. Compound D4 discovered in the current work may be a very promising agricultural drug. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Yunying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, People's Republic of China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
11
|
Zhou Q, Zhou Y, Zhu Y, Gong C, Wu Y, Xue W. Design, Synthesis, and Biological Evaluation of Novel 1,4-Pentadien-3-one Derivatives Containing a Sulfonamide Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16096-16105. [PMID: 36525311 DOI: 10.1021/acs.jafc.2c05731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel 1,4-pentadien-3-one derivatives containing a sulfonamide moiety were synthesized, and their antifungal, antibacterial, and antiviral activities were verified. These compounds exhibited better activity against five bacteria, with EC50 values ranging from 9.6 to 60.1 μg/mL, prominently, which are superior to those of the commercial agent. A great amount of compounds had excellent fungicidal activity in vitro at 100 μg/mL. Strikingly, compound E6 exhibited moderate activity against Phytophthora litchii than azoxystrobin, with the EC50 value of compound E6 (0.5 μg/mL) drawing near azoxystrobin (0.3 μg/mL). Furthermore, compound E17 had a marked impact on in vivo anti-tobacco mosaic virus, according to the data of microscale thermophoresis, with a Kd value of the intermolecular binding force of 0.002 ± 0.001 μM, which was better than the commercial agent of ningnanmycin (Kd = 0.121 ± 0.031 μM). In addition, the results of these studies suggest that the use of active splicing can improve the biological activity of natural compounds and provide further complement to the development of novel pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yuanxiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yunying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550001, People's Republic of China
| | - Chenyu Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yongjun Wu
- Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
12
|
Design, synthesis, and antiviral activities of chalcone derivatives containing pyrimidine. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Rajendran G, Bhanu D, Aruchamy B, Ramani P, Pandurangan N, Bobba KN, Oh EJ, Chung HY, Gangadaran P, Ahn BC. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15101250. [PMID: 36297362 PMCID: PMC9607481 DOI: 10.3390/ph15101250] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chalcones are a class of privileged scaffolds with high medicinal significance due to the presence of an α,β-unsaturated ketone functionality. Numerous functional modifications of chalcones have been reported, along with their pharmacological behavior. The present review aims to summarize the structures from natural sources, synthesis methods, biological characteristics against infectious and non-infectious diseases, and uses of chalcones over the past decade, and their structure–activity relationship studies are detailed in depth. This critical review provides guidelines for the future design and synthesis of various chalcones. In addition, this could be highly supportive for medicinal chemists to develop more promising candidates for various infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Gayathri Rajendran
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Deepu Bhanu
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (P.R.); (B.-C.A.)
| | - Nanjan Pandurangan
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, Mysuru 570026, India
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California (San Francisco), San Francisco, CA 94143, USA
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (P.R.); (B.-C.A.)
| |
Collapse
|
14
|
Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Khanal P, Patil VS, Bhandare VV, Dwivedi PS, Shastry C, Patil B, Gurav SS, Harish DR, Roy S. Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds. Comput Biol Med 2022; 146:105668. [PMID: 35667894 PMCID: PMC9135652 DOI: 10.1016/j.compbiomed.2022.105668] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
Benzalacetophenones, precursors of flavonoids are aromatic ketones and enones and possess the immunostimulant as well as antiviral activities. Thus, benzalacetophenones were screened against the COVID-19 that could be lethal in patients with compromised immunity. We considered ChEBI recorded benzalacetophenone derivative(s) and evaluated their activity against 3C-like protease (3CLpro), papain-like protease (PLpro), and spike protein of SARS-Cov-2 to elucidate their possible role as antiviral agents. The probable targets for each compound were retrieved from DIGEP-Pred at 0.5 pharmacological activity and all the modulated proteins were enriched to identify the probably regulated pathways, biological processes, cellular components, and molecular functions. In addition, molecular docking was performed using AutoDock 4 and the best-identified hits were subjected to all-atom molecular dynamics simulation and binding energy calculations using molecular mechanics Poisson-Boltzmann surface area (MMPBSA). The compound 4-hydroxycordoin showed the highest druglikeness score and regulated nine proteins of which five were down-regulated and four were upregulated. Similarly, enrichment analysis identified the modulation of multiple pathways concerned with the immune system as well as pathways related to infectious and non-infectious diseases. Likewise, 3'-(3-methyl-2-butenyl)-4′-O-β-d-glucopyranosyl-4,2′-dihydroxychalcone with 3CLpro, 4-hydroxycordoin with PLpro and mallotophilippen D with spike protein receptor-binding domain showed highest binding affinity, revealed stable interactions during the simulation, and scored binding free energy of −26.09 kcal/mol, −16.28 kcal/mol, and −39.2 kcal/mol, respectively. Predicted anti-SARS-CoV-2 activities of the benzalacetophenones reflected the requirement of wet lab studies to develop novel antiviral candidates.
Collapse
|
16
|
Zhou Q, Tang X, Chen S, Zhan W, Hu D, Zhou R, Sun N, Wu Y, Xue W. Design, Synthesis, and Antifungal Activity of Novel Chalcone Derivatives Containing a Piperazine Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1029-1036. [PMID: 35072471 DOI: 10.1021/acs.jafc.1c05933] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an attempt to find the biorational pesticides, 20 novel chalcone derivatives containing a piperazine fragment were designed and synthesized. Their fungicidal activities and preliminarily action mechanism against Rhizoctonia solani were evaluated. Strikingly, the biological activity of compound D2 was obtained by optimizing the structure of the system. Subsequently, the practical value of compound D2 was ascertained by the relative surveys on in vivo anti-R. solani and anti-Colletotrichum gloeosporioides. The results revealed by scanning electron microscopy demonstrated that compound D2 could induce irregular and shrivelled growth of mycelium and rupture of the mycelium surface. This study indicates that chalcone derivatives containing a piperazine skeleton had better inhibitory effect on plant fungi, providing further complementary research on new pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Die Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - YongJun Wu
- Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
17
|
Peng F, Liu T, Cao X, Wang Q, Liu F, Liu L, He M, Xue W. Antiviral Activities of Novel Myricetin Derivatives Containing 1,3,4‐Oxadiazole Bisthioether. Chem Biodivers 2022; 19:e202100939. [DOI: 10.1002/cbdv.202100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Peng
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Tingting Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Xiao Cao
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Qifan Wang
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Fang Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Liwei Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Ming He
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Wei Xue
- Ministry of Education State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Guizhou University 550025 Guiyang CHINA
| |
Collapse
|
18
|
Alshammari NAH, Bakhotmah DA. Synthesis, Reactivity, and Applications of 4-Amino-3-Thioxo/Hydrazino-6-Substituted-1,2,4-Triazin-5-Ones and Their Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2025863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nawaa Ali H. Alshammari
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Northern Border University, Rafha, Saudi Arabia
| | - Dina A. Bakhotmah
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Tang X, Zhou Q, Zhan W, Hu D, Zhou R, Sun N, Chen S, Wu W, Xue W. Synthesis of novel antibacterial and antifungal quinoxaline derivatives. RSC Adv 2022; 12:2399-2407. [PMID: 35425241 PMCID: PMC8979181 DOI: 10.1039/d1ra07559d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
A series of quinoxaline derivatives were designed, synthesized and evaluated as antimicrobial agents against plant pathogenic bacteria and fungi. Some of these compounds exhibited significant antibacterial and antifungal activities in vitro. Compound 5k displayed good antibacterial activity against Acidovorax citrulli (Ac). Compounds 5j and 5t exhibited the most potent anti-RS (Rhizoctonia solani) activity, with the corresponding EC50 values of 8.54 and 12.01 μg mL-1, respectively, which are superior to that of the commercial azoxystrobin (26.17 μg mL-1). Further, the scanning electron microscopy results proved that compound 5j had certain effects on the cell morphology of RS. Moreover, an in vivo bioassay also demonstrated that the anti-RS activity of compound 5j could effectively control rice sheath blight. These results indicate that quinoxaline derivatives could be promising agricultural bactericides and fungicides.
Collapse
Affiliation(s)
- Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Die Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University Guiyang 550003 P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
20
|
Duran N, Polat MF, Aktas DA, Alagoz MA, Ay E, Cimen F, Tek E, Anil B, Burmaoglu S, Algul O. New chalcone derivatives as effective against SARS-CoV-2 agent. Int J Clin Pract 2021; 75:e14846. [PMID: 34519118 PMCID: PMC8646589 DOI: 10.1111/ijcp.14846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/28/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023] Open
Abstract
AIMS Flavonoids and related compounds, such as quercetin-based antiviral drug Gene-Eden-VIR/Novirin, inhibit the protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The alkylated chalcones isolated from Angelica keiskei inhibit SARS-CoV proteases. In this study, we aimed to compare the anti-SARS CoV-2 activities of both newly synthesized chalcone derivatives and these two drugs. METHODS Determination of the potent antiviral activity of newly synthesized chalcone derivatives against SARS-CoV-2 by calculating the RT-PCR cycling threshold (Ct ) values. RESULTS Antiviral activities of the compounds varied because of being dose dependent. Compound 6, 7, 9, and 16 were highly effective against SARS-CoV-2 at the concentration of 1.60 µg/mL. Structure-based virtual screening was carried out against the most important druggable SARS-CoV-2 targets, viral RNA-dependent RNA polymerase, to identify putative inhibitors that could facilitate the development of potential anti-coronavirus disease-2019 drug candidates. CONCLUSIONS Computational analyses identified eight compounds inhibiting each target, with binding affinity scores ranging from -4.370 to -2.748 kcal/mol along with their toxicological, ADME, and drug-like properties.
Collapse
Affiliation(s)
- Nizami Duran
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - M. Fatih Polat
- Department of Pharmaceutical Basic SciencesFaculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkey
| | - Derya Anil Aktas
- Department of Chemistry and Chemical Process TechnologiesErzurum Vocational High SchoolAtatürk UniversityErzurumTurkey
| | - M. Abdullah Alagoz
- Department of Pharmaceutical ChemistryFaculty of PharmacyInonu UniversityMalatyaTurkey
| | - Emrah Ay
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - Funda Cimen
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - Erhan Tek
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - Baris Anil
- Department of ChemistryFaculty of ScienceAtatürk UniversityErzurumTurkey
| | - Serdar Burmaoglu
- Department of ChemistryFaculty of ScienceAtatürk UniversityErzurumTurkey
| | - Oztekin Algul
- Department of Pharmaceutical ChemistryFaculty of PharmacyMersin UniversityMersinTurkey
- Department of Pharmaceutical ChemistryFaculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkey
| |
Collapse
|
21
|
Wang Y, Zhou R, Sun N, He M, Wu Y, Xue W. Synthesis and antibacterial activity of novel 1,4‐pentadien‐3‐one derivatives bearing a benzothiazole moiety. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yihui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
- Monitoring of Four Families Anshun Ecological Environment Monitoring Center Anshun China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| | - Yongjun Wu
- Institute of Agro‐bioengineering/College of Life Sciences Guizhou University Guiyang China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| |
Collapse
|
22
|
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021; 22:11306. [PMID: 34768736 PMCID: PMC8582663 DOI: 10.3390/ijms222111306] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is a condition caused by many mechanisms (genetic, immune, oxidation, and inflammatory). Anticancer therapy aims to destroy or stop the growth of cancer cells. Resistance to treatment is theleading cause of the inefficiency of current standard therapies. Targeted therapies are the most effective due to the low number of side effects and low resistance. Among the small molecule natural compounds, flavonoids are of particular interest for theidentification of new anticancer agents. Chalcones are precursors to all flavonoids and have many biological activities. The anticancer activity of chalcones is due to the ability of these compounds to act on many targets. Natural chalcones, such as licochalcones, xanthohumol (XN), panduretin (PA), and loncocarpine, have been extensively studied and modulated. Modification of the basic structure of chalcones in order to obtain compounds with superior cytotoxic properties has been performed by modulating the aromatic residues, replacing aromatic residues with heterocycles, and obtaining hybrid molecules. A huge number of chalcone derivatives with residues such as diaryl ether, sulfonamide, and amine have been obtained, their presence being favorable for anticancer activity. Modification of the amino group in the structure of aminochalconesis always favorable for antitumor activity. This is why hybrid molecules of chalcones with different nitrogen hetercycles in the molecule have been obtained. From these, azoles (imidazole, oxazoles, tetrazoles, thiazoles, 1,2,3-triazoles, and 1,2,4-triazoles) are of particular importance for the identification of new anticancer agents.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Claudiu N. Lungu
- Department of Surgery, Country Emergency Hospital Braila, 810249 Braila, Romania
| |
Collapse
|
23
|
Peng F, Liu T, Wang Q, Liu F, Cao X, Yang J, Liu L, Xie C, Xue W. Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4 H-Chromen-4-one Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11085-11094. [PMID: 34516137 DOI: 10.1021/acs.jafc.1c03755] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives were conceived. The title compounds demonstrated striking inhibitory effects against Xac, Psa, and Xoo. EC50 data exhibited that A8 (19.7 μg/mL) had better antibacterial activity against Xoo than myricetin, BT, and TC. Simultaneously, the mechanism of action of A8 had been verified by SEM. The results of anti-tobacco mosaic virus indicated that A9 had the best in vivo antiviral effect compared with ningnanmycin. From the data of MST, it could be seen that A9 (0.003 ± 0.001 μmol/L) exhibited a strong binding capacity, which was far superior to ningnanmycin (2.726 ± 1.301 μmol/L). This study shows that the 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives may become agricultural drugs with great potential.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Jinsong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
24
|
Su S, Chen M, Tang X, Peng F, Liu T, Zhou Q, Zhan W, He M, Xie C, Xue W. Design, Synthesis and Antibacterial Activity of Novel Pyrimidine-Containing 4H-Chromen-4-One Derivatives*. Chem Biodivers 2021; 18:e2100186. [PMID: 34159725 DOI: 10.1002/cbdv.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022]
Abstract
A series of pyrimidine-containing 4H-chromen-4-one derivatives were designed and synthesized by combining bioactive substructures. Preliminary biological activity results showed that most of the compounds displayed significant inhibitory activities in vitro against Xanthomonas axonopodis pv. Citri (X. axonopodis), Xanthomonas oryzae pv. oryzae (X. oryzae) and Ralstonia solanacearum (R. solanacearum). In particular, compound 2-[(3-{[5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(4-methylphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4c) demonstrated a good inhibitory effect against X. axonopodis and X. oryzae, with the half-maximal effective concentration (EC50 ) values of 15.5 and 14.9 μg/mL, respectively, and compound 2-[(3-{[5,7-Dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(3-fluorophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4h) showed the best antibacterial activity against R. solanacearum with an EC50 value of 14.7 μg/mL. These results were better than commercial reagents bismerthiazol (BT, 51.7, 70.1 and 52.7 μg/mL, respectively) and thiodiazole copper (TC, 77.9, 95.8 and 72.1 μg/mL, respectively). In vivo antibacterial activity results indicated that compound 4c displayed better curative (42.4 %) and protective (49.2 %) activities for rice bacterial leaf blight than BT (35.2, 39.1 %) and TC (30.8, 27.3 %). The mechanism of compound 4c against X. oryzae was analyzed through scanning electron microscopy (SEM). These results indicated that pyrimidine-containing 4H-chromen-4-one derivatives have important value in the research of new agrochemicals.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| |
Collapse
|
25
|
Ivanov SM, Mironovich LM, Daeva ED. Synthesis and structure of 6-tert-butyl-5-triphenylgermyl-1,2,4-triazines. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Sharma J, Bhardwaj VK, Das P, Purohit R. Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104858. [PMID: 33993976 DOI: 10.1016/j.pestbp.2021.104858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Benzosuberene compounds with a pyrrolone group adhered to it are compounds extracted from the oils of Cedrus deodara plant, that bear inhibitory capabilities. Tobacco mosaic virus is known to affect crop production every year. The currently known inhibitors against TMV have a weak inhibition effect and also tend to be toxic towards non-target living organisms as well as the environment. Thus, the requirement of non-toxic potent inhibitors is the need of the hour, which led us to test our benzosuberene molecules on the binding site of TMV and check their affinity as well as stability. The non-toxic nature of these molecules has already been experimentally established. Through in-silico analysis involving docking and simulation experiments, we compared the interaction pattern of these ligand molecules with the already present inhibitors. Our investigation proved that the reported ligands (ligands 3, 7, 9, and 17 obtained -177.103, -228.632, -184.134, and - 188.075 kJ/mol binding energies, respectively) interacted with the binding site of TMV much efficiently than the known inhibitors (Ribavirin and Zhao et al. 2020 obtained 121.561 and - 221.393 kJ/mol binding energies, respectively). Moreover, they acquired a stable conformation inside the binding pocket, where a higher number of binding site residues contributed towards interaction. Thus, their structural framework can be optimized for the exploration of their antiviral properties to develop potent botanical viricides against plant virus infection.
Collapse
Affiliation(s)
- Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
27
|
Ivanov SM. Reversed steric order of reactivity for
tert
‐butyl and adamantyl‐3‐cyanomethylene‐1,2,4‐triazines. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sergey M. Ivanov
- Laboratory of Medicinal chemistry (N17) N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow Russia
| |
Collapse
|
28
|
Kasetti AB, Singhvi I, Nagasuri R, Bhandare RR, Shaik AB. Thiazole-Chalcone Hybrids as Prospective Antitubercular and Antiproliferative Agents: Design, Synthesis, Biological, Molecular Docking Studies and In Silico ADME Evaluation. Molecules 2021; 26:2847. [PMID: 34064806 PMCID: PMC8151732 DOI: 10.3390/molecules26102847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds bearing thiazole and chalcone pharmacophores have been reported to possess excellent antitubercular and anticancer activities. In view of this, we designed, synthesized and characterized a novel series of thiazole-chalcone hybrids (1-20) and further evaluated them for antitubercular and antiproliferative activities by employing standard protocols. Among the twenty compounds, chalcones 12 and 7, containing 2,4-difluorophenyl and 2,4-dichlorophenyl groups, showed potential antitubercular activity higher than the standard pyrazinamide (MIC = 25.34 µM) with MICs of 2.43 and 4.41 µM, respectively. Chalcone 20 containing heteroaryl 2-thiazolyl moiety exhibited promising antiproliferative activity against the prostate cancer cell line (DU-145), higher than the standard methotrexate (IC50 = 11 ± 1 µM) with an IC50 value of 6.86 ± 1 µM. Furthermore, cytotoxicity studies of these compounds against normal human liver cell lines (L02) revealed that the target molecules were comparatively less selective against L02. Additional computational studies using AutoDock predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compounds generated through this study, create a way for the optimization and development of novel drugs against tuberculosis infections and prostate cancer.
Collapse
Affiliation(s)
- Ashok Babu Kasetti
- Research Scholar, Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Pacific University, Udaipur 313003, India
- Dr. Samuel George Institute of Pharmaceutical Sciences, Markapuram, Andhra Pradesh 523316, India
| | - Indrajeet Singhvi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Pacific University, Udaipur 313003, India;
| | - Ravindra Nagasuri
- A.M. Reddy Memorial College of Pharmacy, Narasaraopeta, Andhra Pradesh 523316, India;
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Afzal B. Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| |
Collapse
|
29
|
Shabunina OV, Shtaitz YK, Kopchuk DS, Krinochkin AP, Santra S, Zyryanov GV, Wang Z, Rusinov VL, Chupakhin ON. Synthesis of Novel 3-(Pyridin-4-yl)-1,2,4-Triazines, their Analogs and Study of the Activity Against Vaccinia Virus. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02924-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Design, synthesis, and antibacterial activity of novel myricetin derivatives containing sulfonate. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02739-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractA series of myricetin derivatives containing sulfonate groups were designed and synthesized. Preliminary antibacterial activity showed that most of the target compounds exhibited significant biological activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs), and Xanthomonas oryzae pv. Oryzae (Xoo). In particular, the EC50 value of compound 3e was 13.76 μg/cm3 against Xac, which was better than commercial reagents bismerthiazol (50.32 µg/cm3) and thiodiazole copper. (83.27 µg/cm3), and the EC50 value of compound 3j was 11.92 μg/cm3 against Xoo in vitro, The result was better than that of bismerthiazol (72.08 µg/cm3) and thiodiazole copper (99.26 µg/cm3). Compound 3j displayed the better in vivo activity against rice bacterial leaf blight than bismerthiazol and thiodiazole copper. Meanwhile, the antibacterial mechanism of compounds 3e and 3j was studied by scanning electron microscope (SEM). These results suggested that myricetin derivatives containing sulfonate can be considered as a new antibacterial reagents.
Graphic abstract
Collapse
|
31
|
Antibacterial and antiviral activities and action mechanism of flavonoid derivatives with a benzimidazole moiety. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2020.101194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Marinov R, Markova N, Krumova S, Yotovska K, Zaharieva MM, Genova-Kalou P. Antiviral properties of chalcones and their synthetic derivatives: a mini review. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e53842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chalcones (natural or synthetic derivatives) are aromatic ketones possessing a central backbone that form a core for variety important compounds with different substitutions. Recent scientific advances show that chalcones exhibit different bio-medical activities, including antiviral, which is related to the variety substitutions. This review provides general information on the origin, sources, virucidal and direct antiviral properties of chalcones in vitro, as well as a brief overview of the possible application and molecular modes of action of these compounds. The antiviral effect of chalcones probably results from the disruption of the different stage of viral replication cycle, inhibition of viral or cell enzymes, induction of apoptosis and others. Structural requirements for antiviral activities vary according to the mechanisms of action. Based on the published information, it could be considered that synthetic chalcones are very perspective antiviral candidates and deserve further studies for elucidating of their pharmacological potential.
Collapse
|
33
|
Vijayakumar BG, Ramesh D, Joji A, Jayachandra Prakasan J, Kannan T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur J Pharmacol 2020; 886:173448. [PMID: 32768503 PMCID: PMC7406432 DOI: 10.1016/j.ejphar.2020.173448] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is distinctly infective and there is an ongoing effort to find a cure for this pandemic. Flavonoids exist in many diets as well as in traditional medicine, and their modern subset, indole-chalcones, are effective in fighting various diseases. Hence, these flavonoids and structurally similar indole chalcones derivatives were studied in silico for their pharmacokinetic properties including absorption, distribution, metabolism, excretion, toxicity (ADMET) and anti-SARS-CoV-2 properties against their proteins, namely, RNA dependent RNA polymerase (rdrp), main protease (Mpro) and Spike (S) protein via homology modelling and docking. Interactions were studied with respect to biology and function of SARS-CoV-2 proteins for activity. Functional/structural roles of amino acid residues of SARS-CoV-2 proteins and, the effect of flavonoid and indole chalcone interactions which may cause disease suppression are discussed. The results reveal that out of 23 natural flavonoids and 25 synthetic indole chalcones, 30 compounds are capable of Mpro deactivation as well as potentially lowering the efficiency of Mpro function. Cyanidin may inhibit RNA polymerase function and, Quercetin is found to block interaction sites on the viral spike. These results suggest flavonoids and their modern pharmaceutical cousins, indole chalcones are capable of fighting SARS-CoV-2. The in vitro anti-SARS-CoV-2 activity of these 30 compounds needs to be studied further for complete understanding and confirmation of their inhibitory potential.
Collapse
Affiliation(s)
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | | | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
34
|
Guo H, Diao QP. 1,3,5-Triazine-azole Hybrids and their Anticancer Activity. Curr Top Med Chem 2020; 20:1481-1492. [DOI: 10.2174/1568026620666200310122741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives
possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance
efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under
different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable
therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop
azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent
activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity,
and the structure-activity relationships as well as the mechanisms of action are also discussed to
provide comprehensive and target-oriented information for the development of this kind of anticancer
drugs.
Collapse
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| | - Quan-Ping Diao
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
35
|
El Azab IH, Elkanzi NA. Design, Synthesis, and Antimicrobial Evaluation of New Annelated Pyrimido[2,1- c][1,2,4]triazolo[3,4- f][1,2,4]triazines. Molecules 2020; 25:E1339. [PMID: 32183502 PMCID: PMC7144560 DOI: 10.3390/molecules25061339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 11/17/2022] Open
Abstract
A series of 34 new pyrimido[2,1-c][1,2,4]triazine-3,4-diones were synthesized and fully characterized using IR, NMR, MS, and microanalytical analysis. In vitro investigation of 12 compounds of this series revealed promising antimicrobial activity of the conjugates 15a and 15f-j that were tagged with electron-withdrawing groups, with sensitivities ranging from 77% to as high as 100% of the positive control. The investigation of antimicrobial activity included Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6535, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 8739 (EC), and fungal strains Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404.
Collapse
Affiliation(s)
- Islam H. El Azab
- Chemistry Department, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Taif 21974, Saudi Arabia
- On leave from Chemistry Department, Faculty of Science, Aswan University, Aswan P.O. Box 81528, Egypt;
| | - Nadia A.A. Elkanzi
- On leave from Chemistry Department, Faculty of Science, Aswan University, Aswan P.O. Box 81528, Egypt;
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| |
Collapse
|
36
|
Chen Y, Li P, Chen M, He J, Su S, He M, Wang H, Xue W. Synthesis and antibacterial activity of chalcone derivatives containing thioether triazole. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ying Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Pu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| | - Hua Wang
- Institute for Plant Protection and Soil ScienceHubei Academy of Agricultural Sciences Wuhan 430064 China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 China
| |
Collapse
|
37
|
Jiang S, Tang X, Chen M, He J, Su S, Liu L, He M, Xue W. Design, synthesis and antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. Citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonamide moiety. PEST MANAGEMENT SCIENCE 2020; 76:853-860. [PMID: 31419003 DOI: 10.1002/ps.5587] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Myricetin and sulfonamide derivatives exhibited a wide variety of biological activity. In order to develop highly bioactive molecules, novel myricetin derivatives containing sulfonamide moiety were synthesized and antibacterial activities were investigated. RESULTS The results of bioassays indicated that compound A12, having an EC50 value of 4.7 μg mL-1 , exhibited the best in vitro antibacterial activities against Xanthomonas oryzae pv. oryzae (X. oryzae pv. o.); EC50 values for this compound were even better than those of thiodiazole-copper (TC, 71.4 μg mL-1 ) and bismerthiazol (BT, 54.7 μg mL-1 ). Compound A2, having an EC50 value of 1.1 μg mL-1 , exhibited the best in vitro antibacterial activities against Xanthomonas axonopodis pv. citri (X. axonopodis pv. c); values were notably better than those of TC (60.0 μg mL-1 ) and BT (48.9 μg mL-1 ). Scanning electron microscopy analysis indicated that compounds A2 and A12 caused the cell membranes of X. axonopodis pv. c and X. oryzae pv. o. to break or deform, respectively. When the concentration of compound A12 was 100 μg mL-1 , the effective curative activity against bacterial leaf blight of rice was 44.2% in vivo and the effective protection activity was 58.2% in vivo, results that were both better than values for TC (18.9 and 21.4%, respectively) and BT (12.5 and 12.5%, respectively). CONCLUSION Novel myricetin derivatives containing a sulfonamide moiety were synthesized and bioassay results showed that compounds A2 and A12 exhibited the best antibacterial activities. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shichun Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Xu Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Thamarai A, Vadamalar R, Raja M, Muthu S, Narayana B, Ramesh P, Sevvanthi S, Aayisha S. Molecular structure conformational analyses, solvent-electronic studies through theoretical studies and biological profiling of (2E)-1-(3-bromo-2-thienyl)-3-(4-chlorophenyl)-prop-2-en-1-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Cheng P, Yang L, Huang X, Wang X, Gong M. Chalcone hybrids and their antimalarial activity. Arch Pharm (Weinheim) 2020; 353:e1900350. [PMID: 32003489 DOI: 10.1002/ardp.201900350] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Malaria, one of the most striking, re-emerging infectious diseases caused by the genus Plasmodium, places a huge burden on global healthcare systems. A major challenge in the control and eradication of malaria is the continuous emergence of increasingly widespread drug-resistant malaria, creating an urgent need to develop novel antimalarial agents. Chalcone derivatives are ubiquitous in nature and have become indispensable units in medicinal chemistry applications due to their diverse biological profiles. Many chalcone derivatives demonstrate potential in vitro and in vivo antimalarial activity, so chalcone could be a useful template for the development of novel antimalarial agents. This review covers the recent development of chalcone hybrids as antimalarial agents. The critical aspects of the design and structure-activity relationship of these compounds are also discussed.
Collapse
Affiliation(s)
- Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Linlin Yang
- Department of Vector Biological Control, Jining Municipal Center for Disease Control and Prevention, Jining, Shandong, China
| | - Xiaodan Huang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Xuejun Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| |
Collapse
|
40
|
Ma L, Li Y, Lei L, Zeng J, Zhang J, Qiao Y, Wu Z. Real-time process quality control of ramulus cinnamomi by critical quality attribute using microscale thermophoresis and on-line NIR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117463. [PMID: 31421349 DOI: 10.1016/j.saa.2019.117463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Real-time process quality control of ramulus cinnamomi (cassia twig) is still a challenge in pharmaceutical industry. Rapid critical quality attribute (CQA) determination of ramulus cinnamomi is essential for quality control. Microscale thermophoresis (MST) was used to investigate the CQA of ramulus cinnamomi by the interaction with biomacromolecule. There was a good affinity between cinnamaldehyde and human serum albumin (HSA) with Ka as 2.1722×103mol/L. It was an excellent combination of similarity to ibuprofen with same binding force as discovered as hydrogen bond and van der Waals force. Furthermore, regarding cinnamaldehyde as CQA, on-line near-infrared was used to monitor pilot extraction process of ramulus cinnamomi combined with high performance liquid chromatography (HPLC). Quantitative model was established with Rpre2 as 0.9798 and RMSECV as 0.0993, suggesting the NIR model was so robust and accurate for pilot process quality control. This method provided a perfect guideline for rapid CQA determination and real-time process quality control of Chinese materia medica (CMM) based on a vital CQA.
Collapse
Affiliation(s)
- Lijuan Ma
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 102488, China
| | - Yang Li
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 102488, China
| | - Leting Lei
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 102488, China
| | - Jingqi Zeng
- Fujian University of Traditional Chinese Medicine, College of Pharmacy, Fujian 350122, China
| | - Jing Zhang
- Fujian University of Traditional Chinese Medicine, College of Pharmacy, Fujian 350122, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 102488, China.
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 102488, China.
| |
Collapse
|
41
|
Fu Y, Liu D, Zeng H, Ren X, Song B, Hu D, Gan X. New chalcone derivatives: synthesis, antiviral activity and mechanism of action. RSC Adv 2020; 10:24483-24490. [PMID: 35516226 PMCID: PMC9055036 DOI: 10.1039/d0ra03684f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
In this work, twenty-eight chalcone derivatives containing a purine (sulfur) ether moiety were synthesized and their antiviral activities were evaluated. Biological results showed that compound 5d exhibited outstanding inactive activity against tobacco mosaic virus (TMV) in vivo (EC50 = 65.8 μg mL−1), which is significantly superior to that of ribavirin (EC50 = 154.3 μg mL−1). Transmission electron microscopy indicated that compound 5d can break the integrity of TMV particles. The results of microscale thermophoresis, fluorescence titration and molecular docking showed that compound 5d had stronger combining affinity (Ka = 1.02 ×105 L mol−1, Kd = 13.4 μmol L−1) with TMV coat protein (TMV-CP), which is due to the formation of five hydrogen bonds between compound 5d and the amino-acid residues of TMV-CP. These findings revealed that compound 5d can effectively inhibit the infective ability of TMV. This work provides inspiration and reference for the discovery of new antiviral agents. The chalcone derivatives containing a purine (sulfur) ether moiety were synthesized. The antiviral mechanism suggested that the antiviral activity of compound 5d may depend on its stronger binding affinity with TMV-CP.![]()
Collapse
Affiliation(s)
- Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiaoli Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|
42
|
Tang X, Zhang C, Chen M, Xue Y, Liu T, Xue W. Synthesis and antiviral activity of novel myricetin derivatives containing ferulic acid amide scaffolds. NEW J CHEM 2020. [DOI: 10.1039/c9nj05867b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of myricetin derivatives bearing ferulic acid amide scaffolds were designed and synthesized.
Collapse
Affiliation(s)
- Xu Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Yining Xue
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| |
Collapse
|
43
|
Ma X, Xiang S, Xie H, He L, Sun X, Zhang Y, Huang J. Fabrication of pH-Sensitive Tetramycin Releasing Gel and Its Antibacterial Bioactivity against Ralstonia solanacearum. Molecules 2019; 24:E3606. [PMID: 31591309 PMCID: PMC6804146 DOI: 10.3390/molecules24193606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023] Open
Abstract
Ralstonia solanacearum (R. solanacearum)-induced bacterial wilt of the nightshade family causes a great loss in agricultural production annually. Although there has been some efficient pesticides against R. solanacearum, inaccurate pesticide releasing according to the onset time of bacterial wilt during the use of pesticides still hinders the disease management efficiency. Herein, on the basis of the soil pH change during R. solanacearum growth, and pH sensitivity of the Schiff base structure, a pH-sensitive oxidized alginate-based double-crosslinked gel was fabricated as a pesticide carrier. The gel was prepared by crosslinking oxidized sodium alginate (OSA) via adipic dihydrazide (ADH) and Ca2+. After loading tetramycin into the gel, it showed a pH-dependent pesticide releasing behavior and anti-bacterial activity against R. solanacearum. Further study also showed that the inhibition rate of the tetramycin-loaded gel was higher than that of industrial pesticide difenoconazole. This work aimed to reduce the difficulty of pesticide administration in the high incidence period of bacterial wilt and we believe it has a great application potential in nightshade production.
Collapse
Affiliation(s)
- Xiaozhou Ma
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
| | - Shunyu Xiang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Huijun Xie
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Linhai He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Yongqiang Zhang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
| |
Collapse
|
44
|
Xia R, Guo T, Chen M, Su S, He J, Tang X, Jiang S, Xue W. Synthesis, antiviral and antibacterial activities and action mechanism of penta-1,4-dien-3-one oxime ether derivatives containing a quinoxaline moiety. NEW J CHEM 2019. [DOI: 10.1039/c9nj03019k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of penta-1,4-dien-3-one oxime ether derivatives containing a quinoxaline moiety were synthesized, and their bioactivities and action mechanism were evaluated.
Collapse
Affiliation(s)
- Rongjiao Xia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Tao Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xu Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Shichun Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|
45
|
Chen Y, Li P, Su S, Chen M, He J, Liu L, He M, Wang H, Xue W. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Adv 2019; 9:23045-23052. [PMID: 35514467 PMCID: PMC9067368 DOI: 10.1039/c9ra05139b] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
A series of novel myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Their structures were systematically characterized using 1H NMR, 13C NMR, and HRMS. During antibacterial bioassays, 6f, 6i, and 6q demonstrated a good inhibitory effect against Xanthomonas axonopodis pv. citri (Xac), with half-maximal effective concentration (EC50) values of 10.0, 9.4, and 8.8 μg mL−1, respectively, which were better than those of bismerthiazol (54.9 μg mL−1) and thiodiazole copper (61.1 μg mL−1). Note that 6w demonstrated a good inhibitory effect against Ralstonia solanacearum (Rs) with and EC50 value of 15.5 μg mL−1, which was better than those of bismerthiazol (55.2 μg mL−1) and thiodiazole copper (127.9 μg mL−1). Similarly, 6a, 6d, and 6e demonstrated a good inhibitory effect against Xanthomonas oryzae pv. oryzae (Xoo) with EC50 values of 47.1, 61.2, and 61.0 μg mL−1, respectively, which were better than those of bismerthiazol (148.2 μg mL−1) and thiodiazole copper (175.5 μg mL−1). Furthermore, we used scanning electron microscopy (SEM) to study the possible sterilization process of the target compound 6q against Xac. The results indicated the possibility of destroying the bacterial cell membrane structure, resulting in an incomplete bacterial structure, and thus achieving inhibition. Furthermore, antiviral bioassays revealed that most compounds exhibited excellent antiviral activity against tobacco mosaic virus (TMV) at a concentration of 500 μg mL−1. The results of the molecular docking studies for 6g with TMV-CP (PDB code: 1EI7) showed that compound 6g had partially interacted with TMV-CP. Therefore, mechanistic studies of the action of compound 6g could be further studied based on that. The myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Antibacterial mechanism was investigated through SEM.![]()
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Pu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Hua Wang
- Institute for Plant Protection and Soil Science
- Hubei Academy of Agricultural Sciences
- Wuhan
- China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|