1
|
Sahoo TP, Satasiya G, Moradeeya PG, Saravaia HT, Kumar MA. Removal of fluoroquinolone antibiotic and sulfonated dye by functionalized Persea americana seed powder: Appraisal on phase transfer kinetics, equilibrium, economics, and applications in rural settings. ENVIRONMENTAL RESEARCH 2024; 261:119727. [PMID: 39117052 DOI: 10.1016/j.envres.2024.119727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The study focuses on reactive orange 16 (RO16), a sulfonated dye, and ciprofloxacin (CiP), a fluoroquinolone antibiotic treatment from aquatic surface by adsorption. The functionalized Persea americana seed powder (PASP) was developed by acid hydrolysis technique and investigated for RO16 and CiP removal in batch scale at different concentrations for CiP and RO16, pH (2-8), contact duration and temperature (303-318K). Utilizing a scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDAX), the generated native PASP were assessed for their morphological characteristics. Fourier transform infrared (FTIR) spectroscopy was applied to examine the performing characteristics of PASP. Experimental findings with four kinetic mathematical models allowed the estimation of the process involved in the biosorption. The most effective agreement was explained by the pseudo-second-order model and Sips isotherm (Cip = 34.603 mg/g and RO16 = 30.357 mg/g) at 303K temperature. For Cip Process economics of the biosorbent was done, and it was observed that it was less than the readily market-available activated carbon.
Collapse
Affiliation(s)
- Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Gopi Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science & Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Hitesh T Saravaia
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Madhava Anil Kumar
- Department of Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
2
|
Ganesan JJ, Chien CSC, Kumar PS, Sundaram H, Thangappan H, Achuthan A, Rajamanickam S, Rangasamy G. Effective removal of chromium by adsorption using Delonix regia bark derived activated carbon from aqueous solution: a sustainable approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:308. [PMID: 39001890 DOI: 10.1007/s10653-024-02093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
This study introduces a new biosorbent derived from Delonix regia bark-activated carbon to efficiently remove Chromium Cr(VI) metal ions from aqueous systems. The biosorbent was synthesized from the bark powder of the plant species and chemically activated with phosphoric acid. The biosorbent was characterized using FTIR, SEM, and BET to determine its functional properties and structural morphology. The batch adsorption experiments examined the optimal conditions for Cr(VI) metal ion adsorption, identifying that the highest removal efficiency occurred at pH levels of 2. The ideal adsorbent dosage was determined to be 2.5 g/L, with equilibrium achieved at a contact time of 60 min at the optimal temperature of about 303 K for a Cr(VI) metal ion concentration of 20 mg/L. Various isotherm models were applied to the adsorption equilibrium values, revealing that the adsorbent had a maximum removal capacity of approximately 224.8 mg/g for Cr(VI) metal ions. The adsorption process of Cr(VI) on the DAC biosorbent was best described by the Freundlich isotherm, indicating multilayer adsorption. The kinetic data fit well with the pseudo-second-order model. Thermodynamic parameters suggested that the adsorption process was spontaneous, exothermic, and feasible across different temperatures. Furthermore, the desorption studies showed that the DAC biosorbent can easily be rejuvenated and utilized several cycles with high adsorption capacity. These findings indicate that the developed adsorbent is environmentally friendly and effective for removing Cr(VI) from water systems.
Collapse
Affiliation(s)
- Janet Joshiba Ganesan
- Railway Technical Centre, National Kaohsiung University of Science and Technology, No 1, University Road, Yanchao District, Kaohsiung City, 82445, Taiwan (ROC)
| | - Chia-Shang Chang Chien
- Department of Construction Engineering, National Kaohsiung University of Science and Technology, No 1, University Road, Yanchao District, Kaohsiung City, 82445, Taiwan (ROC).
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - Hemavathi Sundaram
- Department of Civil Engineering, K. Ramakrishnan College of Technology, Trichy, Tamilnadu, 621112, India
| | - Hariharan Thangappan
- Department of Chemical Engineering, Mohamed Sathak Engineering College, Keelakarai, Ramanathapuram, Tamilnadu, 623806, India
| | - Aravindan Achuthan
- Department of Civil Engineering, Koneru Lakshmiah Education Foundation, Greenfeild, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Sivarethinamohan Rajamanickam
- Symbiosis Centre for Management Studies, Bengaluru campus, Symbiosis International (Deemed University), Bengaluru, Karnataka, 560100, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India
- University Centre for Research and Development and Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
3
|
Khalefa HS, AbuBakr HO, Aljuaydi SH, Kotp YH, Al-Mokaddem AK, Abdel-Moneam DA. Aquatic assessment of the chelating ability of Silica-stabilized magnetite nanocomposite to lead nitrate toxicity with emphasis to their impact on hepatorenal, oxidative stress, genotoxicity, histopathological, and bioaccumulation parameters in Oreochromis niloticus and Clarias gariepinus. BMC Vet Res 2024; 20:262. [PMID: 38890656 PMCID: PMC11184684 DOI: 10.1186/s12917-024-04094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.
Collapse
Affiliation(s)
- Hanan S Khalefa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo, Egypt
| | - Samira H Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yousra H Kotp
- Hydrogeochemistry Department, Desert Research Center, Cairo, 11753, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
4
|
Malik S, Kumar D. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Biotechnol Genet Eng Rev 2024; 40:154-201. [PMID: 36871166 DOI: 10.1080/02648725.2023.2182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Nanomaterials (NMs) have diverse applications in various sectors, such as decontaminating heavy metals from drinking water, wastewater, and soil. Their degradation efficiency can be enhanced through the application of microbes. As microbial strain releases enzymes, which leads to the degradation of HMs. Therefore, nanotechnology and microbial-assisted remediation-based methods help us develop a remediation process with practical utility, speed, and less environmental toxicity. This review focuses on the success achieved for the bioremediation of heavy metals by nanoparticles and microbial strains and in their integrated approach. Still, the use of NMs and heavy metals (HMs) can negatively affect the health of living organisms. This review describes various aspects of the bioremediation of heavy materials using microbial nanotechnology. Their safe and specific use supported by bio-based technology paves the way for their better remediation. We discuss the utility of nanomaterials for removing heavy metals from wastewater, toxicity studies and issues to the environment with their practical implications. Nanomaterial assisted heavy metal degradation coupled with microbial technology and disposal issues are described along with detection methods. Environmental impact of nanomaterials is also discussed based on the recent work conducted by the researchers. Therefore, this review opens new avenues for future research with an impact on the environment and toxicity issues. Also, applying new biotechnological tools will help us develop better heavy metal degradation routes.
Collapse
Affiliation(s)
- Sachin Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| |
Collapse
|
5
|
Dhanapal A, Thiruvengadam M, Vairavanathan J, Venkidasamy B, Easwaran M, Ghorbanpour M. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils. ACS OMEGA 2024; 9:13522-13533. [PMID: 38559935 PMCID: PMC10975622 DOI: 10.1021/acsomega.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.
Collapse
Affiliation(s)
- Anand
Raj Dhanapal
- Chemistry
and Bioprospecting Division, Institute of Forest Genetics and Tree
Breeding (IFGTB), Forest Campus, Indian
Council of Forestry Research and Education (ICFRE), Coimbatore 641 002, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department
of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic
of Korea
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Jayavarshini Vairavanathan
- Department
of Biotechnology, Karpagam Academy of Higher
Education, Coimbatore 641 021, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department
of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil
Nadu, India
| | - Maheswaran Easwaran
- Department
of Research Analytics, Saveetha Dental College and Hospitals, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Mansour Ghorbanpour
- Department
of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
- Institute
of Nanoscience and Nanotechnology, Arak
University, Arak 38156-8-8349, Iran
| |
Collapse
|
6
|
Ravindiran G, Rajamanickam S, Ramalingam M, Hayder G, Sathaiah BK, Gaddam MKR, Muniasamy SK, Arunkumar P. Conversion of seaweed waste to biochar for the removal of heavy metal ions from aqueous solution: A sustainable method to address eutrophication problem in water bodies. ENVIRONMENTAL RESEARCH 2024; 241:117551. [PMID: 37939801 DOI: 10.1016/j.envres.2023.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The present study investigated the sustainable approach for wastewater treatment using waste algal blooms. The current study investigated the removal of toxic metals namely chromium (Cr), nickel (Ni), and zinc (Zn) from aqueous solutions in batch and column studies using biochar produced by the marine algae Ulva reticulata. SEM/EDX, FTIR, and XRD were used to examine the adsorbents' properties and stability. The removal efficiency of toxic metals in batch operations was investigated by varying the parameters, which included pH, biochar dose, initial metal ion concentration, and contact time. Similarly, in the column study, the removal efficiency of heavy metal ions was investigated by varying bed height, flow rate, and initial metal ion concentration. Response Surface Methodology (Central Composite Design (CCD)) was used to confirm the linearity between the observed and estimated values of the adsorption quantity. The packed bed column demonstrated successful removal rates of 90.38% for Cr, 91.23% for Ni, and 89.92% for Zn heavy metals from aqueous solutions, under a controlled environment. The breakthrough analysis also shows that the Thomas and Adams-Bohart models best fit the regression values, allowing prior breakthroughs in the packed bed column to be predicted. Desorption studies were conducted to understand sorption and elution during different regeneration cycles. Adding 0.3 N sulfuric acid over 40 min resulted in the highest desorption rate of the column and adsorbent used for all three metal ions.
Collapse
Affiliation(s)
- Gokulan Ravindiran
- Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), 43000, Kajang, Selangor Darul Ehsan, Malaysia; Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, 500090, Telangana, India.
| | - Sivarethinamohan Rajamanickam
- Symbiosis Centre for Management Studies (Constituent of Symbiosis International Deemed University), Bengaluru, 560 100, Karnataka, India.
| | - Muralikrishnan Ramalingam
- Department of Civil Engineering, Jei Mathaajee College of Engineering, Kanchipuram, 631 552, Tamil Nadu, India.
| | - Gasim Hayder
- Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), 43000, Kajang, Selangor Darul Ehsan, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Kajang, Selangor Darul Ehsan, Malaysia.
| | - Balamurugan Karupaiya Sathaiah
- Department of Electronics and Communication Engineering, Karpaga Vinayaga College of Engineering and Technology, Chengulpattu, 603308, Tamilnadu, India.
| | | | - Senthil Kumar Muniasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, 603308, Tamilnadu, India.
| | - Priya Arunkumar
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India.
| |
Collapse
|
7
|
Xu K, He T, Li L, Iqbal J, Tong Y, Hua L, Tian Z, Zhao L, Li H. DOTA functionalized adsorbent DOTA@Sludge@Chitosan derived from recycled shrimp shells and sludge and its application for lead and chromium removal from water. Int J Biol Macromol 2024; 255:128263. [PMID: 37984580 DOI: 10.1016/j.ijbiomac.2023.128263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
DOTA@Sludge@Chitosan was synthesized by a facile treatment using DOTA (1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid) to modify dry sludge and chitosan in an acidic solution. The performance of developed DOTA@Sludge@Chitosan was investigated for the adsorptive removal of Cr6+ and Pb2+ from water. Characterization studies showed that the materials possess a large surface area (52.009 m2/g), pore volume (0.069 cm3/g), and abundant functional groups of amino and hydroxyl. The prepared material showed a synergetic effect due to carboxylic acid and sludge, effectively removing Cr6+ and Pb2+. It reached 329.4 mg/g (Pb2+) and 273.3 mg/g (Cr6+) at 20 °C, much higher than commercial activated carbon. The regeneration of the adsorbent was tested for six adsorption and desorption cycles. The results demonstrate that the DOTA@Sludge@Chitosan adsorbent well-maintained high adsorption capacity attributed to its stability, making it a promising adsorbent for heavy metals removal from industrial effluent.
Collapse
Affiliation(s)
- Kehan Xu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Ting He
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China.
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University, Abu Dhabi, United Arab Emirates
| | - Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Lin Hua
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Zhenbang Tian
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Liang Zhao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Hui Li
- School of Agronomy and Bioscience, Dehong Teachers' College, Dehong Prefecture 678499, China
| |
Collapse
|
8
|
Tan G, Wang S, Yu J, Chen J, Liao D, Liu M, Nezamzadeh-Ejhieh A, Pan Y, Liu J. Detection mechanism and the outlook of metal-organic frameworks for the detection of hazardous substances in milk. Food Chem 2024; 430:136934. [PMID: 37542961 DOI: 10.1016/j.foodchem.2023.136934] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Milk has a high nutritional value. However, milk is easily contaminated in the production, processing, and storage processes, which harms consumers' health. Therefore, the harmful substances' detection in milk is important. Metal-organic frameworks (MOFs) have proven high potential in food safety detection due to their unique porous structure, large effective surface area, large porosity, and structural tunability. This article systematically describes the detection mechanism of fluorescence, electrochemical, colorimetric, and enzyme-linked immunosorbent assay based on MOFs. The progress of the application of MOFs in the detection of antibiotics, harmful microorganisms and their toxins, harmful ions, and other harmful substances in milk in recent years is reviewed. The structural tunability of MOFs enables them to be functionalized, giving the ability to be applied to different detection methods or substances. Therefore, MOFs can be used as an advantageous sensing material for detecting harmful substances in the complex environment of milk.
Collapse
Affiliation(s)
- Guijian Tan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Sanying Wang
- Department of Pain, Dalang Hospital, Dongguan 523770, China
| | - Jialin Yu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jiahao Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Miao Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| |
Collapse
|
9
|
Venkatraman Y, Arunkumar P, Kumar NS, Osman AI, Muthiah M, Al-Fatesh AS, Koduru JR. Exploring Modified Rice Straw Biochar as a Sustainable Solution for Simultaneous Cr(VI) and Pb(II) Removal from Wastewater: Characterization, Mechanism Insights, and Application Feasibility. ACS OMEGA 2023; 8:38130-38147. [PMID: 37867658 PMCID: PMC10586276 DOI: 10.1021/acsomega.3c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
This study aimed to investigate the efficacy of a rice straw biosorbent in batch adsorption for the removal of chromium (Cr(VI)) and lead (Pb(II)) heavy-metal ions from wastewater. The biosorbent was chemically synthesized and activated by using concentrated sulfuric acid. The produced biosorbent was then characterized by using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses, which provided insights into surface morphology and functional groups. The study examined the effects of pH, rice straw dose, ion concentration, and contact time on metal ion adsorption. Optimal conditions for efficient removal (95.57% for Cr(VI) and 85.68% for Pb(II)) were achieved at a pH of 2.0, a biosorbent dose of 2 g/L, an initial concentration of 20 mg/L, and a contact time of 50 min in synthetic solutions. The isotherms and kinetics model fitting results found that both metal ion adsorption processes were multilayer on the hetero surface of rice straw biosorbent via rate diffusion kinetics. Thermodynamic investigations were conducted, and the results strongly indicate that the adsorption process is endothermic and spontaneous. Notably, the results indicated that the highest desorption rate was achieved by adding 0.3 N HCl to the system.
Collapse
Affiliation(s)
- Yogeshwaran Venkatraman
- Department
of Civil Engineering, Sri Krishna College
of Engineering and Technology, Coimbatore 641008, India
| | - Priya Arunkumar
- Department
of Chemical Engineering, KPR Institute of
Engineering and Technology, Coimbatore 641047, India
- Project
Prioritization, Monitoring & Evaluation and Knowledge Management
Unit, ICAR Indian Institute of Soil &
Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Nadavala Siva Kumar
- Department
of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed I. Osman
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland U.K.
| | - Muruganandam Muthiah
- Project
Prioritization, Monitoring & Evaluation and Knowledge Management
Unit, ICAR Indian Institute of Soil &
Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Ahmed S. Al-Fatesh
- Department
of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Janardhan Reddy Koduru
- Department
of Environmental Engineering, Kwangwoon
University, Seoul 01897, Republic of Korea
| |
Collapse
|
10
|
Rahman ANA, Elkhadrawy BA, Mansour AT, Abdel-Ghany HM, Yassin EMM, Elsayyad A, Alwutayd KM, Ismail SH, Mahboub HH. Alleviating Effect of a Magnetite (Fe 3O 4) Nanogel against Waterborne-Lead-Induced Physiological Disturbances, Histopathological Changes, and Lead Bioaccumulation in African Catfish. Gels 2023; 9:641. [PMID: 37623096 PMCID: PMC10453935 DOI: 10.3390/gels9080641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L-1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L-1 of MNG in water and 69.30 mg L-1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.
Collapse
Affiliation(s)
- Afaf N. Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Basma Ahmed Elkhadrawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Hofuf 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba M. Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | | | - Asmaa Elsayyad
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt;
| | - Heba H. Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
11
|
Moraes LC, Gomes MP, Ribeiro-Andrade R, Garcia QS, Figueredo CC. Green synthesized silver nanoparticles for iron and manganese ion removal from aqueous solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121483. [PMID: 36990344 DOI: 10.1016/j.envpol.2023.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.
Collapse
Affiliation(s)
- Leonardo C Moraes
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
| | - Marcelo P Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim Das Américas, C.P. 19031, Curitiba, 81531-980, Paraná, Brazil
| | - Rodrigo Ribeiro-Andrade
- Centro de Microscopia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
| | - Queila S Garcia
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
| | - Cleber C Figueredo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil.
| |
Collapse
|
12
|
Du B, Chai L, Zheng Q, Liu Y, Wang X, Chen X, Zhai S, Zhou J, Sun RC. Designed synthesis of multifunctional lignin-based adsorbent for efficient heavy metal ions removal and electromagnetic wave absorption. Int J Biol Macromol 2023; 234:123668. [PMID: 36796567 DOI: 10.1016/j.ijbiomac.2023.123668] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Multifunctional lignin-based adsorbents, which have shown great application prospect, have attracted widespread attention. Herein, a series of multifunctional lignin-based magnetic recyclable adsorbents were prepared from carboxymethylated lignin (CL), which was rich in carboxyl group (-COOH). After optimizing the mass ratio of CL to Fe3O4, the prepared CL/Fe3O4 (3:1) adsorbent showed efficient adsorption capacities for heavy metal ions. The kinetic and isotherm nonlinear fitting studies revealed that the adsorption process followed the second-order kinetic and Langmuir models, and the maximum adsorption capacities (Qmax) of CL/Fe3O4 (3:1) magnetic recyclable adsorbent for Pb2+, Cu2+ and Ni2+ ions reached 189.85, 124.43 and 106.97 mg/g, respectively. Meanwhile, after 6 cycles, the adsorption capacities of CL/Fe3O4 (3:1) for Pb2+, Cu2+ and Ni2+ ions could keep at 87.4 %, 83.4 % and 82.3 %, respectively. In addition, CL/Fe3O4 (3:1) also exhibited excellent electromagnetic wave absorption (EMWA) performance with a reflection loss (RL) of -28.65 dB at 6.96 GHz under the thickness of 4.5 mm, and its effective absorption bandwidth (EAB) achieved 2.24 GHz (6.08-8.32 GHz). In short, the prepared multifunctional CL/Fe3O4 (3:1) magnetic recyclable adsorbent with outstanding adsorption capacity for heavy metal ions and superior EMWA capability opens a new avenue for the diversified utilization of lignin and lignin-based adsorbent.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Lanfang Chai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qian Zheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ying Liu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaohong Chen
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Shangru Zhai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
13
|
Liu J, Zhao J, Louie SM, Gao X, Zhang P, Liang D, Hu Y. Comparative study on effects of pH, electrolytes, and humic acid on the stability of acetic and polyacrylic acid coated magnetite nanoparticles. CHEMOSPHERE 2023; 319:137992. [PMID: 36720411 DOI: 10.1016/j.chemosphere.2023.137992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The poor colloidal stability of magnetite nanoparticles (MNPs) limits their mobility and application, so various organic coatings (OCs) were applied to MNPs. Here, a comparative study on the colloidal stability of MNPs coated with acetic (HAc) and polyacrylic acids (PAA) was conducted under varied pH (5.0-9.0) in the presence of different concentrations of cations and anions, as well as humic acid (HA). Comparing the effects of various cations and anions, the stability of both HAc/PAA-MNPs followed the order: Na+ > Ca2+and PO43- > SO42- > Cl-, which could be explained by their adsorption behaviors onto HAc/PAA-MNPs and the resulting surface charge changes. Under all conditions even with more anion adsorption onto HAc-MNPs (0.14-22.56 mg/g) than onto PAA-MNPs (0.04-18.34 mg/g), PAA-MNPs were more negatively charged than HAc-MNPs, as PAA has a lower pHIEP (2.6 ± 0.1) than that of HAc (3.7 ± 0.1). Neither the HAc nor PAA coatings were displaced by phosphate even at considerably high phosphate concentration. Compared with HAc-MNPs, the stability of PAA-MNPs was greatly improved under all studied conditions, which could be due to both stronger electrostatic and additional steric repulsion forces among PAA-MNPs. Besides, under all conditions, Derjaguin-Landau-Verwey-Overbeek (DLVO) explained well the aggregation kinetic of HAc-MNPs; while extended DLVO (EDLVO) successfully predict that of PAA-MNPs, indicating steric forces among PAA-MNPs. The aggregation of HAc/PAA-MNPs was all inhibited in varied electrolyte solutions by HA (2 mg C/L) addition. This study suggested that carboxyl coatings with higher molecular weights and pKa values could stabilize MNPs better due to stronger electrostatic and additional steric repulsion. However, in the presence of HA, these two forces were mainly controlled by adsorbed HA instead of the organic pre-coatings on MNPs.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Biogeology & Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430074, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Juntao Zhao
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, United States; Benchmark Lab & Services, Houston, TX, 77092, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, United States
| | - Xubo Gao
- State Key Laboratory of Biogeology & Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430074, PR China
| | - Ping Zhang
- Faculty of Science and Technology, University of Macau, Macau, 999078, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yandi Hu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Cadmium and lead ions adsorption on magnetite, silica, alumina, and cellulosic materials. Sci Rep 2023; 13:4213. [PMID: 36918589 PMCID: PMC10014989 DOI: 10.1038/s41598-023-30893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The adsorption of small particles on the surface of an adsorbent depends on interfacial dynamics and associated parameters, including the adsorbate reactivity, adsorbent surface activity, and matrix porosity and tortuosity. Herein, the effect of the surfaces of magnetite, silica/alumina, and silica-cellulose matrix on cadmium adsorption is termed using spectroscopic methods. Atomic absorption spectroscopy was used to determine the adsorption of metal ions in the solid-liquid interfaces by the batch method with different pH, metal concentrations, and contact times. Cadmium (II) were well adsorbed on the magnetite-inorganic surface (around 90% adsorption) rather than other types of semi-organic surfaces, silica, silica-alumina and other cellulosic materials (less than 60% adsorption for Cadmium (II) and 80% of Lead (II) ions). The presence of lead (II) changed the cadmium adsorption behaviour, indicating that adsorption-desorption was a physical interaction on different surfaces. Most absorptions are pH-dependent, stable for Cadmium ions and vary for Lead ions. Moreover, the adsorption analysis using Langmuir and Freundlich isotherms showed no significant characteristics of chemical interaction of the ions with the surfaces as indicated by low R2 values (both around 0.5) for magnetite materials higher for cellulose materials of Langmuir and Freundlich isotherms. This study is beneficial for various fields, such as material science and environmental chemistry, which will play an essential role in the future.
Collapse
|
15
|
Habila MA, Moshab MS, El-Toni AM, Al-Awadi AS, ALOthman ZA. Facile Strategy for Fabricating an Organosilica-Modified Fe 3O 4 (OS/Fe 3O 4) Hetero-nanocore and OS/Fe 3O 4@SiO 2 Core-Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency. ACS OMEGA 2023; 8:7626-7638. [PMID: 36872962 PMCID: PMC9979343 DOI: 10.1021/acsomega.2c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 05/03/2023]
Abstract
The development of a sustainable process for heavy metal ion remediation has become a point of interest in various fields of research, including wastewater treatment, industrial development, and health and environmental safety. In the present study, a promising sustainable adsorbent was fabricated through continuous controlled adsorption/desorption processes for heavy metal uptake. The fabrication strategy is based on a simple modification of Fe3O4 magnetic nanoparticles with organosilica in a one-pot solvothermal process, carried out in order to insert the organosilica moieties into the Fe3O4 nanocore during their formation. The developed organosilica-modified Fe3O4 hetero-nanocores had hydrophilic citrate moieties, together with hydrophobic organosilica ones, on their surfaces, which facilitated the further surface coating procedures. To prevent the formed nanoparticles from leaching into the acidic medium, a dense silica layer was coated on the fabricated organosilica/Fe3O4 (OS/Fe3O4). In addition, the prepared OS/Fe3O4@SiO2 was utilized for the adsorption of cobalt(II), lead(II), and manganese(II) from the solutions. The data for the adsorption processes of cobalt(II), lead(II), and manganese(II) on OS/(Fe3O4)@SiO2 were found to follow the pseudo-second-order kinetic model, indicating the fast uptake of heavy metals. The Freundlich isotherm was found to be more suitable for describing the uptake of heavy metals by OS/Fe3O4@SiO2 nanoparticles. The negative values of the ΔG° showed a spontaneous adsorption process of a physical nature. The super-regeneration and recycling capacities of the OS/Fe3O4@SiO2 were achieved, comparing the results to those of previous adsorbents, with a recyclable efficiency of 91% up to the seventh cycle, which is promising for environmental sustainability.
Collapse
Affiliation(s)
- Mohamed A. Habila
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mohamed Sheikh Moshab
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmed Mohamed El-Toni
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Nanomaterials
and Nanotechnology Department, Central Metallurgical
Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt
| | - Abdulrhman S. Al-Awadi
- Chemical
Engineering Department, King Saud University, Riyadh 11451, Saudi Arabia
- King
Abdullah City for Atomic and Renewable Energy (K.A. CARE), Energy
Research and Innovation Center at Riyadh, Riyadh 12244, Saudi Arabia
| | - Zeid A. ALOthman
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Morosanu I, Paduraru C, Bucatariu F, Fighir D, Mihai M, Teodosiu C. Shaping polyelectrolyte composites for heavy metals adsorption from wastewater: Experimental assessment and equilibrium studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115999. [PMID: 36104888 DOI: 10.1016/j.jenvman.2022.115999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Design of core/shell composite microparticles for loading/release of organic/inorganic pollutants is of great interest in wastewater treatment. As compared to the classic layer-by-layer strategy, the new approach presented in this study introduced higher organic shell amounts in one-pot deposition step, with less material and energy consumption and lack of toxic by-products formation. Herein, one weak polycation (polyethyleneimine) and two weak polyanions were directly deposited onto silica surface through precipitation of an in-situ formed interpolyelectrolyte coacervate, followed by selective crosslinking with glutaraldehyde and extraction of polyanion chains, confirmed by electrokinetic measurements and FTIR spectra of composites. Twelve composite sorbents were synthesized and tested for adsorption of cadmium, as model heavy metal ion. It was demonstrated that the high sorption occurred onto four newly synthesized composites which is correlated to the deposited shell amount, dependent on the deposition method, polyanion nature and crosslinking ratio. The Cd2+ sorbed amount increased with the polyelectrolyte deposited amount and with the accessibility toward active sorption site, less cross-linked composite shells sorbing higher amounts as compared to strong cross-linked shells, the molar ratio [active site]:[Cd2+] ranging from 16:1 to 26:1. The best fitting of four isotherm (Langmuir, Freundlich, Sips and Toth) and four kinetics (pseudo-first order, pseudo-second order, modified Freundlich and Elovich) models was assessed by the sum of normalized errors, based on different nonlinear regression error functions, and by the Hannah-Quinn information criterion. In general, the best agreement with the experimental data was found for Toth isotherm and the pseudo-second order kinetic model. Efficient regeneration of the sorbents was possible at least three times. The competitive effect of Pb2+ and Ni2+ ions was also studied in simulated and real systems. Silica composite sorbents with polyethyleneimine chains as major component of the shell could be very promising in wastewater treatment processes.
Collapse
Affiliation(s)
- Irina Morosanu
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050, Iasi, Romania
| | - Carmen Paduraru
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050, Iasi, Romania
| | - Florin Bucatariu
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050, Iasi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Daniela Fighir
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050, Iasi, Romania
| | - Marcela Mihai
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050, Iasi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050, Iasi, Romania.
| |
Collapse
|
17
|
Akhdhar A, Yakout AA. Enhanced simultaneous sequestration of Cd(II) and Pb(II) ions from industrial wastewater samples based on poly-(2-aminothiophenol) functionalized graphene oxide. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, Saudi Arabia
| | - Amr A. Yakout
- Department of Chemistry, College of Science, University of Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Du B, Chai L, Li W, Wang X, Chen X, Zhou J, Sun RC. Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
pH fractionated lignin for the preparation of lignin-based magnetic nanoparticles for the removal of methylene blue dye. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Khoshbin Z, Moeenfard M, Zahraee H, Davoodian N. A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks. Talanta 2022; 246:123514. [DOI: 10.1016/j.talanta.2022.123514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022]
|
21
|
Wu S, Li K, Shi W, Cai J. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int J Biol Macromol 2022; 210:76-84. [PMID: 35533844 DOI: 10.1016/j.ijbiomac.2022.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
Abstract
In this work, a novel electrospun chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) nanofibrous membrane was prepared to remove heavy metal ions and organic pollutants from water. The nanofiber morphologies were adjusted through the optimal electrospinning process parameters. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations indicated that a well-crosslinked CS/PVP/PVA nanofiber film was formed. Under the optimize conditions, the obtained CS/PVP/PVA nanofiber membranes exhibited porous and uniform nanofibrous structures with an average diameter of 160 nm and a pure water permeability of 4518.91 L·m-2·h-1·bar-1. In addition, the adsorption and separation performance of CS/PVP/PVA nanofiber membranes were evaluated with Cu(II), Ni(II), Cd(II), Pb(II) and Methylene Blue (MB), Malachite Green (MG) as target ions and dyes. The results showed that the retention rate of CS/PVP/PVA nanofiber membranes for Cu(II), Ni(II), Cd(II), Pb(II), MG and MB can reach 94.20%, 90.35%, 83.33%, 80.12%, 84.01% and 69.91%, respectively. The adsorption capacities of Cu(II), Ni(II), Cd(II), Pb(II), MG and MB were 34.79, 25.24, 18.07, 16.05, 17.86 and 13.27 mg g-1. The adsorption kinetics of heavy metal ions and dyes by the nanofiber membranes can be explained by the Langmuir isotherm model and represented by the pseudo-second-order kinetic mechanism that determined the spontaneous chemisorption process. This study provides a synthetic approach to membranes for the removal of organic and heavy metal micropollutants from water.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China.
| | - Kanghui Li
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Weijian Shi
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jiawei Cai
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| |
Collapse
|
22
|
Baby R, Hussein MZ, Abdullah AH, Zainal Z. Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers (Basel) 2022; 14:583. [PMID: 35160572 PMCID: PMC8838446 DOI: 10.3390/polym14030583] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/16/2023] Open
Abstract
Nanotechnology finds its application almost in every field of science and technology. At the same time, it also helps to find the solution to various environment-related problems, especially water contamination. Nanomaterials have many advantages over conventional materials, such as high surface area, both polar and non-polar chemistries, controlled and size-tunable, easier biodegradation, which made them ideal candidates for water and environmental remediation as well. Herein, applications of non-carbon nanomaterials, such as layered double hydroxides, iron oxide magnetite nanoparticles, nano-polymer composites, metal oxide nanomaterials and nanomembranes/fibers in heavy metal contaminated water and environmental remediation are reviewed. These non-carbon nanomaterials, due to their tunable unique chemistry and small size have greater potentials for water and environmental remediation applications.
Collapse
Affiliation(s)
- Rabia Baby
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Education, Sukkur IBA University, Sukkur Sindh 65200, Pakistan
| | - Mohd Zobir Hussein
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Halim Abdullah
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.H.A.); (Z.Z.)
| | - Zulkarnain Zainal
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.H.A.); (Z.Z.)
| |
Collapse
|
23
|
Priya AK, Yogeshwaran V, Rajendran S, Hoang TKA, Soto-Moscoso M, Ghfar AA, Bathula C. Investigation of mechanism of heavy metals (Cr 6+, Pb 2+& Zn 2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach. CHEMOSPHERE 2022; 286:131796. [PMID: 34391117 DOI: 10.1016/j.chemosphere.2021.131796] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 05/26/2023]
Abstract
In this work, we examined the possibility on the application of rice husk as biosorbent for the elimination of heavy metal ions (chromium, lead, and zinc) existing in the aqueous solutions. The biosorbent was prepared from rice husk powder and modified with 0.1 N of HCl for creating the functional groups and increase specific surface area. The FT-IR spectra, SEM& EDX studies of rice hulls powder were examined for the pristine adsorbent and after the adsorption of heavy metal ions. The batch adsorption technique was adopted for this work and adsorption parameters were optimized. The maximum efficiency of adsorption is obtained at 6.0 pH, 1 h of contact duration, the rice husk dosage is 2.5 g/L, and temperature of 30°C for 25 mg/L of Cr, Pb & Zn metal ion solutions. The Cr, Pb & Zn metal ions are removed up to 87.12 %, 88.63 % & 99.28 %, respectively, using the rice husk powder. The adsorption process follows the Temkin & D-R isotherm model. Elovich model was fitted against the kinetic data of metal ion adsorption. Based on the experimental observations, the rice husk powder can be considered as a low cost adsorbent for heavy metal ion removal from the industrial effluent.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - V Yogeshwaran
- Department of Civil Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Tuan K A Hoang
- Institut de Recherched'Hydro-Québec 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Quebec, Canada
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad DelBío-bío, Avenida Collao, 1202, Casilla 15-C, Concepción, Chile
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| |
Collapse
|
24
|
Liu S, Liu L, Su G, Zhao L, Peng H, Xue J, Tang A. Enhanced adsorption performance, separation, and recyclability of magnetic core-shell Fe3O4@PGMA-g-TETA-CSSNa microspheres for heavy metal removal. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Ullah R, Ahmad W, Yaseen M, Khan M, Iqbal Khattak M, Mohamed Jan B, Ikram R, Kenanakis G. Fabrication of MNPs/rGO/PMMA Composite for the Removal of Hazardous Cr(VI) from Tannery Wastewater through Batch and Continuous Mode Adsorption. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6923. [PMID: 34832323 PMCID: PMC8620348 DOI: 10.3390/ma14226923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of magnetic nanoparticle (MNP)-reduced graphene oxide (rGO) and polymethylmethacrylate (PMMA) composite (MNPs/rGO/PMMA) as adsorbent via an in situ fabrication strategy and, in turn, the application for adsorptive removal and recovery of Cr(VI) from tannery wastewater. The composite material was characterized via XRD, FTIR and SEM analyses. Under batch mode experiments, the composite achieved maximum adsorption of the Cr(VI) ion (99.53 ± 1.4%, i.e., 1636.49 mg of Cr(VI)/150 mg of adsorbent) at pH 2, adsorbent dose of 150 mg/10 mL of solution and 30 min of contact time. The adsorption process was endothermic, feasible and spontaneous and followed a pseudo-2nd order kinetic model. The Cr ions were completely desorbed (99.32 ± 2%) from the composite using 30 mL of NaOH solution (2M); hence, the composite exhibited high efficiency for five consecutive cycles without prominent loss in activity. The adsorbent was washed with distilled water and diluted HCl (0.1M), then dried under vacuum at 60 °C for reuse. The XRD analysis confirmed the synthesis and incorporation of magnetic iron oxide at 2θ of 30.38°, 35.5°, 43.22° and 57.36°, respectively, and graphene oxide (GO) at 25.5°. The FTIR analysids revealed that the composite retained the configurations of the individual components, whereas the SEM analysis indicated that the magnetic Fe3O4-NPs (MNPs) dispersed on the surface of the PMMA/rGO sheets. To anticipate the behavior of breakthrough, the Thomas and Yoon-Nelson models were applied to fixed-bed column data, which indicated good agreement with the experimental data. This study evaluates useful reference information for designing a cost-effective and easy-to-use adsorbent for the efficient removal of Cr(VI) from wastewater. Therefore, it can be envisioned as an alternative approach for a variety of unexplored industrial-level operations.
Collapse
Affiliation(s)
- Rahman Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Mehmood Iqbal Khattak
- Material Science Center (PCSIR) Laboratories Complex, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan;
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Crete, Greece;
| |
Collapse
|
26
|
Yin G, Tao L, Chen X, Bolan NS, Sarkar B, Lin Q, Wang H. Quantitative analysis on the mechanism of Cd 2+ removal by MgCl 2-modified biochar in aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126487. [PMID: 34252654 DOI: 10.1016/j.jhazmat.2021.126487] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, a pristine biochar (BC) and MgCl2-modified biochar (MBC) were prepared using Pennisetum sp. straw for removing Cd2+ from aqueous solutions. Scanning electron microscope (SEM) imaging combined with energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), as well as the surface area and porosity analyses were used to reveal the physico-chemical characteristics of the pristine and modified adsorbents. Results suggested that MgCl2 impregnation during the synthesis had enhanced the specific surface area and pore volume of the biochar. Batch adsorption experiments indicated that the Cd2+ adsorption data of MBC fitted the Langmuir isothermal and pseudo-second order kinetic models, indicating a chemical adsorption was undergoing in the system. The maximum adsorption capacity of Cd2+ on MBC was 763.12 mg/g, which was 11.15 times higher than that of the pristine BC. The Cd2+ removal by MBC was mainly attributed to the mechanisms in an order: Cd(OH)2 precipitation (73.43%) > ion exchange (22.67%) > Cd2+-π interaction (3.88%), with negligible contributions from functional group complexation, electrostatic attraction and physical adsorption. The MBC could thus be used as a promising adsorbent for Cd2+ removal from aqueous solutions.
Collapse
Affiliation(s)
- Guangcai Yin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Tao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinglin Chen
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Nanthi S Bolan
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
27
|
|
28
|
Mahboub HH, Beheiry RR, Shahin SE, Behairy A, Khedr MHE, Ibrahim SM, Elshopakey GE, Daoush WM, Altohamy DE, Ismail TA, El-Houseiny W. Adsorptivity of mercury on magnetite nano-particles and their influences on growth, economical, hemato-biochemical, histological parameters and bioaccumulation in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105828. [PMID: 33901865 DOI: 10.1016/j.aquatox.2021.105828] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Among toxic pollutants, Mercury (Hg) is a toxic heavy metal that induces harmful impacts on aquatic ecosystems directly and human being's health indirectly. This study confirmed the in vitro magnetic potential of magnetite Nano-Particles (Fe3O4 NPs) against waterborne Hg exposure-induced toxicity in Nile tilapia (Oreochromis niloticus). We further evaluate the safety profile of Fe3O4 NPs on fish growth, hemato-biochemical, histological parameters, bioaccumulation in muscles, and economy. Magnetite nanoparticles were characterized, adsorption loading to Hg ions was investigated, and testing different concentrations of Fe3O4 NPs (0.2, 0.4, 0.6, 0.8, and 1.0 mg/L) was applied to determine the highest concentration of adsorption. An in vivo experiment includes 120 fish with an average weight of 26.2 ± 0.26 g were randomly divided into 4 equal groups, each group had three replicates (n = 30 fish/group; 10 fish/ replicate). All groups were fed on a reference basal diet and the experiment was conducted for 30 days. The first group (G1) was allocated as a control. The second group (G2) received 1.0 mg/L aqueous suspension of Fe3O4 NPs. The third group (G3) was exposed to an aqueous solution of Hg ions at a concentration of 0.025 mg/L. Meanwhile, the fourth group (G4) acquired an aqueous suspension composed of a mixture of Hg ions and Fe3O4 NPs as previously mentioned. Throughout the exposure period, the clinical signs, symptoms, and mortalities were recorded. The Hg ions-exposed group induced the following consequences; reduced appetite resulting in reduced growth and less economic efficiency; microcytic hypochromic anemia, leukocytosis, lymphopenia, and neutrophilia; sharp and clear depletion in the immune indicators including lysozymes activity, immunoglobulin M (IgM), and Myeloperoxidase activities (MPO); significant higher levels of ALT, AST, urea, creatinine, and Superoxide dismutase (SOD); histological alterations of gill, hepatic and muscular tissues with strong expression of apoptotic marker (caspase 3); and a higher accumulation of Hg ions in the muscles. Surprisingly, Fe3O4 NPs-supplemented groups exhibited strong adsorption capacity against the Hg ions and mostly removed the Hg ions accumulation in the muscles. Also, the hematological, biochemical, and histological parameters were recovered. Thus, in order to assess the antitoxic role of Fe3O4 NPs against Hg and their safety on O. niloticus, and fill the gap of the research, the current context was investigated to evaluate the promising role of Fe3O4 NPs to prevent Hg-exposure-induced toxicity and protection of fish health, which ascertains essentiality for sustainable development of nanotechnology in the aquatic environment.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Sara E Shahin
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Mariam H E Khedr
- Department of Veterinary public health, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Seham M Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Walid M Daoush
- Department of Chemistry, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), PO Box 5701 Othman ibn Affan St., Riyadh 11432, Kingdom of Saudi Arabia. b) Department of Production Technology, Faculty of Technology and Education, Helwan University, Saray-El Qoupa, El Sawah Street, 11281 Cairo, Egypt
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Walaa El-Houseiny
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
29
|
Stoian O, Covaliu CI, Paraschiv G, Catrina (Traistaru) GA, Niță-Lazăr M, Matei E, Biriş SȘ, Tudor P. Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2831. [PMID: 34070651 PMCID: PMC8197980 DOI: 10.3390/ma14112831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
The aim of this article is to present a nonconventional method for the efficient removal of lead ions from industrial wastewater. For this purpose, magnetite nanomaterial was used, which was very easily separated from the wastewater at the end of the treatment due to its magnetic properties. Currently, nanotechnology is an efficient and inexpensive manner that is being researched for wastewater treatment. Additionally, iron oxide nanoparticles are widely used to remove heavy metal ions from water due to their special properties. The experimental results detailed in this article show the influence of pH and contact time on the process of adsorption of lead ions from wastewater. The magnetite nanomaterial had its maximum efficiency of speed when the wastewater had pH 6. At a lower pH, the highest treatment efficiency was over 85%, and the required contact time has doubled. When the pH increases above 6, the precipitation process occurs. Langmuir and Freundlich models were used to describe the adsorption process.
Collapse
Affiliation(s)
- Oana Stoian
- University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (O.S.); (G.P.); (E.M.); (S.Ș.B.); (P.T.)
| | - Cristina Ileana Covaliu
- University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (O.S.); (G.P.); (E.M.); (S.Ș.B.); (P.T.)
| | - Gigel Paraschiv
- University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (O.S.); (G.P.); (E.M.); (S.Ș.B.); (P.T.)
| | - Gina-Alina Catrina (Traistaru)
- National Research and Development Institute for Industrial Ecology-ECOIND, 71-73 Drumul Podu Dambovitei Str., 060652 Bucharest, Romania; (G.-A.C.); (M.N.-L.)
| | - Mihai Niță-Lazăr
- National Research and Development Institute for Industrial Ecology-ECOIND, 71-73 Drumul Podu Dambovitei Str., 060652 Bucharest, Romania; (G.-A.C.); (M.N.-L.)
| | - Ecaterina Matei
- University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (O.S.); (G.P.); (E.M.); (S.Ș.B.); (P.T.)
| | - Sorin Ștefan Biriş
- University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (O.S.); (G.P.); (E.M.); (S.Ș.B.); (P.T.)
| | - Paula Tudor
- University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (O.S.); (G.P.); (E.M.); (S.Ș.B.); (P.T.)
| |
Collapse
|
30
|
Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126333] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
32
|
Sánchez J, Rodríguez-Reyes M, Cortés-Hernández DA, Ávila-Orta CA, Reyes-Rodríguez PY. Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Singh A, Chaudhary S, Dehiya BS. Fast removal of heavy metals from water and soil samples using magnetic Fe 3O 4 nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3942-3952. [PMID: 32948942 DOI: 10.1007/s11356-020-10737-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/06/2020] [Indexed: 05/12/2023]
Abstract
Heavy metal discharge from anthropogenic sources on open soil surfaces and in natural water bodies poses serious environmental and health concerns. In addition to the contamination reduction of metals at the source, post-discharge removal of metals using nanoparticles is one of the remediation technologies being explored nowadays due to its cost-effectiveness, being environment-friendly, and easy application as a technique. In this work, magnetic iron oxide (Fe3O4) nanoparticles were synthesized chemically and then used for the removal of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from water and soil samples. The heavy metal removal efficiency of these iron oxide nanoparticles for different metals in water was best observed at a pH of 4.5 and varied between 63.5 and 98.3%. However, the removal efficiency of these nanoparticles from the soil sample was only measured at a pH of 0.7, and heavy metal removal efficiency varied between 69.6 and 99.6%. In both soil and water samples, the most efficient remediation time was less than 20 min, after which desorption and even dissolution of the nanoparticles can occur at a highly acidic pH. Among all selected metals for removal, lead showed the best adsorption and hence removal efficiency. The nanoparticles were characterized using the TEM, XRD, and FTIR techniques. The adsorption efficiency of various metals was estimated by using atomic absorption spectroscopy. The results suggest that the removal efficiency and stability of adsorbed products can further be improved by adjusting the pH higher towards 7 and also perhaps by modifying the nanoparticles with functional groups. The primary advantage of the magnetic un-coated nanoparticles is easy and efficient removal of the nanoparticles from the treated solutions by using an ordinary magnet.
Collapse
Affiliation(s)
- Anita Singh
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, 131039, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, 131039, India.
| | - Brijnandan S Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, 131039, India.
- Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, 131039, India.
| |
Collapse
|
34
|
Alabresm A, Decho AW, Lead J. A novel method to estimate cellular internalization of nanoparticles into gram-negative bacteria: Non-lytic removal of outer membrane and cell wall. NANOIMPACT 2021; 21:100283. [PMID: 35559775 DOI: 10.1016/j.impact.2020.100283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/15/2023]
Abstract
Bacteria efficiently take up small organic molecules and ions. However, the internalization of particulate forms, specifically nanoparticles (NPs) has been understudied and is a newly-emerging area of interest. However, determination of true cellular internalization is challenging owing to the difficulty of separating the aqueous phase from bacteria-associated NPs and, more importantly, of differentiating between internalized and NPs sorbed on bacteria surfaces. In this work, we developed and validated an extraction method which can operationally estimate internalization of metal NPs into Gram-negative bacteria. The outer cell membrane and cell wall, collectively called the periplasm, was successfully removed from bacteria using ethylenediaminetetraacetic acid (EDTA) at an optimized exposure period and concentration, without lysis of bacteria. This was followed by standard digestion and metal measurements. Verification of each step of the methodology was conducted by assessing both cellular and metal behavior. Specifically, the combined approaches of live/dead staining of bacteria, optical density measurements, transmission electron microscopy (TEM) and metal analyses of the supernatant indicated that the method operationally separated externally-sorbed NPs from those internalized actually localized within the bacterial cytoplasm. However, this new method is ideally used alongside other methods in a multi-method approach, to provide improved data quality. Therefore, it should be used with CSLM, FACS, TEM and other available methods.
Collapse
Affiliation(s)
- Amjed Alabresm
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jamie Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
35
|
Singh R, Bhateria R. Optimization and Experimental Design of the Pb 2+ Adsorption Process on a Nano-Fe 3O 4-Based Adsorbent Using the Response Surface Methodology. ACS OMEGA 2020; 5:28305-28318. [PMID: 33163814 PMCID: PMC7643284 DOI: 10.1021/acsomega.0c04284] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/09/2020] [Indexed: 05/19/2023]
Abstract
Magnetic Fe3O4 nanoparticles have been used as adsorbents for the removal of heavy-metal ions. In this study, optimization of the Pb2+ adsorption process using Fe3O4 has been investigated. The adsorbent was characterized by various techniques such as transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) analysis. The influence of process variables on adsorption of Pb2+ ions in accordance with p < 0.05 was investigated and analyzed by the Box-Behnken design (BBD) matrix with five variables (pH, adsorbent dose, initial Pb2+ ion concentration, contact time, and temperature). The pH and temperature were observed to be the most significant parameters that affected the Pb2+ ion adsorption capacity from the analysis of variance (ANOVA). Conduction of 46 experiments according to BBD and a subsequent analysis of variance (ANOVA) provide information in an empirical equation for the expected response. However, a quadratic correlation was established to calculate the optimum conditions, and it was found that the R 2 value (0.99) is in good agreement with adjusted R 2 (0.98). The optimum process value of variables obtained by numerical optimization corresponds to pH 6, an adsorbent dose of 10 mg, and an initial Pb2+ ion concentration of 110 mg L-1 in 40 min at 40 °C adsorption temperature. A maximum of 98.4% adsorption efficiency was achieved under optimum conditions. Furthermore, the presented model with an F value of 176.7 could adequately predict the response and give appropriate information to scale up the process.
Collapse
Affiliation(s)
- Rimmy Singh
- Department of Environmental Science, Maharshi Dayanand University, Rohtak 124001, India
| | - Rachna Bhateria
- Department of Environmental Science, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
36
|
Philippou K, Christou CN, Socoliuc V, Vekas L, Tanasă E, Miclau M, Pashalidis I, Krasia‐Christoforou T. Superparamagnetic polyvinylpyrrolidone/chitosan/
Fe
3
O
4
electrospun nanofibers as effective U(
VI
) adsorbents. J Appl Polym Sci 2020. [DOI: 10.1002/app.50212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Christos N. Christou
- Department of Mechanical and Manufacturing Engineering University of Cyprus Nicosia Cyprus
| | - Vlad Socoliuc
- Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids Romanian Academy – Timisoara Branch Timisoara Romania
| | - Ladislau Vekas
- Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids Romanian Academy – Timisoara Branch Timisoara Romania
- Research Center for Complex Fluids Systems Engineering Politehnica University of Timisoara Timisoara Romania
| | - Eugenia Tanasă
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest Bucharest Romania
| | - Marinela Miclau
- Applied Physics Department National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara Romania
| | | | | |
Collapse
|
37
|
Yadav VK, Ali D, Khan SH, Gnanamoorthy G, Choudhary N, Yadav KK, Thai VN, Hussain SA, Manhrdas S. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1551. [PMID: 32784715 PMCID: PMC7466584 DOI: 10.3390/nano10081551] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Nanoparticles have gained huge attention in the last decade due to their applications in electronics, medicine, and environmental clean-up. Iron oxide nanoparticles (IONPs) are widely used for the wastewater treatment due to their recyclable nature and easy manipulation by an external magnetic field. Here, in the present research work, iron oxide nanoparticles were synthesized by the sonochemical method by using precursors of ferrous sulfate and ferric chloride at 70 °C for one hour in an ultrasonicator. The synthesized iron oxide nanoparticles were characterized by diffraction light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), electron diffraction spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The FTIR analysis exhibits characteristic absorption bands of IONPs at 400-800 cm-1, while the Raman spectra showed three characteristic bands at 273, 675, and 1379 cm-1 for the synthesized IONPs. The XRD data revealed three major intensity peaks at two theta, 33°, 35°, and 64° which indicated the presence of maghemite and magnetite phase. The size of the spherical shaped IONPs was varying from 9-70 nm with an average size of 38.9 nm while the size of cuboidal shaped particle size was in microns. The purity of the synthesized IONPs was confirmed by the EDS attached to the FESEM, which clearly show sharp peaks for Fe and O, while the magnetic behavior of the IONPs was confirmed by the VSM measurement and the magnetization was 2.43 emu/g. The batch adsorption study of lead (Pb) and chromium (Cr) from 20% fly ash aqueous solutions was carried out by using 0.6 mg/100 mL IONPs, which exhibited maximum removal efficiency i.e., 97.96% and 82.8% for Pb2+ and Cr ions, respectively. The fly ash are being used in making cements, tiles, bricks, bio fertilizers etc., where the presence of fly ash is undesired property which has to be either removed or will be brought up to the value of acceptable level in the fly ash. Therefore, the synthesized IONPs, can be applied in the elimination of heavy metals and other undesired elements from fly ash with a short period of time. Moreover, the IONPs that have been used as a nanoadsorbent can be recovered from the reaction mixture by applying an external magnetic field that can be recycled and reused. Therefore, this study can be effective in all the fly ash-based industries for elimination of the undesired elements, while recyclability and reusable nature of IONPs will make the whole adsorption or elimination process much economical.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- School of Lifesciences, Jaipur National University, Jaipur, Rajasthan 302017, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| | - Samreen Heena Khan
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; (S.H.K.); (N.C.)
| | - Govindhan Gnanamoorthy
- Department of inorganic chemistry, University of Madras, Guindy Campus, Chennai T.N. 600025, India;
| | - Nisha Choudhary
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; (S.H.K.); (N.C.)
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India;
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
| | - Seik Altaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| | - Salim Manhrdas
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| |
Collapse
|