1
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Jiang S, Li Q, Wu G, Mu X, Wang X, Wang Y, Wu Y, Wu J, Li Y. Advances in Label-Free Glucose Detection Using Self-Assembled Nanoparticles and Surface-Enhanced Raman Spectroscopy. Anal Chem 2024; 96:11533-11541. [PMID: 38973171 DOI: 10.1021/acs.analchem.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.
Collapse
Affiliation(s)
- Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Qiuyun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Guangrun Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xuming Mu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220 Oulu, Finland
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
3
|
Luu QS, Nguyen QT, Manh HN, Yun S, Kim J, Do UT, Jeong K, Lee SU, Lee Y. SABRE hyperpolarization of nicotinamide derivatives and their molecular dynamics properties. Analyst 2024; 149:1068-1073. [PMID: 38265242 DOI: 10.1039/d3an02053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Signal amplification by reversible exchange hyperpolarization explores the chemical structure and kinetic properties of nicotinamide derivatives. N-Benzyl nicotinamide and nicotinic acid hydrazide compounds display relatively fast dissociation rates of approximately 7-8 s-1 and long proton T1 relaxation times of 5-20 s, respectively. Consequently, these substrates exhibit remarkable signal enhancements, reaching approximately 175 and 102 fold, respectively, underscoring the efficacy of the hyperpolarization technique in elucidating the behavior of these compounds.
Collapse
Affiliation(s)
- Quy Son Luu
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
| | - Quynh Thi Nguyen
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Hung Ngo Manh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, South Korea.
| | - Seokki Yun
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jiwon Kim
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
| | - Uyen Thi Do
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul, 01805, South Korea.
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, South Korea.
| | - Youngbok Lee
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| |
Collapse
|
4
|
Alshehri A, Tickner BJ, Iali W, Duckett SB. Enhancing the NMR signals of plant oil components using hyperpolarisation relayed via proton exchange. Chem Sci 2023; 14:9843-9853. [PMID: 37736655 PMCID: PMC10510812 DOI: 10.1039/d3sc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
In this work, the limited sensitivity of magnetic resonance is addressed by using the hyperpolarisation method relayed signal amplification by reversible exchange (SABRE-Relay) to transfer latent magnetism from para-hydrogen, a readily isolated spin isomer of hydrogen gas, to components of key plant oils such as citronellol, geraniol, and nerol. This is achieved via relayed polarisation transfer in which an [Ir(H)2(IMes)(NH2R)3]Cl type complex produces hyperpolarised NH2R free in solution, before labile proton exchange between the hyperpolarisation carrier (NH2R) and the OH-containing plant oil component generates enhanced NMR signals for the latter. Consequently, up to ca. 200-fold 1H (0.65% 1H polarisation) and 800-fold 13C NMR signal enhancements (0.65% 13C polarisation) are recorded for these essential oils in seconds. Remarkably, the resulting NMR signals are not only diagnostic, but prove to propagate over large spin systems via a suitable coupling network. A route to optimise the enhancement process by varying the identity of the carrier NH2R, and its concentration is demonstrated. In order to prove utility, these pilot measurements are extended to study a much wider range of plant-derived molecules including rhodinol, verbenol, (1R)-endo-(+)-fenchyl alcohol, (-)-carveol, and linalool. Further measurements are then described which demonstrate citronellol and geraniol can be detected in an off-the-shelf healthcare product rose geranium oil at concentrations of just a few tens of μM in single scan 1H NMR measurements, which are not visible in comparable thermally polarised NMR experiments. This work therefore presents a significant expansion of the types of molecules amenable to hyperpolarisation using para-hydrogen and illustrates a real-world application in the diagnostic detection of low concentration analytes in mixtures.
Collapse
Affiliation(s)
- Adel Alshehri
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Ben J Tickner
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Wissam Iali
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Simon B Duckett
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| |
Collapse
|
5
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
6
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
7
|
Salnikov OG, Trofimov IA, Pravdivtsev AN, Them K, Hövener JB, Chekmenev EY, Koptyug IV. Through-Space Multinuclear Magnetic Resonance Signal Enhancement Induced by Parahydrogen and Radiofrequency Amplification by Stimulated Emission of Radiation. Anal Chem 2022; 94:15010-15017. [PMID: 36264746 PMCID: PMC10007960 DOI: 10.1021/acs.analchem.2c02929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarized (i.e., polarized far beyond the thermal equilibrium) nuclear spins can result in the radiofrequency amplification by stimulated emission of radiation (RASER) effect. Here, we show the utility of RASER to amplify nuclear magnetic resonance (NMR) signals of solute and solvent molecules in the liquid state. Specifically, parahydrogen-induced RASER was used to spontaneously enhance nuclear spin polarization of protons and heteronuclei (here 19F and 31P) in a wide range of molecules. The magnitude of the effect correlates with the T1 relaxation time of the target nuclear spins. A series of control experiments validate the through-space dipolar mechanism of the RASER-assisted polarization transfer between the parahydrogen-polarized compound and to-be-hyperpolarized nuclei of the target molecule. Frequency-selective saturation of the RASER-active resonances was used to control the RASER and the amplitude of spontaneous polarization transfer. Spin dynamics simulations support our experimental RASER studies. The enhanced NMR sensitivity may benefit various NMR applications such as mixture analysis, metabolomics, and structure determination.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090 Novosibirsk, Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 14 Leninskiy Pr., 119991 Moscow, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Tickner BJ, Svensson SKM, Vaara J, Duckett SB. Toward Optimizing and Understanding Reversible Hyperpolarization of Lactate Esters Relayed from para-Hydrogen. J Phys Chem Lett 2022; 13:6859-6866. [PMID: 35861312 PMCID: PMC9340809 DOI: 10.1021/acs.jpclett.2c01442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SABRE-Relay hyperpolarization method is used to enhance the 1H and 13C NMR signals of lactate esters, which find use in a wide range of medical, pharmaceutical, and food science applications. This is achieved by the indirect relay of magnetization from para-hydrogen, a spin isomer of dihydrogen, to OH-containing lactate esters via a SABRE-hyperpolarized NH intermediary. This delivers 1H and 13C NMR signal enhancements as high as 245- and 985-fold, respectively, which makes the lactate esters far more detectable using NMR. DFT-calculated J-couplings and spin dynamics simulations indicate that, while polarization can be transferred from the lactate OH to other 1H nuclei via the J-coupling network, incoherent mechanisms are needed to polarize the 13C nuclei at the 6.5 mT transfer field used. The resulting sensitivity boost is predicted to be of great benefit for the NMR detection and quantification of low concentrations (<mM) of lactate esters and could provide a useful precursor for the production of hyperpolarized lactate, a key metabolite.
Collapse
Affiliation(s)
- Ben J. Tickner
- Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, United Kingdom, YO10 5NY
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | | | - Juha Vaara
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Simon B. Duckett
- Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, United Kingdom, YO10 5NY
| |
Collapse
|
10
|
Fraser R, Rutjes FPJT, Feiters MC, Tessari M. Analysis of Complex Mixtures by Chemosensing NMR Using para-Hydrogen-Induced Hyperpolarization. Acc Chem Res 2022; 55:1832-1844. [PMID: 35709417 PMCID: PMC9260963 DOI: 10.1021/acs.accounts.1c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nuclear magnetic resonance (NMR) is a powerful technique for chemical
analysis. The use of NMR to investigate dilute analytes in complex
systems is, however, hampered by its relatively low sensitivity. An
additional obstacle is represented by the NMR signal overlap. Because
solutes in a complex mixture are usually not isotopically labeled,
NMR studies are often limited to 1H measurements, which,
because of the modest dispersion of the 1H resonances (typically
∼10 ppm), can result in challenging signal crowding. The low
NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization
(i.e., transiently increasing the differences in nuclear spin populations),
which determines large NMR signal enhancements. This has been demonstrated
for hyperpolarization methods such as dynamic nuclear polarization,
spin-exchange optical pumping and para-hydrogen-induced
polarization (PHIP). In particular, PHIP has grown into a fast, efficient,
and versatile technique since the recent discovery of non-hydrogenative
routes to achieve nuclear spin hyperpolarization. For instance,
signal amplification by reversible exchange (SABRE)
can generate proton as well as heteronuclear spin hyperpolarization
in a few seconds in compounds that are able to transiently bind to
an iridium catalyst in the presence of para-hydrogen
in solution. The hyperpolarization transfer catalyst acts as a chemosensor
in the sense that it is selective for analytes that can coordinate
to the metal center, such as nitrogen-containing aromatic heterocycles,
sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines,
carboxylic acids, and amines. We have demonstrated that the signal
enhancement achieved by SABRE allows rapid NMR detection and quantification
of a mixture of substrates down to low-micromolar concentration. Furthermore,
in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization
to produce up to 1000-fold enhanced NMR hydride signals. Because the
hydrides’ chemical shifts are highly sensitive to the structure
of the analyte associating with the iridium complex, they can be employed
as hyperpolarized “probes” to signal the presence of
specific compounds in the mixture. This indirect detection of the
analytes in solution provides important benefits in the case of complex
systems, as hydrides resonate in a region of the 1H spectrum
(at ca. −20 ppm) that is generally signal-free. The enhanced
sensitivity provided by non-hydrogenative PHIP (nhPHIP), together
with the absence of interference from the complex matrix (usually
resonating between 0 and 10 ppm), set the detection limit for this
NMR chemosensor down to sub-μM concentrations, approximately
3 orders of magnitude lower than for conventional NMR. This nhPHIP
approach represents, therefore, a powerful tool for NMR analysis of
dilute substrates in complex mixtures as it addresses at once the
issues of signal crowding and NMR sensitivity. Importantly, being
performed at high field inside the NMR spectrometer, the method allows
for rapid acquisition of multiple scans, multidimensional hyperpolarized
NMR spectra, in a fashion comparable to that of standard NMR measurements. In this Account, we focus on our chemosensing NMR technology, detailing
its principles, advantages, and limitations and presenting a number
of applications to real systems such as biofluids, beverages, and
natural extracts.
Collapse
Affiliation(s)
- Roan Fraser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Martin C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
11
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
13
|
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, Kennerley AJ, Duckett SB. Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by 15N Hyperpolarized Nuclear Magnetic Resonance. J Am Chem Soc 2022; 144:8756-8769. [PMID: 35508182 PMCID: PMC9121385 DOI: 10.1021/jacs.2c02619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we show how
signal amplification by reversible exchange hyperpolarization
of a range of 15N-containing synthons can be used to enable
studies of their reactivity by 15N nuclear magnetic resonance
(NO2– (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%),
and NO3– (0.1%)). A range of iridium-based
spin-polarization transfer catalysts are used, which for NO2– work optimally as an amino-derived carbene-containing
complex with a DMAP-d2 coligand. We harness
long 15N spin-order lifetimes to probe in situ reactivity
out to 3 × T1. In the case of NO2– (T1 17.7 s
at 9.4 T), we monitor PhNH2 diazotization in acidic solution.
The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with
NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the
formation of an identified cyclic pentazole intermediate. The role
of PhN3 and NaN3 in copper-free click chemistry
is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne.
We also demonstrate simple routes to hyperpolarized N2 in
addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation,
and imine formation. Hyperpolarized ND3 is used to probe
imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2–, we also demonstrate how the 15N-magnetic resonance imaging
monitoring of biphasic catalysis confirms the successful preparation
of an aqueous bolus of hyperpolarized 15NO2– in seconds with 8% polarization. Hence, we create
a versatile tool to probe organic transformations that has significant
relevance for the synthesis of future hyperpolarized pharmaceuticals.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Callum A Gater
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Norman Turner
- Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K
| | - Aneurin J Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
14
|
Rayner PJ, Burns MJ, Fear EJ, Duckett SB. Steric and electronic effects on the 1 H hyperpolarisation of substituted pyridazines by signal amplification by reversible exchange. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1187-1198. [PMID: 33729592 PMCID: PMC8650576 DOI: 10.1002/mrc.5152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Utility of the pyridazine motif is growing in popularity as pharmaceutical and agrochemical agents. The detection and structural characterisation of such materials is therefore imperative for the successful development of new products. Signal amplification by reversible exchange (SABRE) offers a route to dramatically improve the sensitivity of magnetic resonance methods, and we apply it here to the rapid and cost-effective hyperpolarisation of substituted pyridazines. The 33 substrates investigated cover a range of steric and electronic properties and their capacity to perform highly effective SABRE is assessed. We find the method to be tolerant to a broad range of electron donating and withdrawing groups; however, good sensitivity is evident when steric bulk is added to the 3- and 6-positions of the pyridazine ring. We optimise the method by reference to a disubstituted ester that yields signal gains of >9000-fold at 9.4 T (>28% spin polarisation).
Collapse
Affiliation(s)
- Peter J. Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Michael J. Burns
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Elizabeth J. Fear
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| |
Collapse
|
15
|
MacCulloch K, Tomhon P, Browning A, Akeroyd E, Lehmkuhl S, Chekmenev EY, Theis T. Hyperpolarization of common antifungal agents with SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1225-1235. [PMID: 34121211 PMCID: PMC8595556 DOI: 10.1002/mrc.5187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 05/09/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a robust and inexpensive hyperpolarization (HP) technique to enhance nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) signals using parahydrogen (pH2 ). The substrate scope of SABRE is continually expanding. Here, we present the polarization of three antifungal drugs (voriconazole, clotrimazole, and fluconazole) and elicit the detailed HP mechanisms for 1 H and 15 N nuclei. In this exploratory work, 15 N polarization values of ~1% were achieved using 50% pH2 in solution of 3-mM catalyst and 60-mM substrate in perdeuterated methanol. All hyperpolarized 15 N sites exhibited long T1 in excess of 1 min at a clinically relevant field of 1 T. Hyperpolarizing common drugs is of interest due to their potential biomedical applications as MRI contrast agents or to enable studies on protein dynamics at physiological concentrations. We optimize the polarization with respect to temperature and the polarization transfer field (PTF) for 1 H nuclei in the millitesla regime and for 15 N nuclei in the microtesla regime, which provides detailed insights into exchange kinetics and spin evolution. This work broadens the SABRE substrate scope and provides mechanistic and kinetic insights into the HP process.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Patrick Tomhon
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Evan Akeroyd
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, USA
- Chemistry, Russian Academy of Sciences, Moscow, Moscow Region, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
16
|
Iali W, Moustafa GAI, Dagys L, Roy SS. 15 N hyperpolarisation of the antiprotozoal drug ornidazole by Signal Amplification By Reversible Exchange in aqueous medium. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1199-1207. [PMID: 33656772 DOI: 10.1002/mrc.5144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) offers a cost-effective route to boost nuclear magnetic resonance (NMR) signal by several orders of magnitude by employing readily available para-hydrogen as a source of hyperpolarisation. Although 1 H spins have been the natural choice of SABRE hyperpolarisation since its inception due to its simplicity and accessibility, limited spin lifetimes of 1 H makes it harder to employ them in a range of time-dependent NMR experiments. Heteronuclear spins, for example, 13 C and 15 N, in general have much longer T1 lifetimes and thereby are found to be more suitable for hyperpolarised biological applications as demonstrated previously by para-hydrogen induced polarisation (PHIP) and dynamic nuclear polarisation (DNP). In this study we demonstrate a simple procedure to enhance 15 N signal of an antibiotic drug ornidazole by up to 71,000-folds with net 15 N polarisation reaching ~23%. Further, the effect of co-ligand strategy is studied in conjunction with the optimum field transfer protocols and consequently achieving 15 N hyperpolarised spin lifetime of >3 min at low field. Finally, we present a convenient route to harness the hyperpolarised solution in aqueous medium free from catalyst contamination leading to a strong 15 N signal detection for an extended duration of time.
Collapse
Affiliation(s)
- Wissam Iali
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Gamal A I Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- School of Chemistry, University of Southampton, Southampton, UK
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, UK
| | - Soumya S Roy
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
17
|
Rayner PJ, Gillions JP, Hannibal VD, John RO, Duckett SB. Hyperpolarisation of weakly binding N-heterocycles using signal amplification by reversible exchange. Chem Sci 2021; 12:5910-5917. [PMID: 34168816 PMCID: PMC8179664 DOI: 10.1039/d0sc06907h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) is a catalytic method for improving the detection of molecules by magnetic resonance spectroscopy. It achieves this by simultaneously binding the target substrate (sub) and para-hydrogen to a metal centre. To date, sterically large substrates are relatively inaccessible to SABRE due to their weak binding leading to catalyst destabilisation. We overcome this problem here through a simple co-ligand strategy that allows the hyperpolarisation of a range of weakly binding and sterically encumbered N-heterocycles. The resulting 1H NMR signal size is increased by up to 1400 times relative to their more usual Boltzmann controlled levels at 400 MHz. Hence, a significant reduction in scan time is achieved. The SABRE catalyst in these systems takes the form [IrX(H)2(NHC)(sulfoxide)(sub)] where X = Cl, Br or I. These complexes are shown to undergo very rapid ligand exchange and lower temperatures dramatically improve the efficiency of these SABRE catalysts.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Joseph P Gillions
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Valentin D Hannibal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
18
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
19
|
Tickner BJ, Borozdina Y, Duckett SB, Angelovski G. Exploring the hyperpolarisation of EGTA-based ligands using SABRE. Dalton Trans 2021; 50:2448-2461. [PMID: 33507194 DOI: 10.1039/d0dt03839c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The design of molecules whose magnetic resonance (MR) signals report on their biological environment is receiving attention as a route to non-invasive functional MR. Hyperpolarisation techniques improve the sensitivity of MR and enable real time low concentration MR imaging, allowing for the development of novel functional imaging methodologies. In this work, we report on the synthesis of a series of EGTA-derived molecules (EGTA - ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid), whose core structures are known to bind biologically relevant metal ions in vivo, in addition to pyridyl rings that allow reversible ligation to an iridium dihydride complex. Consequently, they are amenable to hyperpolarisation through the parahydrogen-based signal amplification by reversible exchange (SABRE) process. We investigate how the proximity of EGTA and pyridine units, and the identity of the linker group, affect the SABRE hyperpolarisation attained for each agent. We also describe the effect of catalyst identity and co-ligand presence on these measurements and can achieve 1H NMR signal enhancements of up to 160-fold. We rationalise these results to suggest the design elements needed for probes amenable to SABRE hyperpolarisation whose MR signals might in the future report on the presence of metal ions.
Collapse
Affiliation(s)
- Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, UK.
| | | | | | | |
Collapse
|
20
|
Put P, Pustelny S, Budker D, Druga E, Sjolander TF, Pines A, Barskiy DA. Zero- to Ultralow-Field NMR Spectroscopy of Small Biomolecules. Anal Chem 2021; 93:3226-3232. [DOI: 10.1021/acs.analchem.0c04738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Piotr Put
- M. Smoluchowski Institute of Physics, Jagiellonian University in Kraków, Łojasiewicza 11, Kraków 30-348, Poland
| | - Szymon Pustelny
- M. Smoluchowski Institute of Physics, Jagiellonian University in Kraków, Łojasiewicza 11, Kraków 30-348, Poland
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Johannes Gutenberg-Universität, 55128 Mainz, Germany
- Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, United States
| | - Emanuel Druga
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Tobias F. Sjolander
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Alexander Pines
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Danila A. Barskiy
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Johannes Gutenberg-Universität, 55128 Mainz, Germany
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| |
Collapse
|
21
|
Tickner BJ, Ahwal F, Whitwood AC, Duckett SB. Reversible Hyperpolarization of Ketoisocaproate Using Sulfoxide-containing Polarization Transfer Catalysts. Chemphyschem 2021; 22:13-17. [PMID: 33196137 PMCID: PMC7839500 DOI: 10.1002/cphc.202000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Indexed: 12/16/2022]
Abstract
The substrate scope of sulfoxide-containing magnetisation transfer catalysts is extended to hyperpolarize α-ketoisocaproate and α-ketoisocaproate-1-[13 C]. This is achieved by forming [Ir(H)2 (κ2 -ketoisocaproate)(N-heterocyclic carbene)(sulfoxide)] which transfers latent magnetism from p-H2 via the signal amplification by reversible exchange (SABRE) process. The effect of polarization transfer field on the formation of enhanced 13 C magnetization is evaluated. Consequently, performing SABRE in a 0.5 μT field enabled most efficient magnetisation transfer. 13 C NMR signals for α-ketoisocaproate-1-[13 C] in methanol-d4 are up to 985-fold more intense than their traditional Boltzmann derived signal intensity (0.8 % 13 C polarisation). Single crystal X-ray diffraction reveals the formation of the novel catalyst decomposition products [Ir(μ-H)(H)2 (IMes)(SO(Ph)(Me)2 )]2 and [(Ir(H)2 (IMes)(SO(Me)2 ))2 (μ-S)] when the sulfoxides methylphenylsulfoxide and dimethylsulfoxide are used respectively.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Centre for Hyperpolarisation in Magnetic ResonanceUniversity of York, HeslingtonYorkU.K.YO10 5NY
- Department of ChemistryUniversity of York, HeslingtonYorkU.K.YO10 5DD
- NMR Research Unit, Faculty of ScienceUniversity of OuluP.O. Box 300090014OuluFinland
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic ResonanceUniversity of York, HeslingtonYorkU.K.YO10 5NY
- Department of ChemistryUniversity of York, HeslingtonYorkU.K.YO10 5DD
| | | | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic ResonanceUniversity of York, HeslingtonYorkU.K.YO10 5NY
- Department of ChemistryUniversity of York, HeslingtonYorkU.K.YO10 5DD
| |
Collapse
|
22
|
Crook AA, Powers R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020; 25:E5128. [PMID: 33158172 PMCID: PMC7662776 DOI: 10.3390/molecules25215128] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative analytical tool commonly utilized for metabolomics analysis. Quantitative NMR (qNMR) is a field of NMR spectroscopy dedicated to the measurement of analytes through signal intensity and its linear relationship with analyte concentration. Metabolomics-based NMR exploits this quantitative relationship to identify and measure biomarkers within complex biological samples such as serum, plasma, and urine. In this review of quantitative NMR-based metabolomics, the advancements and limitations of current techniques for metabolite quantification will be evaluated as well as the applications of qNMR in biomedical metabolomics. While qNMR is limited by sensitivity and dynamic range, the simple method development, minimal sample derivatization, and the simultaneous qualitative and quantitative information provide a unique landscape for biomedical metabolomics, which is not available to other techniques. Furthermore, the non-destructive nature of NMR-based metabolomics allows for multidimensional analysis of biomarkers that facilitates unambiguous assignment and quantification of metabolites in complex biofluids.
Collapse
Affiliation(s)
- Alexandra A. Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
23
|
Knecht S, Barskiy DA, Buntkowsky G, Ivanov KL. Theoretical description of hyperpolarization formation in the SABRE-relay method. J Chem Phys 2020; 153:164106. [PMID: 33138423 DOI: 10.1063/5.0023308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SABRE (Signal Amplification By Reversible Exchange) has become a widely used method for hyper-polarizing nuclear spins, thereby enhancing their Nuclear Magnetic Resonance (NMR) signals by orders of magnitude. In SABRE experiments, the non-equilibrium spin order is transferred from parahydrogen to a substrate in a transient organometallic complex. The applicability of SABRE is expanded by the methodology of SABRE-relay in which polarization can be relayed to a second substrate either by direct chemical exchange of hyperpolarized nuclei or by polarization transfer between two substrates in a second organometallic complex. To understand the mechanism of the polarization transfer and study the transfer efficiency, we propose a theoretical approach to SABRE-relay, which can treat both spin dynamics and chemical kinetics as well as the interplay between them. The approach is based on a set of equations for the spin density matrices of the spin systems involved (i.e., SABRE substrates and complexes), which can be solved numerically. Using this method, we perform a detailed study of polarization formation and analyze in detail the dependence of the attainable polarization level on various chemical kinetic and spin dynamic parameters. We foresee the applications of the present approach for optimizing SABRE-relay experiments with the ultimate goal of achieving maximal NMR signal enhancements for substrates of interest.
Collapse
Affiliation(s)
- Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Danila A Barskiy
- University of California at Berkeley, College of Chemistry and QB3, Berkeley, California 94720, USA
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, and Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
24
|
Fekete M, Ahwal F, Duckett SB. Remarkable Levels of 15N Polarization Delivered through SABRE into Unlabeled Pyridine, Pyrazine, or Metronidazole Enable Single Scan NMR Quantification at the mM Level. J Phys Chem B 2020; 124:4573-4580. [PMID: 32383603 PMCID: PMC7277555 DOI: 10.1021/acs.jpcb.0c02583] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While many drugs and metabolites contain nitrogen, harnessing their diagnostic 15N NMR signature for their characterization is underutilized because of inherent detection difficulties. Here, we demonstrate how precise ultralow field signal amplification by reversible exchange (±0.2 mG) in conjunction parahydrogen and an iridium precatalyst of the form IrCl(COD)(NHC) with the coligand d9-benzylamine allows the naturally abundant 15N NMR signatures of pyridine, pyrazine, metronidazole, and acetonitrile to be readily detected at 9.4 T in single NMR observations through >50% 15N polarization levels. These signals allow for rapid and precise reagent quantification via a response that varies linearly over the 2-70 mM concentration range.
Collapse
Affiliation(s)
- Marianna Fekete
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
25
|
Rayner PJ, Richardson PM, Duckett SB. The Detection and Reactivity of Silanols and Silanes Using Hyperpolarized 29 Si Nuclear Magnetic Resonance. Angew Chem Int Ed Engl 2020; 59:2710-2714. [PMID: 31833623 PMCID: PMC7027454 DOI: 10.1002/anie.201915098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/02/2022]
Abstract
Silanols and silanes are key precursors and intermediates for the synthesis of silicon-based materials. While their characterization and quantification by 29 Si NMR spectroscopy has received significant attention, it is a technique that is limited by the low natural abundance of 29 Si and its low sensitivity. Here, we describe a method using p-H2 to hyperpolarize 29 Si. The observed signal enhancements, approaching 3000-fold at 11.7 T, would take many days of measurement for comparable results under Boltzmann conditions. The resulting signals were exploited to monitor the rapid reaction of tris(tert-butoxy)silanol with triflic anhydride in a T1 -corrected process that allows for rapid quantification. These results demonstrate a novel route to quantify dynamic processes and intermediates in the synthesis of silicon materials.
Collapse
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic ResonanceDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| | - Peter M. Richardson
- Centre of Hyperpolarisation in Magnetic ResonanceDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic ResonanceDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| |
Collapse
|
26
|
Rayner PJ, Richardson PM, Duckett SB. The Detection and Reactivity of Silanols and Silanes Using Hyperpolarized
29
Si Nuclear Magnetic Resonance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic ResonanceDepartment of ChemistryUniversity of York Heslington YO10 5DD UK
| | - Peter M. Richardson
- Centre of Hyperpolarisation in Magnetic ResonanceDepartment of ChemistryUniversity of York Heslington YO10 5DD UK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic ResonanceDepartment of ChemistryUniversity of York Heslington YO10 5DD UK
| |
Collapse
|