1
|
Cano-Sarabia M, Aydin F, Meng L, Gil-Bonillo M, Fonseca J, Dietrich M, Renner S, Amenitsch H, Falcaro P, Imaz I, Maspoch D. Lipid/ZIF-8 Biocomposites Based on Liposomes or Vesicles: In Situ Formation, and Preliminary Evaluation as Delivery Vehicles for Hydrophobic Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407051. [PMID: 39981973 DOI: 10.1002/smll.202407051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Integrating lipid self-assemblies with metal-organic frameworks (MOFs) creates biocomposites ideal for encapsulation, protection, and delivery of functional species. This can be achieved using preformed MOFs or through in situ MOF formation. Herein, the one-pot formation of ZIF-8 MOF particles in the presence of two lipid self-assemblies (vesicles or liposomes) is reported, generating two types of hybrid lipid/ZIF-8 biocomposites. Each lipid assembly can be used to encapsulate hydrophobic actives into the hybrid lipid/ZIF-8 biocomposites, demonstrated with Nile Red and Astaxanthin (ATX) as representative cargo. In vitro digestion of ATX-loaded hybrid lipid/ZIF-8 particles in simulated intestinal fluid (SIF) shows distinct release kinetics: liposome-based particles offer a more sustained release compared to vesicle-based biocomposites. Intriguingly, in various media (water, simulated gastric fluid, bicarbonate, and SIF), the sodalite ZIF-8 topology in liposome-based lipid/ZIF-8 particles undergoes a crystalline phase transition to the denser, more-stable phase ZIF-C. This phase transition, along with a deeper internalization of ATX in liposome-based particles, accounts for the differences in release kinetics. In summary, the study provides valuable insights for the synthesis of hybrid lipid/ZIF-8 biocomposites, the encapsulation of hydrophobic molecules, the importance of investigating potential crystalline phase transitions of MOFs in different media, and their potential as drug delivery vehicles.
Collapse
Affiliation(s)
- Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
| | - Funda Aydin
- Department of Basic Sciences, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van, 65080, Turkey
| | - Lingxin Meng
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Marta Gil-Bonillo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
| | - Manuela Dietrich
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
| | - Simon Renner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Heinz Amenitsch
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
2
|
Bor G, Jin W, Douka D, Borthwick NJ, Liu X, Jansman MMT, Hosta-Rigau L. In vitro and in vivo investigations of hemoglobin-loaded PEGylated ZIF-8 nanoparticles as oxygen carriers for emergency transfusion. BIOMATERIALS ADVANCES 2025; 168:214118. [PMID: 39580988 DOI: 10.1016/j.bioadv.2024.214118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
The limitations of traditional blood supply systems, particularly where ideal storage is unfeasible, challenge the efficacy of transfusion medicine, especially in emergencies and battlefield scenarios. This study investigates a novel hemoglobin-based oxygen carrier (HBOC) using a dual-coating approach with metal phenolic networks (MPNs) and polyethylene glycol (PEG). Utilizing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for their porosity and biocompatibility, the addition of MPN and PEG coatings enhances biocompatibility and stabilizes encapsulated hemoglobin (Hb). This reduces Hb release and minimizes interactions with the coagulation cascade, as evidenced by stable prothrombin and activated partial thromboplastin times. Complement activation studies showed slight increases in C5a levels, indicating low potential for severe immune reactions. In vivo evaluations demonstrated that both MPN-coated and PEGylated Hb-loaded ZIF-8 NPs have enhanced circulation times, with significantly longer half-lives than free Hb. However, PEGylation did not offer additional benefits over MPN coating alone, possibly due to suboptimal PEG density or shielding. Biodistribution studies indicated similar accumulation patterns in the liver and kidneys for both NP types, suggesting common clearance pathways. These findings suggest our PEGylated Hb-loaded ZIF-8 NPs as promising alternatives to traditional transfusions. Future research will assess their efficacy in resuscitation from hemorrhagic shock to validate their clinical application.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Neil Jean Borthwick
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Leticia Hosta-Rigau
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
3
|
Polash SA, Poddar A, Pyreddy S, Carraro F, D'Angelo AM, Bryant G, Falcaro P, Shukla R. Phase Characterization and Bioactivity Evaluation of Nucleic Acid-Encapsulated Biomimetically Mineralized ZIF-8. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3002-3012. [PMID: 39761101 DOI: 10.1021/acsami.4c17664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications. Different solvents and synthesis methods influence the ZIF's topologies and framework structures. The physicochemical properties of plasmid-encapsulated ZIF (plasmid@ZIF) can be controlled by tuning the precursors and biomolecular concentration. Using plasmid@ZIF, this study demonstrated that nucleic acids can be loaded precisely and released with a controlled bioactivity within cells. It was found that the ZIF phases substantially influenced both NA delivery into the cell and physicochemical properties. As a result of this study, we better understand MOFs' potential in NA delivery, and it emphasizes the importance of precisely controlling their physicochemical properties.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Centre for Advance Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - Suneela Pyreddy
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Anita M D'Angelo
- Australian Nuclear Science and Technology Organization (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Centre for Advance Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Polash SA, Poddar A, Ahmady F, Kannourakis G, Jayachandran A, Shukla R. Impact of Ligand Concentration on the Properties of Nucleic-Acid-Encapsulated MOFs and Inflammation Modulation in Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:7635-7645. [PMID: 39497260 DOI: 10.1021/acsabm.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The zeolitic imidazolate framework (ZIF) is one of the most explored metal-organic-framework-based systems for nucleic acid delivery to cancer cells. Current nucleic acid delivery tools exhibit several drawbacks, such as high manufacturing costs, endosomal entrapment, toxicity, and immunogenicity. However, the biomimetic mineralization of Zn-based ZIFs offers a low-cost and facile encapsulation of nucleic acids at room temperature in aqueous conditions. The efficiency of nucleic acid delivery and its subsequent impact on inflammation in cells are influenced by the physicochemical properties of the material. The imidazole content determines the formation and crystallinity of ZIF, and an optimal ratio ensures the formation of well-defined and highly crystalline structures. In this study, a series of siRNA-encapsulated ZIFs (siRNA@ZIF) were systematically prepared by varying ligand-to-metal (L/M) molar ratios. Our study demonstrates that variations in ligand concentrations influence the crystalline structures, particle size, and shape of siRNA@ZIF particles. At low L/M, two-dimensional siRNA@ZIF particles form with a size of 1 μm. As the L/M ratio increases gradually, the particle size decreases, resulting in three-dimensional particles ∼200 nm in size. We also observed better stability of siRNA@ZIF in water prepared using high L/M values and time-dependent cellular uptake by the cells. Additionally, no significant impact of the biocomposites on inflammation was found, indicating the lack of an unwanted immune response and nonimmunotoxic nature over longer periods (96 h). These findings highlight the necessity of fine-tuning ligand concentrations and synthesis chemistry in designing efficient and optimal ZIF-based systems as versatile delivery platforms for nucleic acids.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | | | | | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
5
|
Coll-Satue C, Rubio-Huertas M, Ducrot A, Norkute E, Liu X, Ebrahim FM, Smit B, Thulstrup PW, Hosta-Rigau L. A novel PEG-mediated approach to entrap hemoglobin (Hb) within ZIF-8 nanoparticles: Balancing crystalline structure, Hb content and functionality. BIOMATERIALS ADVANCES 2024; 163:213953. [PMID: 39029206 DOI: 10.1016/j.bioadv.2024.213953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024]
Abstract
Hemoglobin (Hb)-based oxygen carriers are investigated as a potential alternative or supplement to regular blood transfusions, particularly in critical and life-threatening scenarios. These include situations like severe trauma in remote areas, battlefield conditions, instances where blood transfusion is not feasible due to compatibility concerns, or when patients decline transfusions based on religious beliefs. This study introduces a novel method utilizing poly(ethylene glycol) (PEG) to entrap Hb within ZIF-8 nanoparticles (i.e., Hb@ZIF-8 NPs). Through meticulous screening, we achieved Hb@ZIF-8 NPs with a record-high Hb concentration of 34 mg mL-1. These NPs, sized at 168 nm, displayed exceptional properties: a remarkable 95 % oxyhemoglobin content, excellent encapsulation efficiency of 85 %, and resistance to Hb oxidation into methemoglobin (metHb). The addition of PEG emerged as a crucial factor amplifying Hb entrapment within ZIF-8, especially at higher Hb concentrations, reaching an unprecedented 34 mg mL-1. Importantly, PEG exhibited a protective effect, preventing metHb conversion in Hb@ZIF-8 NPs at elevated Hb concentrations.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Marta Rubio-Huertas
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Aurelie Ducrot
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Evita Norkute
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Fatmah Mish Ebrahim
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering, Valais, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951 Sion, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering, Valais, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951 Sion, Switzerland
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Liang W, Zheng S, Shu Y, Huang J. Machine Learning Optimizing Enzyme/ZIF Biocomposites for Enhanced Encapsulation Efficiency and Bioactivity. JACS AU 2024; 4:3170-3182. [PMID: 39211601 PMCID: PMC11350574 DOI: 10.1021/jacsau.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In this study, we present the first example of using a machine learning (ML)-assisted design strategy to optimize the synthesis formulation of enzyme/ZIFs (zeolitic imidazolate framework) for enhanced performance. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were chosen as model enzymes, while Zn(eIM)2 (eIM = 2-ethylimidazolate) was selected as the model ZIF to test our ML-assisted workflow paradigm. Through an iterative ML-driven training-design-synthesis-measurement workflow, we efficiently discovered GOx/ZIF (G151) and HRP/ZIF (H150) with their overall performance index (OPI) values (OPI represents the product of encapsulation efficiency (E in %), retained enzymatic activity (A in %), and thermal stability (T in %)) at least 1.3 times higher than those in systematic seed data studies. Furthermore, advanced statistical methods derived from the trained random forest model qualitatively and quantitatively reveal the relationship among synthesis, structure, and performance in the enzyme/ZIF system, offering valuable guidance for future studies on enzyme/ZIFs. Overall, our proposed ML-assisted design strategy holds promise for accelerating the development of enzyme/ZIFs and other enzyme immobilization systems for biocatalysis applications and beyond, including drug delivery and sensing, among others.
Collapse
Affiliation(s)
- Weibin Liang
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | | | - Ying Shu
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Jun Huang
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
7
|
Zhou W, Long Z, Xu C, Zhang J, Zhou X, Song X, Huo P, Guo Y, Xue W, Wang Q, Zhou C. Advances in Functionalized Biocomposites of Living Cells Combined with Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14749-14765. [PMID: 38989975 DOI: 10.1021/acs.langmuir.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Motivated by the remarkable innate characteristics of cells in living organisms, we have found that hybrid materials that combine bioorganisms with nanomaterials have significantly propelled advancements in industrial applications. However, the practical deployment of unmodified living entities is inherently limited due to their sensitivity to environmental fluctuations. To surmount these challenges, an efficacious strategy for the biomimetic mineralization of living organisms with nanomaterials has emerged, demonstrating extraordinary potential in biotechnology. Among them, innovative composites have been engineered by enveloping bioorganisms with a metal-organic framework (MOF) coating. This review systematically summarizes the latest developments in living cells/MOF-based composites, detailing the methodologies employed in structure fabrication and their diverse applications, such as bioentity preservation, sensing, catalysis, photoluminescence, and drug delivery. Moreover, the synergistic benefits arising from the individual compounds are elucidated. This review aspires to illuminate new prospects for fabricating living cells/MOF composites and concludes with a perspective on the prevailing challenges and impending opportunities for future research in this field.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zefeng Long
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuan Xu
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junge Zhang
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhou
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianghai Song
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengwei Huo
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Guo
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Xue
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| | - Quan Wang
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chen Zhou
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Liu S, Huo Y, Yin S, Chen C, Shi T, Mi W, Hu Z, Gao Z. A smartphone-based fluorescent biosensor with metal-organic framework biocomposites and cotton swabs for the rapid determination of tetrodotoxin in seafood. Anal Chim Acta 2024; 1311:342738. [PMID: 38816159 DOI: 10.1016/j.aca.2024.342738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Tetrodotoxin (TTX) is a potent neurovirulent marine biotoxin that is present in puffer fish and certain marine animals. It is capable of causing severe neurotoxic symptoms and even death when consumed through contaminated seafood. Due to its high toxicity, developing an effective assay for TTX determination in seafood has significant benefits for food safety and human health. Currently, it remains challenging to achieve on-site determination of TTX in seafood. To facilitate mass on-site assays, more affordable technologies utilizing accessible equipment that require no skilled personnel are needed. RESULTS A smartphone-based portable fluorescent biosensor is proposed for TTX determination by using metal-organic framework (MOF) biocomposites and cotton swabs. Oriented antibody (Ab)-decorated and fluorescent quantum dot (QD)-loaded MOF biocomposites (QD@MOF*Ab) are rapidly synthesized for binding targets and fluorescent responses by utilizing the tunability of zinc-based MOF. Moreover, facile Ab-immobilized household cotton swabs are utilized as TTX capture tools. TTX forms sandwich immune complexes with QD@MOF*Ab probes, achieving signal amplification. These probes are excited by a portable device to generate bright fluorescent signals, which can be detected by the naked eye, and TTX quantitative results are obtained using a smartphone. When observed with the naked eye, the limit of detection (LOD) is 0.4 ng/mL, while intelligent quantitation presents an LOD of 0.13 ng/mL at logarithmic concentrations of 0.2-400 ng/mL. SIGNIFICANCE This biosensor is convenient to use, and an easy-to-operate analysis is completed within 15 min, thus demonstrating excellent performance in terms of detection speed and portability. Furthermore, it successfully determines TTX contents in puffer fish and clam samples, demonstrating its potential for monitoring seafood. Herein, this work provides a favorable rapid sensing platform that is easily portable.
Collapse
Affiliation(s)
- Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Caiyun Chen
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyong Hu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
9
|
Wu Z, Ye Y, Guo Z, Wu X, Zhang L, Huang Z, Chen F. Stereoselective reduction of diarylmethanones via a ketoreductase@metal-organic framework. Org Biomol Chem 2024; 22:5198-5204. [PMID: 38864364 DOI: 10.1039/d4ob00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Mainly owing to their well-defined pore structures and high surface areas, metal-organic frameworks (MOFs) have recently become a versatile class of materials for enzyme immobilization. Nevertheless, most previous studies were focused on model enzymes such as cytochrome c, catalase, and glucose oxidase, with the application of MOF-derived biocomposites for (asymmetric) organic synthesis being rare. In the present work, the immobilization of the ketoreductase KmCR2 onto the zeolitic imidazolate framework (ZIF), a prominent type of MOF, was pursued using the controlled co-precipitation strategy, with a low 2-methylimidazole (2-mIM)/Zn molar ratio of 8 : 1 being employed. Such fabricated biocomposites denoted as KmCR2@ZIF were found to exist mainly in an amorphous phase, as suggested by the scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) data. Improved thermal and storage stabilities were observed for KmCR2@ZIF compared with the free enzyme. Stereoselective reduction of nine diarylmethanones 1 catalyzed by KmCR2@ZIF was performed, and the corresponding enantioenriched diarylmethanols 2 were afforded in 40-92% conversions with good to excellent optical purities (up to >99% ee). Critically, the current work demonstrated that the unique characteristic of KmCR2, namely the substituent position-controlled stereospecificity (meta versus para or ortho), was not altered upon the enzyme immobilization onto the ZIF.
Collapse
Affiliation(s)
- Zexin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yangtian Ye
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zijun Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Xiaofan Wu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Li Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Fener Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
10
|
Liu Y, Cui S, Ma W, Wu Y, Xin R, Bai Y, Chen Z, Xu J, Ge J. Direct Imaging of Protein Clusters in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:12565-12576. [PMID: 38661569 DOI: 10.1021/jacs.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Protein@metal-organic frameworks (P@MOFs) prepared by coprecipitation of protein, metal ions, and organic ligands represent an effective method for protein stabilization with a wide spectrum of applications. However, the formation mechanism of P@MOFs via the coprecipitation process and the reason why proteins can retain their biological activity in the frameworks with highly concentrated metal ions remain unsettled. Here, by a combined methodology of single molecule localization microscopy and clustering analysis, we discovered that in this process enzyme molecules form clusters with metal ions and organic ligands, contributing to both the nucleation and subsequent crystal growth. We proposed that the clusters played an important role in the retention of overall enzymatic activity by sacrificing protein molecules on the cluster surface. This work offers fresh perspectives on protein behaviors in the formation of P@MOFs, inspiring future endeavors in the design and development of artificial bionanocomposites with high biological activities.
Collapse
Affiliation(s)
- Yu Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shitong Cui
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yibo Wu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruobing Xin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunxiu Bai
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
11
|
Martin-Romera J, Borrego-Marin E, Jabalera-Ortiz PJ, Carraro F, Falcaro P, Barea E, Carmona FJ, Navarro JAR. Organophosphate Detoxification and Acetylcholinesterase Reactivation Triggered by Zeolitic Imidazolate Framework Structural Degradation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9900-9907. [PMID: 38344949 PMCID: PMC10910433 DOI: 10.1021/acsami.3c18855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.
Collapse
Affiliation(s)
- Javier
D. Martin-Romera
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Emilio Borrego-Marin
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Pedro J. Jabalera-Ortiz
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francesco Carraro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Paolo Falcaro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Elisa Barea
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francisco J. Carmona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Jorge A. R. Navarro
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| |
Collapse
|
12
|
Jackson D, Rose M, Kamenetska M. Tunable growth of a single high-density ZIF nanoshell on a gold nanoparticle isolated in an optical trap. NANOSCALE 2024; 16:2591-2598. [PMID: 38224315 DOI: 10.1039/d3nr05316d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Here, we demonstrate an all-optical method using an optical tweezer to controllably grow high quality zeolitic imidazolate framework (ZIF) nanoshells on the surface of gold nanoparticles (AuNPs) and monitor the growth via darkfield spectroscopy. Our single particle approach allows us to localize an individual NP within a microscope slide chamber containing ZIF precursors at the focus of an optical microscope and initiate growth through localized heating without affecting the bulk system. Darkfield spectroscopy is used to characterize changes to the localized surface plasmon resonance (LSPR) of the AuNP resulting from refractive index changes as the ZIF crystal grows on the surface. We show that the procedure can be generalized to grow various types of ZIF crystals, such as ZIF-8, ZIF-11, and a previously undocumented ZIF variety. Utilizing both computational models and experimental methods, we identify the thickness of ZIF layers to be self-limiting to ∼50 nm or less, depending on the trapping laser power. Critically, the refractive index of the shells here was found to be above 1.6, indicating the formation of high-density crystals, previously accessible only through slow atomic layer deposition and not through a bulk heating process. The single particle method developed here opens the door for bottom-up controllable growth of custom nanostructures with tunable optical properties.
Collapse
Affiliation(s)
- Daniel Jackson
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Maitreya Rose
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Maria Kamenetska
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Department of Physics, Boston University, Boston, MA 02215, USA
- Division of Material Science and Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Gao J, Chu W, Ding X, Ding L, Guo Q, Fu Y. Degradation Kinetic Studies of BSA@ZIF-8 Nanoparticles with Various Zinc Precursors, Metal-to-Ligand Ratios, and pH Conditions. ACS OMEGA 2023; 8:44601-44610. [PMID: 38046327 PMCID: PMC10688176 DOI: 10.1021/acsomega.3c04973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
Nanosized zeolitic imidazolate framework particles (ZIF-8 nanoparticles [NPs]) have strong potential as effective carriers for both in vivo and in vitro protein drug delivery. Synthesis of ZIF-8 and stability of protein encapsulation within ZIF-8 are affected by several factors, notably the metal ion source and molar ratio. To systematically investigate these factors, we investigated such effects using BSA as a model test protein to synthesize BSA@ZIF-8 NPs at various metal-to-ligand (M:L) ratios. SEM, FTIR, XRD, and DLS were applied to characterize the morphology and structure of BSA@ZIF-8 NPs and their effects on protein loading capacity. Degradation kinetics and protein release behavior of BSA@ZIF-8 NPs were evaluated at pH 5.0 (to simulate the tumor environment) and pH 7.4 (to mimic the blood environment). Our objective was to define optimal combinations of the high protein loading rate and rapid release under varying pH conditions, and we found that (i) the yield of BSA@ZIF-8 NPs decreased as the M:L ratio increased, but the protein content increased. This highlights the need to strike a balance between cost-effectiveness and practicality when selecting ZIF-8 NPs with different molar ratios for protein-based drug formulation. (ii) BSA@ZIF-8 NPs exhibited cruciate flower-like shapes when synthesized using Zn(NO3)2 as the zinc precursor at M:L ratios of 1:16 or 1:20. In all other cases, the NPs displayed a regular rhombic dodecahedral structure. Notably, the release behavior of the NPs did not differ significantly between these morphologies. (iii) When Zn(OAc)2 was used as the zinc precursor, the synthesized ZIF-8 NPs exhibited a smaller size compared to the Zn(NO3)2-derived ZIF-8 NPs. (iv) The release rate and amount of BSA protein were higher at pH 5.0 compared to pH 7.4. (v) Among the different formulations, BSA@ZIF-8 with an M:L ratio of 1:16 at pH 5.0 was observed to have a shorter time to reach a plateau (0.5 h) and higher protein release, making it suitable for locally rapid administration in a tumor environment. BSA@ZIF-8 prepared from Zn(OAc)2 at an M:L ratio of 1:140 showed the slower release of BSA protein over a 24-h period, indicating its suitability for sustained release delivery. In conclusion, our findings provide a useful basis for the practical application of ZIF-8 NPs in protein-based drug delivery systems.
Collapse
Affiliation(s)
- Jia Gao
- Taizhou
Key Laboratory of Biomass Functional Materials Development and Application,
School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
- College
of Life Science and Medicine, Zhejiang Sci-Tech
University, Hangzhou, Zhejiang 310018, China
| | - Wenhui Chu
- Taizhou
Key Laboratory of Biomass Functional Materials Development and Application,
School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xuankai Ding
- Taizhou
Key Laboratory of Biomass Functional Materials Development and Application,
School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
- College
of Life Science and Medicine, Zhejiang Sci-Tech
University, Hangzhou, Zhejiang 310018, China
| | - Lingzhi Ding
- Taizhou
Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qing Guo
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yongqian Fu
- Taizhou
Key Laboratory of Biomass Functional Materials Development and Application,
School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
14
|
Guerrero F, Carmona A, Vidal V, Franco A, Martín-Malo A, Sánchez-Fernández EM, Carrillo-Carrión C. A selenoureido-iminoglycolipid transported by zeolitic-imidazolate framework nanoparticles: a novel antioxidant therapeutic approach. NANOSCALE HORIZONS 2023; 8:1700-1710. [PMID: 37819240 DOI: 10.1039/d3nh00363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A selenium-containing metal-organic framework with remarkable antioxidant capacity and ROS-scavenging activity was constructed by a controlled de novo encapsulation approach of a glycoconjugate mimetic, specifically a sp2-iminoglycolipid bearing a selenoureido fragment (DSeU), within a zeolitic-imidazolate framework exoskeleton. Biocompatible and homogeneous nanosized particles of ∼70 nm (DSeU@ZIF8) were obtained, which could be efficiently internalized in cells, overcoming the poor solubility in biological media and limited bioavailability of glycolipids. The ZIF-particle served as nanocarrier for the intracellular delivery of the selenocompound to cells, promoted by the acidic pH inside endosomes/lysosomes. As demonstrated by in vitro studies, the designed DSeU@ZIF8 nanoparticles displayed a high antioxidant activity at low doses; lower intracellular ROS levels were observed upon the uptake of DSeU@ZIF8 by human endothelial cells. Even more interesting was the finding that these DSeU@ZIF8 particles were able to reverse to a certain level the oxidative stress induced in cells by pre-treatment with an oxidizing agent. This possibility of modulating the oxidative stress in living cells may have important implications in the treatment of diverse pathological complications that are generally accompanied with elevated ROS levels.
Collapse
Affiliation(s)
- Fátima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Andrés Carmona
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Victoria Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Franco
- Leibniz Institute für Katalyse e. V., 18059 Rostock, Germany
| | - Alejandro Martín-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain.
| | - Carolina Carrillo-Carrión
- Institute for Chemical Research (IIQ), CSIC-University of Seville, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
15
|
Zheng Q, Sheng J, Liu J, Chen X, Wang M. Histidine-Rich Protein Accelerates the Biomineralization of Zeolitic Imidazolate Frameworks for In Vivo Protein Delivery. Biomacromolecules 2023; 24:5132-5141. [PMID: 37859395 DOI: 10.1021/acs.biomac.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Biomineralization of metal-organic frameworks (MOFs) provides a powerful approach for intracellular protein delivery, enabling the study of biological function and therapeutic potential of proteins. However, the potency of this approach is largely challenged by the low efficiency of current strategies for interfacing proteins with MOFs for biomineralization and intracellular delivery. Here, we report a versatile and convenient biomineralization strategy for the rapid encapsulation and enhanced delivery of proteins using MOFs, accelerated by histidine-rich proteins. We demonstrate that the histidine-rich green fluorescent protein (H39GFP) can accelerate the biomineralization of MOFs by promoting the coordination between proteins and metal ions, leading to enhanced protein delivery efficiency up to 15-fold. Moreover, we show that the delivery of H39GFP-fused cytotoxic ribonuclease and bacterial-derived RAS protease can effectively inhibit tumor cell growth. The strategy of promoting the biomineralization of MOFs via histidine-rich proteins for enhanced intracellular delivery could be expanded to other biomacromolecules, advancing their therapeutic potential and the biomedical scope of MOFs.
Collapse
Affiliation(s)
- Qizhen Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhan Sheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Yong J, Hakobyan K, Xu J, Mellick AS, Whitelock J, Liang K. Comparison of protein quantification methods for protein encapsulation with ZIF-8 metal-organic frameworks. Biotechnol J 2023; 18:e2300015. [PMID: 37436154 DOI: 10.1002/biot.202300015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
The use of metal-organic frameworks (MOFs) as delivery systems for biologically functional macromolecules has been explored widely in recent years due to their ability to protect their payload from a wide range of harsh conditions. Given the wide usage and diversity of potential applications, optimising the encapsulation efficiency by MOFs for different biological is of particular importance. Here, several protein quantitation methods and report were compared on the accuracy, practicality, limitations, and sensitivity of these methods to assess the encapsulation efficiency of zeolitic imidazolate frameworks (ZIF)-8 MOFs for two common biologicals commonly used in nanomedicine, bovine serum albumin (BSA), and the enzyme catalase (CAT). Using these methods, ZIF-8 encapsulation of BSA and CAT was confirmed to enrich for high molecular weight and glycosylated protein forms. However, contrary to most reports, a high degree of variance was observed across all methods assessed, with fluorometric quantitation providing the most consistent results with the lowest background and greatest dynamic range. While bicinchoninic acid (BCA) assay has showed greater detection range than the Bradford (Coomassie) assay, BCA and Bradford assays were found to be susceptible to background from the organic "MOF" linker 2-methylimidazole, reducing their overall sensitivity. Finally, while very sensitive and useful for assessing protein quality SDS-PAGE is also susceptible to confounding artifacts and background. Given the increasing use of enzyme delivery using MOFs, and the diversity of potential uses in biomedicine, identifying a rapid and efficient method of assessing biomolecule encapsulation is key to their wider acceptance.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Karen Hakobyan
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jiangtao Xu
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
17
|
Sun X, Yang Z, Zhang M, Gao X. A simple one step synthesis of magnetic-optical dual functional ZIF-8 in a sodalite phase for magnetically guided targeting bioimaging and drug delivery. SOFT MATTER 2023; 19:8164-8171. [PMID: 37850350 DOI: 10.1039/d3sm01100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Functionalized metal-organic frameworks (MOFs) that integrate targeted tumor imaging and drug delivery are expected to significantly enhance the therapeutic efficacy of cancer. However, the complicated synthesis process has greatly limited their utilization in clinical application. Herein, a one-step simple method was used to construct novel multifunctional MOFs by co-loading doxorubicin (DOX) and Fe3O4 into the ZIF-8 with sodalite topology. DOX serves as a fluorescence imaging reagent and an anticancer drug and Fe3O4 is used as a magnetic resonance imaging and magnetic targeting anticancer reagent. The fabricated DOX/Fe3O4@ZIF-8 nanocomposite showed excellent fluorescence and magnetic resonance imaging performances in tumors. Moreover, DOX/Fe3O4@ZIF-8 can be accumulated in tumors via a magnetic targeting effect and tumor growth could be inhibited in vivo due to the release of DOX. Additionally, the apoptosis process of DOX/Fe3O4@ZIF-8 on HepG2 cells is well investigated. Overall, DOX/Fe3O4@ZIF-8 synthesized in simple one step can be used for simultaneous targeted bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Xujian Sun
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| | - Zhichao Yang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| | - Man Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| | - Xuechuan Gao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| |
Collapse
|
18
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
19
|
Liang W, Flint K, Yao Y, Wu J, Wang L, Doonan C, Huang J. Enhanced Bioactivity of Enzyme/MOF Biocomposite via Host Framework Engineering. J Am Chem Soc 2023; 145:20365-20374. [PMID: 37671920 DOI: 10.1021/jacs.3c05488] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This study reports the successful development of a sustainable synthesis protocol for a phase-pure metal azolate framework (MAF-6) and its application in enzyme immobilization. An esterase@MAF-6 biocomposite was synthesized, and its catalytic performance was compared with that of esterase@ZIF-8 and esterase@ZIF-90 in transesterification reactions. Esterase@MAF-6, with its large pore aperture, showed superior enzymatic performance compared to esterase@ZIF-8 and esterase@ZIF-90 in catalyzing transesterification reactions using both n-propanol and benzyl alcohol as reactants. The hydrophobic nature of the MAF-6 platform was shown to activate the immobilized esterase into its open-lid conformation, which exhibited a 1.5- and 4-times enzymatic activity as compared to free esterase in catalyzing transesterification reaction using n-propanol and benzyl alcohol, respectively. The present work offers insights into the potential of MAF-6 as a promising matrix for enzyme immobilization and highlights the need to explore MOF matrices with expanded pore apertures to broaden their practical applications in biocatalysis.
Collapse
Affiliation(s)
- Weibin Liang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Kate Flint
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yuchen Yao
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Jiacheng Wu
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Christian Doonan
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
20
|
Di Matteo V, Di Filippo MF, Ballarin B, Gentilomi GA, Bonvicini F, Panzavolta S, Cassani MC. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. J Funct Biomater 2023; 14:472. [PMID: 37754886 PMCID: PMC10532010 DOI: 10.3390/jfb14090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections.
Collapse
Affiliation(s)
- Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Center for Industrial Research—Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Panzavolta
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST–ICIR), Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
21
|
Tian G, Zhou Z, Li M, Li X, Xu T, Zhang X. Oriented Antibody-Assembled Metal-Organic Frameworks for Persistent Wearable Sweat Cortisol Detection. Anal Chem 2023; 95:13250-13257. [PMID: 37615076 DOI: 10.1021/acs.analchem.3c02392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The level of cortisol can reflect people's psychological stress, help diagnose adrenal gland diseases, and is also related to several mental diseases. In this study, we developed a cortisol monoclonal antibody-oriented approach to modify an immunosensor for wearable label-free and persistent sweat cortisol detection. On such an antibody-oriented immunosensor, the fragment crystallizable (Fc) region is partially inserted within the metal-organic framework (MOF), and antibody-binding regions of the cortisol monoclonal antibody (Cmab) were exposed on the MOF surface via selective growth and self-assembly. Such ordered and oriented embedding of antibodies in the MOF resulted in excellent antibody activity and improved stability and antigen-binding capacity. We also engineered the full integrated system for on-body sweat cortisol biosensing performance in several volunteers, and the results indicated that this wearable sensor is suitable for practical cortisol detection with a good linear detection range from 1 pg/mL to 1 μg/mL with a lower limit of detection of 0.26 pg/mL. Moreover, the wearable sensor demonstrated good persistence in detecting cortisol, with only 4.1% decay after 9 days of storage. The present work represents a simple oriented antibody assembling approach to improve the stability of antibodies, providing an important step toward long-term continuous sweat biomarker detection.
Collapse
Affiliation(s)
- Guang Tian
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, PR China
| | - Zhongzeng Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, PR China
| | - Mengmeng Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, PR China
| | - Xiangnan Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, PR China
| | - Tailin Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
22
|
Pyreddy S, Poddar A, Carraro F, Polash SA, Dekiwadia C, Murdoch B, Nasa Z, Reddy TS, Falcaro P, Shukla R. Targeting telomerase utilizing zeolitic imidazole frameworks as non-viral gene delivery agents across different cancer cell types. BIOMATERIALS ADVANCES 2023; 149:213420. [PMID: 37062125 DOI: 10.1016/j.bioadv.2023.213420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Telomerase, a ribonucleoprotein coded by the hTERT gene, plays an important role in cellular immortalization and carcinogenesis. hTERT is a suitable target for cancer therapeutics as its activity is highly upregulated in most of cancer cells but absent in normal somatic cells. Here, by employing the two Metal-Organic Frameworks (MOFs), viz. ZIF-C and ZIF-8, based biomineralization we encapsulate Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 plasmid system that targets hTERT gene (CrhTERT) in cancer cells. When comparing the two biocomposites, ZIF-C shows the better loading capacity and cell viability. The loaded plasmid in ZIF-C is highly protected against enzymatic degradation. CrhTERT@ZIF-C is efficiently endocytosed by cancer cells and the subcellular release of CrhTERT leads to telomerase knockdown. The resultant inhibition of hTERT expression decreases cellular proliferation and causing cancer cell death. Furthermore, hTERT knockdown shows a significant reduction in tumour metastasis and alters protein expression. Collectively we show the high potential of ZIF-C-based biocomposites as a promising general tool for gene therapy of different types of cancers.
Collapse
Affiliation(s)
- Suneela Pyreddy
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Arpita Poddar
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Shakil Ahmed Polash
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Billy Murdoch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Zeyad Nasa
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - T Srinivasa Reddy
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria.
| | - Ravi Shukla
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
23
|
Murty R, Bera MK, Walton IM, Whetzel C, Prausnitz MR, Walton KS. Interrogating Encapsulated Protein Structure within Metal-Organic Frameworks at Elevated Temperature. J Am Chem Soc 2023; 145:7323-7330. [PMID: 36961883 PMCID: PMC10080685 DOI: 10.1021/jacs.2c13525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Encapsulating biomacromolecules within metal-organic frameworks (MOFs) can confer thermostability to entrapped guests. It has been hypothesized that the confinement of guest molecules within a rigid MOF scaffold results in heightened stability of the guests, but no direct evidence of this mechanism has been shown. Here, we present a novel analytical method using small-angle X-ray scattering (SAXS) to solve the structure of bovine serum albumin (BSA) while encapsulated within two zeolitic imidazolate frameworks (ZIF-67 and ZIF-8). Our approach comprises subtracting the scaled SAXS spectrum of the ZIF from that of the biocomposite BSA@ZIF to determine the radius of gyration of encapsulated BSA through Guinier, Kratky, and pair distance distribution function analyses. While native BSA exposed to 70 °C became denatured, in situ SAXS analysis showed that encapsulated BSA retained its size and folded state at 70 °C when encapsulated within a ZIF scaffold, suggesting that entrapment within MOF cavities inhibited protein unfolding and thus denaturation. This method of SAXS analysis not only provides insight into biomolecular stabilization in MOFs but may also offer a new approach to study the structure of other conformationally labile molecules in rigid matrices.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ian M Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina Whetzel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Jung C, Choi SB, Park J, Jung M, Kim J, Oh H, Kim J. Porous zeolitic imidazolate frameworks assembled with highly-flattened tetrahedral copper(II) centres and 2-nitroimidazolates. Chem Commun (Camb) 2023; 59:4040-4043. [PMID: 36924406 DOI: 10.1039/d2cc06797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cu(II)-based zeolitic imidazolates (Cu-ZIFs), Cu-ZIF-gis and -rho, formulated as Cu(nIm)2 (nIm = 2-nitroimidazolate) have highly-flattened tetrahedral coordination geometry. Cu-ZIF-gis has 2.4 Å cylindrical pores that can adsorb H2 gas, and Cu-ZIF-rho has 19.8 Å cages with a BET surface area of 1320 m2 g-1.
Collapse
Affiliation(s)
- Cheolwon Jung
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Sang Beom Choi
- Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jaewoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Minji Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Jonghoon Kim
- Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Hyunchul Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea. .,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jaheon Kim
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
25
|
Yang J, Huang W, Zhang W, Wei K, Pan B, Zhang S. Using Defect Control To Break the Stability-Activity Trade-Off in Enzyme Immobilization via Competitive Coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2312-2321. [PMID: 36720635 DOI: 10.1021/acs.langmuir.2c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immobilization of enzymes within metal-organic frameworks is a powerful strategy to enhance the long-term usability of labile enzymes. However, the thus-confined enzymes suffer from the trade-off between enhanced stability and reduced activity because of the contradiction between the high crystallinity and the low accessibility. Here, by taking laccase and zeolitic imidazolate framework-8 (ZIF-8) as prototypes, we disclosed an observation that the stability-activity trade-off could be solved by controlling the defects via competitive coordination. Owing to the presence of competitive coordination between laccase and the ligand precursor of ZIF-8, there existed a three-stage process in the de novo encapsulation: nucleation-crystallization-recrystallization. Our results show that the biocomposites collected before the occurrence of recrystallization possessed both increased activity and enhanced stability. The findings here shed new light on the control of defects through the subtle use of competitive coordination, which is of great significance for the engineering application of biomacromolecules.
Collapse
Affiliation(s)
- Jianghua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wenguang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wentao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Kunrui Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
26
|
Zhu Y, Zhi Q, Zhang C, Gu Y, Liu S, Qiao S, Lai H. Debridement of contaminated implants using air-polishing coupled with pH-responsive maximin H5-embedded metal-organic frameworks. Front Bioeng Biotechnol 2023; 11:1124107. [PMID: 36777249 PMCID: PMC9908744 DOI: 10.3389/fbioe.2023.1124107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The primary goal of peri-implantitis treatments remains the decontamination of implant surfaces exposed to polymicrobial biofilms and renders biocompatibility. In this study, we reported a synergistic strategy for the debridement and re-osteogenesis of contaminated titanium by using erythritol air abrasion (AA) coupled with an as-synthesized pH-responsive antimicrobial agent. Here, the anionic antibacterial peptide Maximin H5 C-terminally deaminated isoform (MH5C) was introduced into the Zeolitic Imidazolate Frameworks (ZIF-8) via a one-pot synthesis process. The formed MH5C@ZIF-8 nanoparticles (NPs) not only possessed suitable stability, but also guarantee the slow-release effect of MH5C. Antibacterial experiments revealed that MH5C@ZIF-8 NPs exhibited excellent antimicrobial abilities toward pathogenic bacteria of peri-implantitis, confirming ZIF-8 NPs as efficient nanoplatforms for delivering antibacterial peptide. To evaluate the comprehensive debridement efficiency, single-species as well as mixed-species biofilms were successively established on commercially used titanium surfaces and decontaminated with different methods: removed only by erythritol air abrasion, treated merely with MH5C@ZIF-8 NPs, or received both managements. The results demonstrated that only erythritol air abrasion accompanied with MH5C@ZIF-8 NPs at high concentrations eliminated almost all retained bacteria and impeded biofilm rehabilitation, while neither erythritol air abrasion nor MH5C@ZIF-8 NPs alone could achieve this. Subsequently, we evaluated the re-osteogenesis on previously contaminated surfaces which were treated with different debridement methods afterwards. We found that cell growth and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in the group received both treatments (AA + MH5C@ZIF-8) were higher than those in other groups. Our work emphasized the great potential of the synergistic therapy as a credible alternative for removing microorganisms and rendering re-osseointegration on contaminated implant surfaces, boding well for the comprehensive applications in peri-implantitis treatments.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qiang Zhi
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunan Zhang
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingxin Gu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuli Liu
- National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Shuli Liu, ; Shichong Qiao, ; Hongchang Lai,
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Shuli Liu, ; Shichong Qiao, ; Hongchang Lai,
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Shuli Liu, ; Shichong Qiao, ; Hongchang Lai,
| |
Collapse
|
27
|
Tagore R, Alagarasu K, Patil P, Pyreddy S, Polash SA, Kakade M, Shukla R, Parashar D. Targeted in vitro gene silencing of E2 and nsP1 genes of chikungunya virus by biocompatible zeolitic imidazolate framework. Front Bioeng Biotechnol 2022; 10:1003448. [PMID: 36601387 PMCID: PMC9806579 DOI: 10.3389/fbioe.2022.1003448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever caused by the mosquito-transmitted chikungunya virus (CHIKV) is a major public health concern in tropical, sub-tropical and temperate climatic regions. The lack of any licensed vaccine or antiviral agents against CHIKV warrants the development of effective antiviral therapies. Small interfering RNA (siRNA) mediated gene silencing of CHIKV structural and non-structural genes serves as a potential antiviral strategy. The therapeutic efficiency of siRNA can be improved by using an efficient delivery system. Metal-organic framework biocomposits have demonstrated an exceptional capability in protecting and efficiently delivering nucleic acids into cells. In the present study, carbonated ZIF called ZIF-C has been utilized to deliver siRNAs targeted against E2 and nsP1 genes of CHIKV to achieve a reduction in viral replication and infectivity. Cellular transfection studies of E2 and nsP1 genes targeting free siRNAs and ZIF-C encapsulated siRNAs in CHIKV infected Vero CCL-81 cells were performed. Our results reveal a significant reduction of infectious virus titre, viral RNA levels and percent of infected cells in cultures transfected with ZIF-C encapsulated siRNA compared to cells transfected with free siRNA. The results suggest that delivery of siRNA through ZIF-C enhances the antiviral activity of CHIKV E2 and nsP1 genes directed siRNAs.
Collapse
Affiliation(s)
- Rajarshee Tagore
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Kalichamy Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Poonam Patil
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Suneela Pyreddy
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Shakil Ahmed Polash
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Mahadeo Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| | - Deepti Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| |
Collapse
|
28
|
Wijesundara YH, Herbert FC, Trashi O, Trashi I, Brohlin OR, Kumari S, Howlett T, Benjamin CE, Shahrivarkevishahi A, Diwakara SD, Perera SD, Cornelius SA, Vizuet JP, Balkus KJ, Smaldone RA, De Nisco NJ, Gassensmith JJ. Carrier gas triggered controlled biolistic delivery of DNA and protein therapeutics from metal-organic frameworks. Chem Sci 2022; 13:13803-13814. [PMID: 36544734 PMCID: PMC9710232 DOI: 10.1039/d2sc04982a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
The efficacy and specificity of protein, DNA, and RNA-based drugs make them popular in the clinic; however, these drugs are often delivered via injection, requiring skilled medical personnel, and producing biohazardous waste. Here, we report an approach that allows for their controlled delivery, affording either a burst or slow release without altering the formulation. We show that when encapsulated within zeolitic-imidazolate framework eight (ZIF-8), the biomolecules are stable in powder formulations and can be inoculated with a low-cost, gas-powered "MOF-Jet" into living animal and plant tissues. Additionally, their release profiles can be modulated through judicious selection of the carrier gas used in the MOF-Jet. Our in vitro and in vivo studies reveal that when CO2 is used, it creates a transient and weakly acidic local environment that causes a near-instantaneous release of the biomolecules through an immediate dissolution of ZIF-8. Conversely, when air is used, ZIF-8 biodegrades slowly, releasing the biomolecules over a week. This is the first example of controlled-biolistic delivery of biomolecules using ZIF-8, which provides a powerful tool for fundamental and applied science research.
Collapse
Affiliation(s)
- Yalini H. Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Fabian C. Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Olivia R. Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Candace E. Benjamin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Arezoo Shahrivarkevishahi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Shashini D. Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Sachini D. Perera
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Samuel A. Cornelius
- Department of Biological Sciences, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Juan P. Vizuet
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Kenneth J. Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Ronald A. Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Nicole J. De Nisco
- Department of Biological Sciences, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA,Department of Biomedical Engineering, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| |
Collapse
|
29
|
Hafner MR, Villanova L, Carraro F. App-based quantification of crystal phases and amorphous content in ZIF biocomposites. CrystEngComm 2022; 24:7266-7271. [PMID: 36353391 PMCID: PMC9595036 DOI: 10.1039/d2ce00073c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/04/2022] [Indexed: 09/28/2023]
Abstract
The performance of zeolitic imidazolate frameworks (ZIFs) as protective hosts for proteins in drug delivery or biocatalysis strongly depends on the type of crystalline phase used for the encapsulation of the biomacromolecule (biomacromolecule@ZIF). Therefore, quantifying the different crystal phases and the amount of amorphous content of ZIFs is becoming increasingly important for a better understanding of the structure-property relationship. Typically, crystalline ZIF phases are qualitatively identified from diffraction patterns. However, accurate phase examinations are time-consuming and require specialized expertise. Here, we propose a calibration procedure (internal standard ZrO2) for the rapid and quantitative analysis of crystalline and amorphous ZIF phases from diffraction patterns. We integrated the procedure into a user-friendly web application, named ZIF Phase Analysis, which facilitates ZIF-based data analysis. As a result, it is now possible to quantify i) the relative amount of various common crystal phases (sodalite, diamondoid, ZIF-CO3-1, ZIF-EC-1, U12 and ZIF-L) in biomacromolecule@ZIF biocomposites based on Zn2+ and 2-methylimidazole (HmIM) and ii) the crystalline-to-amorphous ratio. This new analysis tool will advance the research on ZIF biocomposites for drug delivery and biocatalysis.
Collapse
Affiliation(s)
- Michael R Hafner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Laura Villanova
- Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology 8010 Graz Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|
30
|
Carpenter B, Talosig AR, Mulvey JT, Merham JG, Esquivel J, Rose B, Ogata AF, Fishman DA, Patterson JP. Role of Molecular Modification and Protein Folding in the Nucleation and Growth of Protein-Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8336-8344. [PMID: 36193290 PMCID: PMC9523577 DOI: 10.1021/acs.chemmater.2c01903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of porous nanomaterials that have been extensively studied as enzyme immobilization substrates. During in situ immobilization, MOF nucleation is driven by biomolecules with low isoelectric points. Investigation of how biomolecules control MOF self-assembly mechanisms on the molecular level is key to designing nanomaterials with desired physical and chemical properties. Here, we demonstrate how molecular modifications of bovine serum albumin (BSA) with fluorescein isothiocyanate (FITC) can affect MOF crystal size, morphology, and encapsulation efficiency. Final crystal properties are characterized using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), fluorescent microscopy, and fluorescence spectroscopy. To probe MOF self-assembly, in situ experiments were performed using cryogenic transmission electron microscopy (cryo-TEM) and X-ray diffraction (XRD). Biophysical characterization of BSA and FITC-BSA was performed using ζ potential, mass spectrometry, circular dichroism studies, fluorescence spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The combined data reveal that protein folding and stability within amorphous precursors are contributing factors in the rate, extent, and mechanism of crystallization. Thus, our results suggest molecular modifications as promising methods for fine-tuning protein@MOFs' nucleation and growth.
Collapse
Affiliation(s)
- Brooke
P. Carpenter
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - A. Rain Talosig
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Justin T. Mulvey
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697-2025, United States
| | - Jovany G. Merham
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Jamie Esquivel
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Ben Rose
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Alana F. Ogata
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Dmitry A. Fishman
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
31
|
Zhang Y, Hao H, Lin J, Ma Z, Li H, Nie Z, Cui Y, Guo Z, Zhang Y, Wang X, Tang R. Conformation-Stabilized Amorphous Nanocoating for Rational Design of Long-Term Thermostable Viral Vaccines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39873-39884. [PMID: 36018064 DOI: 10.1021/acsami.2c12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the great potency of vaccines to combat infectious diseases, their global use is hindered by a lack of thermostability, which leads to a constant need for cold-chain storage. Here, aiming at long-term thermostability and eliminating cold-chain requirements of bioactive vaccines, we propose that efforts should focus on tailoring the conformational stability of vaccines. Accordingly, we design a nanocoating composed of histidine (His)-coordinated amorphous Zn and 2-methylimidazolate complex (His-aZn-mIM) on single nanoparticles of viral vaccines to introduce intramolecular coordinated linkage between viruses and the nanocoatings. The coordinated nanocoating enhances the rigidity of proteins and preserves the vaccine's activity. Importantly, integrating His into the original Zn-N coordinative environment symbiotically reinforces its tolerance to biological and hydrothermal solutions, resulting in the augmented thermostability following the Hofmeister effect. Thus, even after storage of His-aZn-mIM encapsulated Human adenovirus type 5 (Ad5@His-aZn-mIM) at 25 °C for 90 d, the potency loss of the coated Ad5 is less than 10%, while the native Ad5 becomes 100% ineffective within one month. Such a nanocoating gains thermostability by forming an ultrastable hydration shell, which prevents viral proteins from unfolding under the attack of hydration ions, providing a conformational stabilizer upon heat exposure. Our findings represent an easy-access biomimetic platform to address the long-term vaccine storage without the requirement of a cold chain.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Sir Run Run Shaw Hospital, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Haibin Hao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Huixin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zihao Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yaqin Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Sir Run Run Shaw Hospital, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Sir Run Run Shaw Hospital, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
32
|
Kaang BK, Ha L, Joo JU, Kim DP. Laminar flow-assisted synthesis of amorphous ZIF-8-based nano-motor with enhanced transmigration for photothermal cancer therapy. NANOSCALE 2022; 14:10835-10843. [PMID: 35838155 DOI: 10.1039/d2nr02501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of their biocompatibility, there are promising applications in various fields for enzyme-powered nano-motors. However, enzymes can undergo denaturation under harsh conditions. Here, we report the flow-assisted synthesis of an enzyme-based amorphous ZIF-8 nano-motor (A-motor; Pdop@urease@aZIF-8) for enhanced movement and protection of polydopamine and enzymes. Multiple laminar flow types with varied input ratios effectively entrapped enzymes into amorphous ZIF-8 shells in a serial flow with a momentary difference. The obtained A-motor exhibited superior enzymatic activity and photothermal ablation properties with excellent durability due to the protection the amorphous shell offers from the external environment. Furthermore, in the bio-mimic 2D membrane model, the enhanced mobility of the A-motor afforded high transmigration (>80%), which had a powerful effect on bladder cancer cell ablation via photothermal therapy. This work envisages that the rapid flow approach will facilitate scalable manufacturing of the nano-motors under low stress to vulnerable biomolecules, which would be extended to nano-biomedical applications in various body environments.
Collapse
Affiliation(s)
- Byung Kwon Kaang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
33
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
34
|
Hao Y, Deng S, Wang R, Xia Q, Zhang K, Wang X, Liu H, Liu Y, Huang M, Xie M. Development of dual-enhancer biocatalyst with photothermal property for the degradation of cephalosporin. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128294. [PMID: 35065309 DOI: 10.1016/j.jhazmat.2022.128294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The abuse of cephalosporins poses a serious threat to human health and the ecological environment. In this work, cephalosporinase (AmpC enzyme) and Prussian blue (PB) crystals were encapsulated into ZIF-8 metal-organic frameworks (MOFs), and a photothermal AmpC/PB@ZIF-8 MOFs (APZ) nanocatalyst was prepared for the catalytic degradation of cephalosporin. The temperature of the APZ catalytic degradation system can be regulated by irradiation with near infrared light due to the photothermal effect of PB, and then, the activity of the APZ biocatalyst is significantly enhanced. Thereby, the degradation efficiency of cefuroxime can reach to 96%, and the degradation kinetic rate of cefuroxime augmented 4.5-fold comparing with that catalyzed by free enzyme. Moreover, encapsulation of the enzyme and PB can increase the affinity and charge transfer efficiency between APZ and substrate molecules, which can also improve the degradation efficiency of cephalosporins. Catalytic degradation pathways for three generations of cephalosporins were proposed based on their degradation products. The dual-enhancer biocatalyst based on the photothermal effect and immobilization of the PB and enzyme can significantly enhance the activity and stability of the enzyme, and it can also be recycled. Therefore, the biocatalyst has potential applications for the effective degradation of cephalosporins in the environment.
Collapse
Affiliation(s)
- Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Ruoxin Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Qianshu Xia
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Min Huang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
35
|
Alt K, Carraro F, Jap E, Linares-Moreau M, Riccò R, Righetto M, Bogar M, Amenitsch H, Hashad RA, Doonan C, Hagemeyer CE, Falcaro P. Self-Assembly of Oriented Antibody-Decorated Metal-Organic Framework Nanocrystals for Active-Targeting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106607. [PMID: 34866253 DOI: 10.1002/adma.202106607] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.
Collapse
Affiliation(s)
- Karen Alt
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Edwina Jap
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Raffaele Riccò
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Department of Industrial Systems Engineering, School of Engineering and Technology, Asian Institute of Technology (AIT), PO Box 4, Klong Luang, Pathum Thani, 12120, Thailand
| | - Marcello Righetto
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Marco Bogar
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Rania A Hashad
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Christian Doonan
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
36
|
Singh R, White JF, de Vries M, Beddome G, Dai M, Bean AG, Mulet X, Layton D, Doherty CM. Biomimetic metal-organic frameworks as protective scaffolds for live-virus encapsulation and vaccine stabilization. Acta Biomater 2022; 142:320-331. [PMID: 35134566 DOI: 10.1016/j.actbio.2022.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
Abstract
The invaluable health, economic and social impacts of vaccination are hard to exaggerate. The ability to stabilize vaccines is urgently required for their equitable distribution without the dependence on the 'cold-chain' logistics. Herein, for the first time we report biomimetic-mineralization of live-viral vaccines using metal-organic frameworks (MOFs) to enhance their storage stability from days to months. Applying ZIF-8 and aluminium fumarate (Alfum), the Newcastle Disease Virus (NDV) V4 strain and Influenza A WSN strain were encapsulated with remarkable retention of their viral titre. The ZIF-8@NDV, ZIF-8@WSN and Alfum@WSN composites were validated for live-virus recovery using a tissue culture infectious dose (TCID50) assay. With the objective of long-term stabilization, we developed a novel, trehalose (T) and skim milk (SM) stabilized, freeze-dried MOF@Vaccine composite, ZIF-8@NDV+T/SM. The thermal stability of this composite was investigated and compared with the control NDV and non-encapsulated, freeze-dried NDV+T/SM composite at 4 °C, RT, and 37 °C over a period of 12 weeks. We demonstrate the fragility of the control NDV vaccine which lost all viability at RT and 37°C by 12 and 4 weeks, respectively. Comparing the freeze-dried counterparts, the MOF encapsulated ZIF-8@NDV+T/SM demonstrated significant enhancement in stability of the NDV+T/SM composite especially at RT and 37 °C upto 12 weeks. STATEMENT OF SIGNIFICANCE: Vaccination is undoubtedly one of the most effective medical interventions, saving millions of lives each year. However, the requirement of 'cold-chain' logistics is a major impediment to widespread immunization. Live viral vaccines (LVVs) are widely used vaccine types with proven efficacy and low cost. Nonetheless, their complex composition increases their susceptability to thermal stress. Several LVV thermostabilization approaches have been investigated, including their complex engineering and the facile addition of stabilizers. Still, the lack of a universal approach urgently requires finding a stabilization technique especially when additives alone may not be sufficient. Herein, we demonstrate MOF biomimetic-mineralization technology to encapsulate LVVs developing an optimised composite which significantly preserves vaccines without refrigeration for extended periods of time.
Collapse
Affiliation(s)
- Ruhani Singh
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia.
| | - Jacinta F White
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Malisja de Vries
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Gary Beddome
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia
| | - Meiling Dai
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia
| | - Andrew G Bean
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Daniel Layton
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia.
| | - Cara M Doherty
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia.
| |
Collapse
|
37
|
Rohra N, Gaikwad G, Dandekar P, Jain R. Microfluidic Synthesis of a Bioactive Metal-Organic Framework for Glucose-Responsive Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8251-8265. [PMID: 35113534 DOI: 10.1021/acsami.1c22153] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the current study, we report the microfluidic synthesis of a metal-organic framework (MOF) for insulin delivery based on the stimulus response of glucose. Insulin- and gold nanoparticle (AuNP)-encapsulated zeolitic imidazolate framework-8 (ZIF-8) was synthesized using a continuous-flow, microfluidic mixing system via a single-step process. Glucose oxidase mimicking the activity of AuNPs was utilized for oxidizing glucose molecules that entered the porous ZIF-8. The AuNPs oxidized glucose into gluconic acid and hydrogen peroxide inside the MOF (Ins-AuNP-ZIF-8). The resulting acidic pH led to the disruption of ZIF-8 and released insulin. Thus, the presence of glucose molecules provided a stimulus for insulin release. The bioactive MOFs were characterized for the presence of functional groups, morphology, crystallinity, size, and elemental confirmation. The presence of fluorescein-5-isothiocyanate-labeled insulin in the composite was confirmed using confocal laser scanning microscopy. The loading of insulin per unit weight of the MOF, determined by size-exclusion-high-performance liquid chromatography, was 77 and 88% in the batch and microfluidic processes, respectively. Drug release studies confirmed the response of the MOFs to glucose, which triggered insulin release. The synthesis process did not affect the characteristics and application of ZIF-8 and Ins-AuNP-ZIF-8. This study involving the facile synthesis of bioactive MOFs offers a sustainable strategy to design stimulus-responsive drug delivery systems and could be exploited for biosensing applications.
Collapse
Affiliation(s)
- Nanda Rohra
- Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Ganesh Gaikwad
- Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
38
|
Gan L, Velásquez-Hernández MDJ, Emmerstorfer-Augustin A, Wied P, Wolinski H, Zilio SD, Solomon M, Liang W, Doonan C, Falcaro P. Multi-layered ZIF-coated cells for the release of bioactive molecules in hostile environments. Chem Commun (Camb) 2022; 58:10004-10007. [PMID: 35942713 PMCID: PMC9453912 DOI: 10.1039/d2cc03072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) coatings on cells enhance viability in cytotoxic environments. Here, we show how protective multi-layered MOF bio-composite shells on a model cell system (yeast) enhance the proliferation of...
Collapse
Affiliation(s)
- Lei Gan
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz,, Petergasse 14, Graz, 8010, Austria
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | - Heimo Wolinski
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Graz, Austria
| | - Simone Dal Zilio
- Istituto Officina dei Materiali CNR, Basovizza, Edificio MM-SS, Trieste, Italy
| | - Marcello Solomon
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | - Weibin Liang
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Christian Doonan
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| |
Collapse
|
39
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
40
|
Butonova SA, Ikonnikova EV, Sharsheeva A, Chernyshov IY, Kuchur OA, Mukhin IS, Hey-Hawkins E, Vinogradov AV, Morozov MI. Degradation kinetic study of ZIF-8 microcrystals with and without the presence of lactic acid. RSC Adv 2021; 11:39169-39176. [PMID: 35492461 PMCID: PMC9044455 DOI: 10.1039/d1ra07089d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
The zeolitic imidazolate framework ZIF-8 (Zn(mim)2, mim = 2-methylimidazolate) has recently been proposed as a drug delivery platform for anticancer therapy based on its capability of decomposing in acidic media. The concept presumes a targeted release of encapsulated drug molecules in the vicinity of tumor tissues that typically produce secretions with elevated acidity. Due to challenges of in vivo and in vitro examination, many studies have addressed the kinetics of ZIF-8 decomposition and subsequent drug release in phosphate buffered saline (PBS) with adjusted acidity. However, the presence of hydrogen phosphate anions [HPO4]2− in PBS may also affect the stability of ZIF-8. As yet, no separate analysis has been performed comparing the dissolving capabilities of PBS and various acidification agents used for regulating pH. Here, we provide a systematic study addressing the effects of phosphate anions with and without lactic acid on the degradation rate of ZIF-8 microcrystals. Lactic acid has been chosen as an experimental acidification agent, since it is particularly secreted by tumor cells. Interestingly, the effect of a lactic acid solution with pH 5.0 on ZIF-8 degradation is shown to be weaker compared to a PBS solution with pH 7.4. However, as an additive, lactic acid is able to enhance the decomposition efficacy of other solutions by 10 to 40 percent at the initial stage, depending on the presence of other ions. Additionally, we report mild toxicity of ZIF-8 and its decomposition products, as examined on HDF and A549 cell lines. ZIF-8 microcrystals demonstrate different degradation kinetics in water, PBS (pH 7.4), and PBS with lactic acid (pH 5.0).![]()
Collapse
Affiliation(s)
- Sofiia A Butonova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| | - Evgeniya V Ikonnikova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| | - Aziza Sharsheeva
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| | - Ivan Yu Chernyshov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| | - Oleg A Kuchur
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| | - Ivan S Mukhin
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation .,St. Petersburg Academic University Khlopina str. 8/3 St. Petersburg 194021 Russian Federation
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University Leipzig D-04103 Germany
| | - Alexander V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| | - Maxim I Morozov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University Lomonosova str. 9 St. Petersburg 191002 Russian Federation
| |
Collapse
|
41
|
Maddigan NK, Linder-Patton OM, Falcaro P, Sumby CJ, Bell SG, Doonan CJ. Influence of the Synthesis and Storage Conditions on the Activity of Candida antarctica Lipase B ZIF-8 Biocomposites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51867-51875. [PMID: 33957755 DOI: 10.1021/acsami.1c04785] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The biomimetic mineralization of zeolitic imidazolate framework-8 (ZIF-8) has been reported as a strategy for enzyme immobilization, enabling the heterogenization and protection of biomacromolecules. Here, we report the preparation of different Candida antarctica lipase B biocomposites (CALB@ZIF-8) formed by altering the concentrations of Zn2+ and 2-methylimidazole (2-mIM). The influence of synthetic conditions on the catalytic activity of the lipase CALB was examined by hydrolysis and transesterification assays in aqueous and organic media, respectively. We demonstrated that for both reactions, activity was retained for the biocomposites formed at low Zn2+/2-mIM ratios but notably almost entirely lost when the ligand concentration used to form the biocomposites was increased. Additionally, phosphate buffer could regenerate the activity of larger particles by degrading the crystal surfaces and releasing encapsulated CALB into solution. Transesterification reactions using CALB@ZIF-8 biocomposites were undertaken in 100% hexane, giving rise to enhanced CALB activity relative to the free enzyme. These observations highlight the fundamental importance of synthetic protocols and operating parameters for developing enzyme@MOF biocomposites with improved activity in challenging conditions.
Collapse
Affiliation(s)
- Natasha K Maddigan
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Oliver M Linder-Patton
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paolo Falcaro
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Christopher J Sumby
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen G Bell
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christian J Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
42
|
Samperisi L, Jaworski A, Kaur G, Lillerud KP, Zou X, Huang Z. Probing Molecular Motions in Metal-Organic Frameworks by Three-Dimensional Electron Diffraction. J Am Chem Soc 2021; 143:17947-17952. [PMID: 34695352 PMCID: PMC8569804 DOI: 10.1021/jacs.1c08354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Flexible metal-organic frameworks (MOFs) are known for their vast functional diversities and variable pore architectures. Dynamic motions or perturbations are among the highly desired flexibilities, which are key to guest diffusion processes. Therefore, probing such motions, especially at an atomic level, is crucial for revealing the unique properties and identifying the applications of MOFs. Nuclear magnetic resonance (NMR) and single-crystal X-ray diffraction (SCXRD) are the most important techniques to characterize molecular motions but require pure samples or large single crystals (>5 × 5 × 5 μm3), which are often inaccessible for MOF synthesis. Recent developments of three-dimensional electron diffraction (3D ED) have pushed the limits of single-crystal structural analysis. Accurate atomic information can be obtained by 3D ED from nanometer- and submicrometer-sized crystals and samples containing multiple phases. Here, we report the study of molecular motions by using the 3D ED method in MIL-140C and UiO-67, which are obtained as nanosized crystals coexisting in a mixture. In addition to an ab initio determination of their framework structures, we discovered that motions of the linker molecules could be revealed by observing the thermal ellipsoid models and analyzing the atomic anisotropic displacement parameters (ADPs) at room temperature (298 K) and cryogenic temperature (98 K). Interestingly, despite the same type of linker molecule occupying two symmetry-independent positions in MIL-140C, we observed significantly larger motions for the isolated linkers in comparison to those reinforced by π-π stacking. With an accuracy comparable to that of SCXRD, we show for the first time that 3D ED can be a powerful tool to investigate dynamics at an atomic level, which is particularly beneficial for nanocrystalline materials and/or phase mixtures.
Collapse
Affiliation(s)
- Laura Samperisi
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Aleksander Jaworski
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Gurpreet Kaur
- Department
of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Karl Petter Lillerud
- Department
of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway
| | - Xiaodong Zou
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Zhehao Huang
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
43
|
Cao Y, Ge J. Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63798-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Abstract
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligible protein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
Collapse
|
45
|
Yang L, Hu D, Liu H, Wang X, Liu Y, Xia Q, Deng S, Hao Y, Jin Y, Xie M. Biodegradation pathway of penicillins by β-lactamase encapsulated in metal-organic frameworks. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125549. [PMID: 33676260 DOI: 10.1016/j.jhazmat.2021.125549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 05/18/2023]
Abstract
The pollution caused by the abuse of antibiotics has posed a serious threat to the ecological environment and human health, so development of effective strategies for degradation and disposal of antibiotic residues is urgently needed. In this work, penicillinase, a kind of β-lactamase, was immobilized into zeolitic imidazolate framework-8 (ZIF-8) by self-assembly method and the catalytic performance of the β-lactamase@ZIF-8 porous materials for degradation of penicillins has been investigated by high performance liquid chromatography coupled with mass spectrometry. The results illustrated that the catalytic activity of the encapsulated enzyme was significantly enhanced comparing with that of free enzyme. Meanwhile, the β-lactamase@ZIF-8 exhibited excellent stability under denaturing conditions including high temperature, organic solvent and the enzyme inhibitor. The catalytic degradation mechanism of the β-lactamase@ZIF-8 for penicillins has been probed and verified, and it has been found that the Zn (II) ion on ZIF-8 frameworks could form the complex with the target molecule, which weakened the bond of the four-membered β-lactam ring in the penicillin molecule, and thus enhanced the degradation efficiency of the enzyme. This work provided a promising strategy for eliminating the penicillin residues in water environment.
Collapse
Affiliation(s)
- Lina Yang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Dehua Hu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Qianshu Xia
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuhao Jin
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
46
|
Ge M, Yang T, Wang Y, Carraro F, Liang W, Doonan C, Falcaro P, Zheng H, Zou X, Huang Z. On the completeness of three-dimensional electron diffraction data for structural analysis of metal-organic frameworks. Faraday Discuss 2021; 231:66-80. [PMID: 34227643 DOI: 10.1039/d1fd00020a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional electron diffraction (3DED) has been proven as an effective and accurate method for structure determination of nano-sized crystals. In the past decade, the crystal structures of various new complex metal-organic frameworks (MOFs) have been revealed by 3DED, which has been the key to understand their properties. However, due to the design of transmission electron microscopes (TEMs), one drawback of 3DED experiments is the limited tilt range of goniometers, which often leads to incomplete 3DED data, particularly when the crystal symmetry is low. This drawback can be overcome by high throughput data collection using continuous rotation electron diffraction (cRED), where data from a large number of crystals can be collected and merged. Here, we investigate the effects of improving completeness on structural analysis of MOFs. We use ZIF-EC1, a zeolitic imidazolate framework (ZIF), as an example. ZIF-EC1 crystallizes in a monoclinic system with a plate-like morphology. cRED data of ZIF-EC1 with different completeness and resolution were analyzed. The data completeness increased to 92.0% by merging ten datasets. Although the structures could be solved from individual datasets with a completeness as low as 44.5% and refined to a high precision (better than 0.04 Å), we demonstrate that a high data completeness could improve the structural model, especially on the electrostatic potential map. We further discuss the strategy adopted during data merging. We also show that ZIF-EC1 doped with cobalt can act as an efficient electrocatalyst for oxygen reduction reactions.
Collapse
Affiliation(s)
- Meng Ge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Weibin Liang
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, 5005 South Australia, Australia
| | - Christian Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, 5005 South Australia, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
| |
Collapse
|
47
|
Deneff JI, Butler KS, Kotula PG, Rue BE, Sava Gallis DF. Expanding the ZIFs Repertoire for Biological Applications with the Targeted Synthesis of ZIF-20 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27295-27304. [PMID: 34085832 DOI: 10.1021/acsami.1c05657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their facile synthesis, tailorable porosity, diverse compositions, and low toxicity, zeolitic imidazolate framework (ZIF) nanoparticles (NPs) have emerged as attractive platforms for a variety of biologically relevant applications. To date, a small subset of ZIFs representing only two topologies and very few linker chemistries have been studied in this realm. We seek to expand the bio-design space for ZIF NPs through the targeted synthesis of a hierarchically complex ZIF based on two types of cages, ZIF-20, with lta topology. This study demonstrates the rapid synthesis and size tunability of ZIF-20 particles across the micro and nanoregimes via microwave heating and the use of a modulating agent. To evaluate the utility of ZIF particles for biological applications, we examine their stability in biologically relevant media and demonstrate biocompatibility with A549 human epithelial cells. Further, the ability to encapsulate and release methylene blue, a therapeutic and bioimaging agent, is validated. Importantly, ZIF-20 NPs display a unique behavior relative to previously studied ZIFs based on their specific structural and chemical features. This finding highlights the need to expand the design space across the broader ZIFs family, to exploit a wider range of relevant properties for biological applications and beyond.
Collapse
Affiliation(s)
- Jacob I Deneff
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Paul G Kotula
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Braden E Rue
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
48
|
Ge M, Wang Y, Carraro F, Liang W, Roostaeinia M, Siahrostami S, Proserpio DM, Doonan C, Falcaro P, Zheng H, Zou X, Huang Z. High-Throughput Electron Diffraction Reveals a Hidden Novel Metal-Organic Framework for Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:11391-11397. [PMID: 33682282 PMCID: PMC8252586 DOI: 10.1002/anie.202016882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1, was first discovered in a trace amount during the study of a known ZIF-CO3 -1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm- ). With a composition of Zn3 (mIm)5 (OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalyst for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications.
Collapse
Affiliation(s)
- Meng Ge
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Francesco Carraro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Weibin Liang
- Department of Chemistry and the Centre for Advanced NanomaterialsThe University of AdelaideAdelaide5005South AustraliaAustralia
| | - Morteza Roostaeinia
- Department of ChemistryUniversity of Calgary2500 University Drive NWCalgaryAlbertaT2N1N4Canada
| | - Samira Siahrostami
- Department of ChemistryUniversity of Calgary2500 University Drive NWCalgaryAlbertaT2N1N4Canada
| | - Davide M. Proserpio
- Dipartimento di ChimicaUniversità degli Studi di Milano20133MilanoItaly
- Samara Center for Theoretical Materials Science (SCTMS)Samara State Technical UniversitySamara443100Russia
| | - Christian Doonan
- Department of Chemistry and the Centre for Advanced NanomaterialsThe University of AdelaideAdelaide5005South AustraliaAustralia
| | - Paolo Falcaro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Xiaodong Zou
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| | - Zhehao Huang
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| |
Collapse
|
49
|
Ha L, Choi KM, Kim DP. Interwoven MOF-Coated Janus Cells as a Novel Carrier of Toxic Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18545-18553. [PMID: 33853319 DOI: 10.1021/acsami.1c01927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two major issues in cell-mediated drug delivery systems (c-DDS) are the availability of free cell surfaces for the binding of the cells to the target or to their microenvironment and internalization of the cytotoxic drug. In this study, the Janus structure, MOF nanoparticles, and tannic acid (TA) are utilized to address these issues. Janus carrier cells coated with metal-organic frameworks (MOFs) are produced by asymmetrically immobilizing the nanoparticles of a MOF based on zinc with cytotoxic enzymes that are internally encapsulated on the surface of carrier cells. By maintaining the biological and structural features of regular living cells, the MOF-coated Janus cells developed in the present study preserve the intrinsic binding capacity of the cells to their microenvironment. Interconnected MOFs loaded onto the other face of the Janus cells cannot penetrate the cell. Therefore, the carrier cells are protected from the cytotoxic drug contained in MOFs. These MOF-Janus carrier cells are demonstrated to successfully eliminate three-dimensional (3D) tumor spheroids when a chemotherapeutic protein of proteinase K is released from the MOF nanoparticles in an acid environment. The ease with which the MOF-Janus carrier cells are prepared (in 15 min), and the ability to carry a variety of enzymes and even multiple ones should make the developed system attractive as a general platform for drug delivery in various applications, including combination therapy.
Collapse
Affiliation(s)
- Laura Ha
- A Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering and Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Dong-Pyo Kim
- A Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
50
|
Herbert FC, Abeyrathna SS, Abeyrathna NS, Wijesundara YH, Brohlin OR, Carraro F, Amenitsch H, Falcaro P, Luzuriaga MA, Durand-Silva A, Diwakara SD, Smaldone RA, Meloni G, Gassensmith JJ. Stabilization of supramolecular membrane protein-lipid bilayer assemblies through immobilization in a crystalline exoskeleton. Nat Commun 2021; 12:2202. [PMID: 33850135 PMCID: PMC8044103 DOI: 10.1038/s41467-021-22285-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
Artificial native-like lipid bilayer systems constructed from phospholipids assembling into unilamellar liposomes allow the reconstitution of detergent-solubilized transmembrane proteins into supramolecular lipid-protein assemblies called proteoliposomes, which mimic cellular membranes. Stabilization of these complexes remains challenging because of their chemical composition, the hydrophobicity and structural instability of membrane proteins, and the lability of interactions between protein, detergent, and lipids within micelles and lipid bilayers. In this work we demonstrate that metastable lipid, protein-detergent, and protein-lipid supramolecular complexes can be successfully generated and immobilized within zeolitic-imidazole framework (ZIF) to enhance their stability against chemical and physical stressors. Upon immobilization in ZIF bio-composites, blank liposomes, and model transmembrane metal transporters in detergent micelles or embedded in proteoliposomes resist elevated temperatures, exposure to chemical denaturants, aging, and mechanical stresses. Extensive morphological and functional characterization of the assemblies upon exfoliation reveal that all these complexes encapsulated within the framework maintain their native morphology, structure, and activity, which is otherwise lost rapidly without immobilization.
Collapse
Affiliation(s)
- Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Olivia R Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Alejandra Durand-Silva
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Shashini D Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|