1
|
Shen S, Yang K, Lin D. Biomacromolecular and Toxicity Responses of Bacteria upon the Nano-Bio Interfacial Interactions with Ti 3C 2T x Nanosheets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12991-13003. [PMID: 37608586 DOI: 10.1021/acs.est.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The biomolecular responses of bacteria to 2D nanosheets that result from nano-bio interfacial interactions remain to be thoroughly examined. Herein, Fourier transform infrared (FTIR) multivariate and 2D correlation analyses were performed to assess the composition and conformational changes in bacterial biomacromolecules (lipids, polysaccharides, and carbohydrates) upon exposure to Ti3C2Tx nanosheets. General toxicity assays, 3D excitation-emission matrix fluorescence analyses, extended Derjaguin-Landau-Verwey-Overbeek theory interaction calculations, and isothermal titration calorimetry were also performed. Our results demonstrate that Ti3C2Tx nanosheets considerably impact Gram-positive bacteria (Bacillus subtilis), causing oxidative damage and inactivation by preferentially interacting with and disrupting the cell walls. The bilayer membrane structure of Gram-negative bacteria (Escherichia coli) endows them with increased resistance to Ti3C2Tx nanosheets. The unmodified nanosheets had a higher affinity to bacterial protein components with lower toxicity due to their susceptibility to oxidation. Surface modification with KOH or hydrazine (HMH), particularly HMH, induced stronger dispersion, antioxidation, and affinity to bacterial phospholipids, which resulted in severe cell membrane lipid peroxidation and bacterial inactivation. These findings provide valuable insight into nano-bio interfacial interactions, which can facilitate the development of antimicrobial and antifouling surfaces and contribute to the evaluation of the environmental risks of nanomaterials.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Tamurejo-Alonso P, González-Martín ML, Pacha-Olivenza MÁ. Electrodeposited Zinc Coatings for Biomedical Application: Morphology, Corrosion and Biological Behaviour. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5985. [PMID: 37687682 PMCID: PMC10488799 DOI: 10.3390/ma16175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The improvement of biodegradable metals is currently an active and promising research area for their capabilities in implant manufacturing. However, controlling their degradation rate once their surface is in contact with the physiological media is a challenge. Surface treatments are in the way of addressing the improvement of this control. Zinc is a biocompatible metal present in the human body as well as a metal widely used in coatings to prevent corrosion, due to its well-known metal protective action. These two outstanding characteristics make zinc coating worthy of consideration to improve the degradation behaviour of implants. Electrodeposition is one of the most practical and common technologies to create protective zinc coatings on metals. This article aims to review the effect of the different parameters involved in the electrochemical process on the topography and corrosion characteristics of the zinc coating. However, certainly, it also provides an actual and comprehensive description of the state-of-the-art of the use of electrodeposited zinc for biomedical applications, focusing on their capacity to protect against bacterial colonization and to allow cell adhesion and proliferation.
Collapse
Affiliation(s)
- Purificación Tamurejo-Alonso
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
| | - María Luisa González-Martín
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Department of Applied Physics, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - Miguel Ángel Pacha-Olivenza
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| |
Collapse
|
3
|
Li R, Rao Y, Huang Y. Advances in catalytic elimination of atmospheric pollutants by two-dimensional transition metal oxides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Chen J, Wu XP, Hope MA, Lin Z, Zhu L, Wen Y, Zhang Y, Qin T, Wang J, Liu T, Xia X, Wu D, Gong XQ, Tang W, Ding W, Liu X, Chen L, Grey CP, Peng L. Surface differences of oxide nanocrystals determined by geometry and exogenously coordinated water molecules. Chem Sci 2022; 13:11083-11090. [PMID: 36320476 PMCID: PMC9517059 DOI: 10.1039/d2sc03885d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 09/06/2024] Open
Abstract
Determining the different surfaces of oxide nanocrystals is key in developing structure-property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply 17O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1st layer of ceria (111), (110), and (100) facets exhibit distinct 17O NMR shifts at dry surfaces while these 17O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.
Collapse
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Michael A Hope
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Lei Zhu
- State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology Shanghai 200245 China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yixiao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jia Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University Shanghai 200092 China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology Nanjing 210094 China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weiping Tang
- State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology Shanghai 200245 China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Clare P Grey
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210093 China
- Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
5
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
6
|
A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets. J Fluoresc 2022; 32:2189-2198. [DOI: 10.1007/s10895-022-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
|
7
|
Le PA, Le VQ, Tran TL, Nguyen NT, Phung TVB, Dinh VA. Two-Dimensional NH 4V 3O 8 Nanoflakes as Efficient Energy Conversion and Storage Materials for the Hydrogen Evolution Reaction and Supercapacitors. ACS OMEGA 2022; 7:25433-25442. [PMID: 35910106 PMCID: PMC9330131 DOI: 10.1021/acsomega.2c02375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, for the first time, we present two-dimensional (2D) NH4V3O8 nanoflakes as an excellent material for both energy conversion of the hydrogen evolution reaction and storage of supercapacitors by a simple and fast two-step synthesis, which exhibit a completely sheet-like morphology, high crystallinity, good specific surface area, and also stability, as determined by thermogravimetric analysis. The 2D-NH4V3O8 flakes show an acceptable hydrogen evolution performance in 0.5 M H2SO4 on a glassy carbon electrode (GCE) coated with 2D-NH4V3O8, which results in a low overpotential of 314 mV at -10 mA cm-2 with an excellent Tafel slope as low as 90 mV dec-1. So far, with the main focus on energy storage, 2D-NH4V3O8 nanoflakes were found to be ideal for supercapacitor electrodes. The NH4V3O8 working electrode in 1 M Na2SO4 shows an excellent electrochemical capability of 274 F g-1 at 0.5 A g-1 for a maximum energy density of 38 W h kg-1 at a power density as high as 250 W kg-1. Moreover, the crystal structure of 2D-NH4V3O8 is demonstrated by density functional theory (DFT) computational simulation using three functionals, GGA, GGA + U, and HSE06. The simple preparation, low cost, and abundance of the NH4V3O8 material provide a promising candidate for not only energy conversion but also energy-storage applications.
Collapse
Affiliation(s)
- Phuoc-Anh Le
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
- Faculty
of Textile Science and Technology, Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-0018, Japan
| | - Van-Qui Le
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Thien Lan Tran
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
- Department
of Physics, Hue University of Education, Hue University, 34 Le
Loi Stress, Hue 530000, Vietnam
| | - Nghia Trong Nguyen
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
| | - Van An Dinh
- Department
of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
9
|
Damptey L, Jaato BN, Ribeiro CS, Varagnolo S, Power NP, Selvaraj V, Dodoo‐Arhin D, Kumar RV, Sreenilayam SP, Brabazon D, Kumar Thakur V, Krishnamurthy S. Surface Functionalized MXenes for Wastewater Treatment-A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100120. [PMID: 35712023 PMCID: PMC9189136 DOI: 10.1002/gch2.202100120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry. Several MXene-based nanomaterials with remarkable properties have been proposed, synthesized, and used in environmental remediation applications. In this work, a comprehensive review of the state-of-the-art research progress on the promising potential of surface functionalized MXenes as photocatalysts, adsorbents, and membranes for wastewater treatment is presented. The sources, composition, and effects of wastewater on human health and the environment are displayed. Furthermore, the synthesis, surface functionalization, and characterization techniques of merit used in the study of MXenes are discussed, detailing the effects of a range of factors (e.g., PH, temperature, precursor, etc.) on the synthesis, surface functionalization, and performance of the resulting MXenes. Finally, the limits of MXenes and MXene-based materials as well as their potential future research directions, especially for wastewater treatment applications are highlighted.
Collapse
Affiliation(s)
- Lois Damptey
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Bright N. Jaato
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Camila Silva Ribeiro
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Silvia Varagnolo
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Nicholas P. Power
- School of LifeHealth & Chemical SciencesThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Vimalnath Selvaraj
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - David Dodoo‐Arhin
- Department of Materials Science & EngineeringUniversity of GhanaP.O. Box LG 77Legon‐AccraGhana
| | - R. Vasant Kumar
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Sithara Pavithran Sreenilayam
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Dermot Brabazon
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterSRUCEdinburghEH9 3JGUK
| | | |
Collapse
|
10
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
11
|
Kamibe T, Guégan R, Kunitake M, Tsukahara T, Idota N, Sugahara Y. Preparation of double-layered nanosheets containing pH-responsive polymer networks in the interlayers and their conversion into single-layered nanosheets through the cleavage of cross-linking points. Dalton Trans 2022; 51:6264-6274. [PMID: 35377373 DOI: 10.1039/d1dt04355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double-layered nanosheets containing pH-cleavable polymer networks between two niobate layers were prepared by copolymerization of N-isopropylacrylamide and an acid-degradable crosslinker via surface-initiated atom transfer radical polymerization on the surface of hydrated interlayers (interlayer I) of K4Nb6O17·3H2O and subsequent exfoliation by the introduction of tetra-n-butylammonium (TBA) ions into anhydrous interlayers (interlayer II). Moreover, the double-layered nanosheets were converted into single-layered nanosheets by the cleavage of cross-linking points in polymer networks by lowering pH. Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG) results showed that polymer networks were present, and nanosheets with a thickness of 10.8 ± 1.6 nm were observed by using an atomic force microscope (AFM) after exfoliation using TBA ions. The thickness of the nanosheets was decreased to 6.1 ± 0.9 nm by lowering the pH, and proton nuclear magnetic resonance (1H NMR) and UV-vis spectroscopy showed that the degradation of the cross-linkers proceeded, suggesting that the cleavage of the cross-linking points led to the conversion of double-layered nanosheets into single-layered nanosheets.
Collapse
Affiliation(s)
- Takuma Kamibe
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Régis Guégan
- Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masashi Kunitake
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takehiko Tsukahara
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Naokazu Idota
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan. .,Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan. .,Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
12
|
Yadav S, Sadique MA, Kaushik A, Ranjan P, Khan R, Srivastava AK. Borophene as an emerging 2D flatland for biomedical applications: current challenges and future prospects. J Mater Chem B 2022; 10:1146-1175. [PMID: 35107476 DOI: 10.1039/d1tb02277f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, two-dimensional (2D)-borophene has emerged as a remarkable translational nanomaterial substituting its predecessors in the field of biomedical sensors, diagnostic tools, high-performance healthcare devices, super-capacitors, and energy storage devices. Borophene justifies its demand due to high-performance and controlled optical, electrical, mechanical, thermal, and magnetic properties as compared with other 2D-nanomaterials. However, continuous efforts are being made to translate theoretical and experimental knowledge into pragmatic platforms. To cover the associated knowledge gap, this review explores the computational and experimental chemistry needed to optimize borophene with desired properties. High electrical conductivity due to destabilization of the highest occupied molecular orbital (HOMO), nano-engineering at the monolayer level, chemistry-oriented biocompatibility, and photo-induced features project borophene for biosensing, bioimaging, cancer treatment, and theragnostic applications. Besides, the polymorphs of borophene have been useful to develop specific bonding for DNA sequencing and high-performance medical equipment. In this review, an overall critical and careful discussion of systematic advancements in borophene-based futuristic biomedical applications including artificial intelligence (AI), Internet-of-Things (IoT), and Internet-of-Medical Things (IoMT) assisted smart devices in healthcare to develop high-performance biomedical systems along with challenges and prospects is extensively addressed. Consequently, this review will serve as a key supportive platform as it explores borophene for next-generation biomedical applications. Finally, we have proposed the potential use of borophene in healthcare management strategies.
Collapse
Affiliation(s)
- Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
14
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
15
|
Xie H, Li Z, Cheng L, Haidry AA, Tao J, Xu Y, Xu K, Ou JZ. Recent advances in the fabrication of 2D metal oxides. iScience 2022; 25:103598. [PMID: 35005545 PMCID: PMC8717458 DOI: 10.1016/j.isci.2021.103598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.
Collapse
Affiliation(s)
- Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yi Xu
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
16
|
Chen X, Cheng D, Ding M, Yu N, Liu J, Li J, Lin L. Tumor-targeting biomimetic sonosensitizer-conjugated iron oxide nanocatalysts for combinational chemodynamic-sonodynamic therapy of colorectal cancer. J Mater Chem B 2022; 10:4595-4604. [PMID: 35642510 DOI: 10.1039/d2tb00872f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle-based tumor therapy strategies have been widely developed, while the therapeutic efficacy is often limited due to poor accumulation of nanoparticles in tumor tissues and low antitumor effect of sole...
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, P. R. China
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China.
| | - Danling Cheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.
| | - Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.
| | - Ningyue Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.
| | - Jiansheng Liu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China.
| |
Collapse
|
17
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
18
|
Davis R, Urbanowski RA, Gaharwar AK. 2D layered nanomaterials for therapeutics delivery. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Anam B, Gaston N. Structural, thermal, and electronic properties of two-dimensional gallium oxide(ß-Ga2O3) from first-principles design. Chemphyschem 2021; 22:2362-2370. [PMID: 34312962 DOI: 10.1002/cphc.202100267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) materials with exotic electronic, optical and mechanical properties have attracted tremendous attention in the last two decades, due to their potential applications in electronics, energy storage and conversion technologies. However, only a few dozen 2D materials have been successfully synthesized or exfoliated. Motivated by the recent discovery of 2D gallenene, we have explored new 2D allotropes of ß-Ga 2 O 3 , an emerging wide-band gap transparent conductive oxide (TCO) with a wide range of semiconducting applications. All the possible 2D allotropes of ß-Ga 2 O 3 with high energetic stability have been predicted using particle swarm optimization, combined with density functional theory calculations. The structural and dynamical stability of the predicted 2D allotropes has been analyzed. Although ß-Ga 2 O 3 is not a van der Waals material, results predict that one or two allotropes of ß-Ga 2 O 3 are stable. In addition, the accurate band structures of these 2D semiconducting oxides have been calculated using both the GGA and LDA-1/2 approach. Remarkably, monolayer Ga 2 O 3 (100) has a larger indirect band gap of 4 eV, demonstrating a new avenue for the discovery of 2D ß-Ga 2 O 3 based nano-devices with enhanced electronic properties.
Collapse
Affiliation(s)
- Bushra Anam
- University of Auckland - City Campus: University of Auckland, Department of Physics, 38 Princes Street, 1010, Auckland, NEW ZEALAND
| | - Nicola Gaston
- University of Auckland, Department of Physics, 38 Princes Street, 1010, Auckland, NEW ZEALAND
| |
Collapse
|
20
|
Wang Y, Ren B, Zhen Ou J, Xu K, Yang C, Li Y, Zhang H. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci Bull (Beijing) 2021; 66:1228-1252. [PMID: 36654357 DOI: 10.1016/j.scib.2021.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) metal oxides and chalcogenides (MOs & MCs) have been regarded as a new class of promising electro- and photocatalysts for many important chemical reactions such as hydrogen evolution reaction, CO2 reduction reaction and N2 reduction reaction in virtue of their outstanding physicochemical properties. However, pristine 2D MOs & MCs generally show the relatively poor catalytic performances due to the low electrical conductivity, few active sites and fast charge recombination. Therefore, considerable efforts have been devoted to engineering 2D MOs & MCs by rational structural design and chemical modification to further improve the catalytic activities. Herein, we comprehensively review the recent advances for engineering technologies of 2D MOs & MCs, which are mainly focused on the intercalation, doping, defects creation, facet design and compositing with functional materials. Meanwhile, the relationship between morphological, physicochemical, electronic, and optical properties of 2D MOs & MCs and their electro- and photocatalytic performances is also systematically discussed. Finally, we further give the prospect and challenge of the field and possible future research directions, aiming to inspire more research for achieving high-performance 2D MOs & MCs catalysts in energy storage and conversion fields.
Collapse
Affiliation(s)
- Yichao Wang
- School of Engineering, RMIT University, Melbourne, Vic 3000, Australia.
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Vic 3000, Australia.
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne, Vic 3000, Australia
| | - Chunhui Yang
- School of Engineering, Western Sydney University, Penrith, NSW 2751, Australia
| | - Yongxiang Li
- School of Engineering, RMIT University, Melbourne, Vic 3000, Australia
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
21
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
22
|
Goff A, Aukarasereenont P, Nguyen CK, Grant R, Syed N, Zavabeti A, Elbourne A, Daeneke T. An exploration into two-dimensional metal oxides, and other 2D materials, synthesised via liquid metal printing and transfer techniques. Dalton Trans 2021; 50:7513-7526. [PMID: 33977926 DOI: 10.1039/d0dt04364h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) metal oxides can be difficult to synthesise, and scaling up production using traditional methods is challenging. However, a new liquid metal-based technique, that utilises both "top-down" and "bottom-up" processes, has recently been introduced. These liquids oxidise to form an oxide surface "skin" which may be exfoliated as a 2D flake and subsequently used in various electronic devices and chemical reactions.
Collapse
Affiliation(s)
- Abigail Goff
- School of Engineering, RMIT University, Melbourne, VIC, 3001 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cai S, Yang R. Two-Dimensional Nanomaterials With Enzyme-Like Properties for Biomedical Applications. Front Chem 2020; 8:565940. [PMID: 33330357 PMCID: PMC7729064 DOI: 10.3389/fchem.2020.565940] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, remarkable progress has been made in nanozyme research due to the rapid development of nanomaterials. Two-dimensional nanomaterials such as metal nanosheets, graphene-based materials, transition metal oxides/dichalcogenides, etc., provide enhanced physical and chemical functionality owing to their ultrathin structures, high surface-to-volume ratios, and surface charges. They have also been found to have high catalytic activities in terms of natural enzymes such as peroxidase, oxidase, catalase, and superoxide dismutase. This review provides an overview of the recent progress of nanozymes based on two-dimensional nanomaterials, with an emphasis on their synthetic strategies, hybridization, catalytic properties, and biomedical applications. Finally, the future challenges and prospects for this research are discussed.
Collapse
Affiliation(s)
- Shuangfei Cai
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Yang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Liu S, Wang L, Zhao B, Wang Z, Wang Y, Sun B, Liu Y. Doxorubicin-loaded Cu 2S/Tween-20 nanocomposites for light-triggered tumor photothermal therapy and chemotherapy. RSC Adv 2020; 10:26059-26066. [PMID: 35519742 PMCID: PMC9055350 DOI: 10.1039/d0ra03069d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations. With the development of nanotechnology, new therapeutic methods based on nanomaterials such as photothermal therapy (PTT) have also emerged. PTT takes advantage of the poor thermal tolerance of tumor cells and uses the heat generated by photothermal reagents to kill tumor cells. A transition metal sulfide represented as Cu2S is an ideal photothermal reagent because of its easy preparation, high extinction coefficient and photothermal conversion efficiency. Surface modification of nanoparticles (NPs) is also necessary, which not only can reduce toxicity and improve colloidal stability, but also can provide the possibility of further chemotherapeutic drug loading. In this work, we report the fabrication of Tween-20 (Tw20)-modified and doxorubicin (Dox)-loaded Cu2S NPs (Cu2S/Dox@Tw20 NPs), which significantly improves the performance in tumor therapy. Apart from the enhancement of colloidal stability and biocompatibility, the drug loading rate of Dox in Tw20 reaches 11.3%. Because of the loading of Dox, Cu2S/Dox@Tw20 NPs exhibit chemotherapeutic behaviors and the tumor inhibition rate is 76.2%. Further combined with a near-infrared laser, the high temperature directly leads to the apoptosis of a large number of tumor cells, while the release of chemotherapeutic drugs under heat can not only continue to kill residual tumor cells, but also inhibit tumor recurrence. Therefore, with the combination of PTT and chemotherapy, the tumor was completely eliminated. Both hematological analysis and histopathological analysis proved that our experiments are safe. In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations.![]()
Collapse
Affiliation(s)
- Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yinyu Wang
- School of Stomatology
- Baicheng Medical College
- Baicheng
- P. R. China
| | - Bin Sun
- Department of Oral and Maxillofacial Surgery
- School and Hospital of Stomatology
- Jilin University
- Changchun
- P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|