1
|
Baysal HE, Yu TY, Naenen V, De Smedt S, Hiz D, Zhang B, Xia H, Florenciano I, Rosenthal M, Cardinaels R, Molina-Lopez F. Omnidirectional 3D Printing of PEDOT: PSS Aerogels with Tunable Electromechanical Performance: A Playground for Unconventional Stretchable Interconnects and Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412491. [PMID: 39840920 DOI: 10.1002/advs.202412491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates. Several PEDOT:PSS hydrogels are formulated for DIW and freeze-dried directly on stretchable substrates to form integrated aerogels displaying high shape fidelity and minimal shrinkage. This technology demonstrates 3D-structured stretchable interconnects, planar thermoelectric generators for skin electronics, and vertically printed high aspect ratio thermoelectric pillars with ultralow thermal conductivity of 0.065 W m-1 K-1. The aerogel pillars outpower their dense counterparts in realistic energy harvesting scenarios, where contact resistances cannot be ignored and produced up to 26 nW cm-2 (corresponding to a gravimetric power density of 0.76 mW kg-1) for a difference of temperature of 15 K. Here, promising advancements in soft and energy-efficiency electronic systems relevant to soft robotics and wearables are suggested.
Collapse
Affiliation(s)
- Hasan Emre Baysal
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Tzu-Yi Yu
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Viktor Naenen
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Stijn De Smedt
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Belgium
| | - Defne Hiz
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Bokai Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Heyi Xia
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Isidro Florenciano
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Leuven, 3001, Belgium
| | - Ruth Cardinaels
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Belgium
| | - Francisco Molina-Lopez
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| |
Collapse
|
2
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
3
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Liu R, Liu Y, Fu S, Cheng Y, Jin K, Ma J, Wan Y, Tian Y. Humidity Adaptive Antifreeze Hydrogel Sensor for Intelligent Control and Human-Computer Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308092. [PMID: 38168530 DOI: 10.1002/smll.202308092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Conductive hydrogels have emerged as ideal candidate materials for strain sensors due to their signal transduction capability and tissue-like flexibility, resembling human tissues. However, due to the presence of water molecules, hydrogels can experience dehydration and low-temperature freezing, which greatly limits the application scope as sensors. In this study, an ionic co-hybrid hydrogel called PBLL is proposed, which utilizes the amphoteric ion betaine hydrochloride (BH) in conjunction with hydrated lithium chloride (LiCl) thereby achieving the function of humidity adaptive. PBLL hydrogel retains water at low humidity (<50%) and absorbs water from air at high humidity (>50%) over the 17 days of testing. Remarkably, the PBLL hydrogel also exhibits strong anti-freezing properties (-80 °C), high conductivity (8.18 S m-1 at room temperature, 1.9 S m-1 at -80 °C), high gauge factor (GF approaching 5.1). Additionally, PBLL hydrogels exhibit strong inhibitory effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as biocompatibility. By synergistically integrating PBLL hydrogel with wireless transmission and Internet of Things (IoT) technologies, this study has accomplished real-time human-computer interaction systems for sports training and rehabilitation evaluation. PBLL hydrogel exhibits significant potential in the fields of medical rehabilitation, artificial intelligence (AI), and the Internet of Things (IoT).
Collapse
Affiliation(s)
- Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| | - Simian Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yugui Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Jingtong Ma
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yucen Wan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| |
Collapse
|
6
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
7
|
Benarrait R, Ullah-Khan M, Terrien J, Al Hajjar H, Lamarque F, Dietzel A. A Flexible Double-Sided Curvature Sensor Array for Use in Soft Robotics. SENSORS (BASEL, SWITZERLAND) 2024; 24:3475. [PMID: 38894266 PMCID: PMC11175295 DOI: 10.3390/s24113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
This paper describes the design, fabrication, integration, characterization, and demonstration of a novel flexible double-sided curvature sensor array for use in soft robotics. The paper explores the performance and potential applications of a piezoresistive sensor array consisting of four gold strain gauges on a flexible polyimide (PI) substrate arranged in a Wheatstone bridge configuration. Multiple sensor strips were arranged like the fingers of a hand. Integrating Shape Memory Alloy (SMA) foils alongside the fingers was explored to mimic a human hand-gripping motion controlled with temperature, while curvature sensor array strips measure the resulting finger shapes. Moreover, object sensing in a flexible granular material gripper was demonstrated. The sensors were embedded within Polydimethylsiloxane (PDMS) to enhance their tactile feel and adhesive properties. The findings of this study are promising for future applications, particularly in robotics and prosthetics, as the ability to accurately mimic human hand movements and reconstruct sensor surfaces paves the way for robotic hand functionality.
Collapse
Affiliation(s)
- Racha Benarrait
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany;
- Université de Technologie de Compiègne, CNRS FRE 2012, Roberval (Mechanics Energy and Electricity), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; (M.U.-K.); (J.T.); (H.A.H.); (F.L.)
| | - Muneeb Ullah-Khan
- Université de Technologie de Compiègne, CNRS FRE 2012, Roberval (Mechanics Energy and Electricity), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; (M.U.-K.); (J.T.); (H.A.H.); (F.L.)
| | - Jérémy Terrien
- Université de Technologie de Compiègne, CNRS FRE 2012, Roberval (Mechanics Energy and Electricity), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; (M.U.-K.); (J.T.); (H.A.H.); (F.L.)
| | - Hani Al Hajjar
- Université de Technologie de Compiègne, CNRS FRE 2012, Roberval (Mechanics Energy and Electricity), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; (M.U.-K.); (J.T.); (H.A.H.); (F.L.)
| | - Frédéric Lamarque
- Université de Technologie de Compiègne, CNRS FRE 2012, Roberval (Mechanics Energy and Electricity), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; (M.U.-K.); (J.T.); (H.A.H.); (F.L.)
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany;
| |
Collapse
|
8
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
9
|
Yang Z, Yu X, Song Y, Hu Y, Yang Q, Xiong C, Shi Z. Flexible and ultrasensitive piezoresistive electronic skin based on chitin/sulfonated carbon nanotube films. Int J Biol Macromol 2024; 259:129103. [PMID: 38181907 DOI: 10.1016/j.ijbiomac.2023.129103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Wearable electronic skin has gained increasing popularity due to its remarkable properties of high flexibility, sensitivity, and lightweight, making it an ideal choice for detecting human physiological activity. In this study, we successfully prepared e-skin using regenerated chitin (RCH) and sulfonated carbon nanotubes (SCNTs). The e-skin demonstrated brilliant mechanical and sensing properties, exhibiting a sensitivity of 1.75 kPa-1 within the 0-5 kPa range and a fast response-recovery time of <10 ms. Furthermore, it displayed an ultra-low detection limit of 1.39 Pa (5 mg), exceptional stability (up to 11,000 cycles), and a remarkable mechanical strength, reaching up to 50 MPa. Moreover, the e-skin was fabricated through a simple and economical approach. With the popularity of micro sensing devices, the e-skin holds tremendous potential for various applications, including wearable electronic devices, health and sports monitoring, artificial intelligence and other fields.
Collapse
Affiliation(s)
- Zhibo Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xichen Yu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yunze Song
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Hu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute, Wuhan University of Technology, Sanya 572024, China.
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhuqun Shi
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
10
|
Sirithunge C, Wang H, Iida F. Soft touchless sensors and touchless sensing for soft robots. Front Robot AI 2024; 11:1224216. [PMID: 38312746 PMCID: PMC10830750 DOI: 10.3389/frobt.2024.1224216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Soft robots are characterized by their mechanical compliance, making them well-suited for various bio-inspired applications. However, the challenge of preserving their flexibility during deployment has necessitated using soft sensors which can enhance their mobility, energy efficiency, and spatial adaptability. Through emulating the structure, strategies, and working principles of human senses, soft robots can detect stimuli without direct contact with soft touchless sensors and tactile stimuli. This has resulted in noteworthy progress within the field of soft robotics. Nevertheless, soft, touchless sensors offer the advantage of non-invasive sensing and gripping without the drawbacks linked to physical contact. Consequently, the popularity of soft touchless sensors has grown in recent years, as they facilitate intuitive and safe interactions with humans, other robots, and the surrounding environment. This review explores the emerging confluence of touchless sensing and soft robotics, outlining a roadmap for deployable soft robots to achieve human-level dexterity.
Collapse
Affiliation(s)
| | - Huijiang Wang
- Bio-Inspired Robotics Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Chaabane I, Rekik W, Ghalla H, Zaghrioui M, Lhoste J, Oueslati A. Crystal structure, optical characterization, conduction and relaxation mechanisms of a new hybrid compound (C 6H 9N 2) 2[Sb 2Cl 8]. RSC Adv 2024; 14:3588-3598. [PMID: 38264272 PMCID: PMC10804228 DOI: 10.1039/d3ra08885e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Hybrid materials play a crucial role in the construction of flexible electronic devices due to the advantages of both organic and inorganic components. To this end, a new hybrid compound (C6H9N2)2[Sb2Cl8] was successfully fabricated using the slow evaporation solution growth approach at room temperature. In-depth research has been done on the structural, optical, and dielectric characteristics. This compound adopts the triclinic symmetry and crystallizes in the centrosymmetric space group P1̄. The inorganic and organic components respectively form anionic and cationic layers parallel to the ac-plane and alternate along the crystallographic b-axis. The [Sb2Cl8]2- dimeric units are bound to the 2-amino-5-picolinium cations [(C6H9N2)]+ through N-H⋯Cl hydrogen bonds. Optical absorption measurements showed a semiconductor behavior with a band gap of approximately 3.57 eV. In addition, DFT calculations were performed to investigate the absorption spectrum, wavelength, and HOMO-LUMO gap. The analysis of complex impedance spectra shows that the electrical conductivity of the sample is strongly frequency and temperature dependent, indicating a relaxation phenomenon and semiconductor-type behavior. Dielectric data obtained from complex impedance spectroscopy and ac conductivity with the use of the Maxwell-Wagner equivalent circuit model, and the universal power law have been investigated to explore the basic components of the electronic transport and relaxation process in our material.
Collapse
Affiliation(s)
- I Chaabane
- Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
| | - W Rekik
- Laboratory Physical-Chemistry of Solid State, Chemistry Department, Faculty of Sciences of Sfax, University of Sfax BP 1171 3000 Sfax Tunisia
| | - H Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir Monastir 5079 Tunisia
| | - M Zaghrioui
- Université de Tours, Laboratoire GREMAN UMR-CNRS 7347 15 rue de la Chocolaterie, IUT de Blois 41029 Blois cedex France
| | - J Lhoste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université Avenue Olivier Messiaen 72085 Le Mans Cedex 9 France
| | - A Oueslati
- Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
| |
Collapse
|
12
|
He J, Cao L, Cui J, Fu G, Jiang R, Xu X, Guan C. Flexible Energy Storage Devices to Power the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306090. [PMID: 37543995 DOI: 10.1002/adma.202306090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The field of flexible electronics is a crucial driver of technological advancement, with a strong connection to human life and a unique role in various areas such as wearable devices and healthcare. Consequently, there is an urgent demand for flexible energy storage devices (FESDs) to cater to the energy storage needs of various forms of flexible products. FESDs can be classified into three categories based on spatial dimension, all of which share the features of excellent electrochemical performance, reliable safety, and superb flexibility. In this review, the application scenarios of FESDs are introduced and the main representative devices applied in disparate fields are summarized first. More specifically, it focuses on three types of FESDs in matched application scenarios from both structural and material aspects. Finally, the challenges that hinder the practical application of FESDs and the views on current barriers are presented.
Collapse
Affiliation(s)
- Junyuan He
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Leiqing Cao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Jiaojiao Cui
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Gangwen Fu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Ruiyi Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Xi Xu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science &Technology Building, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City, 518063, China
| | - Cao Guan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| |
Collapse
|
13
|
Sun R, Zou Z, Yan R, Shou M, Zhang H, Zeng S, Feng H, Liao C. Magnetically Induced Grid Structure for Enhancing the Performance of a Dual-Mode Flexible Sensor with Tactile/Touchless Perception. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59876-59886. [PMID: 38105477 DOI: 10.1021/acsami.3c16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an advanced sensing technology, dual-mode flexible sensing, integrating both tactile and touchless perception, propels numerous intelligent devices toward a more practical and efficient direction. The ability to incorporate multiple sensing modes and accurately distinguish them in real time has become crucial for technological advancements. Here, we proposed a dual-mode sensing system (B-MIGS) consisting of a dual-layer sensing device with a magnetically induced grid structure and a testing device. The system was capable of utilizing mechanical pressure to perceive tactile stimulation and magnetic sensing to simultaneously transduce touchless stimulation simultaneously. By leveraging the triboelectric effect, the decoupling of tactile and touchless signals in the presence of unknown signal sources was achieved. Additionally, the sensing characteristics of the B-MIGS were optimized by varying the curing magnetic induction intensity and magnetic particle concentration. The influence of the temperature and humidity on the sensing signals was also discussed. Finally, the practical value of the B-MIGS as a dual-mode monitoring system was demonstrated on soft petals and sensor arrays, along with exploration of its potential application in underwater environments.
Collapse
Affiliation(s)
- Ruixue Sun
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyuan Zou
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruohan Yan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengjie Shou
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Honghui Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Suhua Zeng
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huizong Feng
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Changrong Liao
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Xu Y, Chen M, Yu S, Zhou H. High-performance flexible strain sensors based on silver film wrinkles modulated by liquid PDMS substrates. RSC Adv 2023; 13:33697-33706. [PMID: 38020005 PMCID: PMC10654890 DOI: 10.1039/d3ra06020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Flexible strain sensors based on controllable surface microstructures in film-substrate systems can be extensively applied in high-tech fields such as human-machine interfaces, electronic skins, and soft robots. However, the rigid functional films are susceptible to structural destruction and interfacial failure under large strains or high loading speeds, limiting the stability and durability of the sensors. Here we report on a facile technique to prepare high-performance flexible strain sensors based on controllable wrinkles by depositing silver films on liquid polydimethylsiloxane (PDMS) substrates. The silver atoms can penetrate into the surface of liquid PDMS to form an interlocking layer during deposition, enhancing the interfacial adhesion greatly. After deposition, the liquid PDMS is spontaneously solidified to stabilize the film microstructures. The surface patterns are well modulated by changing film thickness, prepolymer-to-crosslinker ratio of liquid PDMS, and strain value. The flexible strain sensors based on the silver film/liquid PDMS system show high sensitivity (above 4000), wide sensing range (∼80%), quick response speed (∼80 ms), and good stability (above 6000 cycles), and have a broad application prospect in the fields of health monitoring and motion tracking.
Collapse
Affiliation(s)
- Yifan Xu
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| | - Miaogen Chen
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Hong Zhou
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| |
Collapse
|
15
|
Georgopoulou A, Hardman D, Thuruthel TG, Iida F, Clemens F. Sensorized Skin With Biomimetic Tactility Features Based on Artificial Cross-Talk of Bimodal Resistive Sensory Inputs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301590. [PMID: 37679081 PMCID: PMC10602557 DOI: 10.1002/advs.202301590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Indexed: 09/09/2023]
Abstract
Tactility in biological organisms is a faculty that relies on a variety of specialized receptors. The bimodal sensorized skin, featured in this study, combines soft resistive composites that attribute the skin with mechano- and thermoreceptive capabilities. Mimicking the position of the different natural receptors in different depths of the skin layers, a multi-layer arrangement of the soft resistive composites is achieved. However, the magnitude of the signal response and the localization ability of the stimulus change with lighter presses of the bimodal skin. Hence, a learning-based approach is employed that can help achieve predictions about the stimulus using 4500 probes. Similar to the cognitive functions in the human brain, the cross-talk of sensory information between the two types of sensory information allows the learning architecture to make more accurate predictions of localization, depth, and temperature of the stimulus contiguously. Localization accuracies of 1.8 mm, depth errors of 0.22 mm, and temperature errors of 8.2 °C using 8 mechanoreceptive and 8 thermoreceptive sensing elements are achieved for the smaller inter-element distances. Combining the bimodal sensing multilayer skins with the neural network learning approach brings the artificial tactile interface one step closer to imitating the sensory capabilities of biological skin.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- Department of Functional MaterialsEmpa ‐ Swiss Federal Laboratories for Materials Science and Technology8600Switzerland
| | - David Hardman
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
| | - Thomas George Thuruthel
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
- Department of Computer ScienceUniversity College LondonE20 2AFUK
| | - Fumiya Iida
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
| | - Frank Clemens
- Department of Functional MaterialsEmpa ‐ Swiss Federal Laboratories for Materials Science and Technology8600Switzerland
| |
Collapse
|
16
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
17
|
Hua T, Xiang Z, Xia X, Li Z, Sun D, Wu Y, Liu Y, Shang J, Chen J, Li R. A Sensitivity-Optimized Flexible Capacitive Pressure Sensor with Cylindrical Ladder Microstructural Dielectric Layers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094323. [PMID: 37177527 PMCID: PMC10181647 DOI: 10.3390/s23094323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Flexible capacitive pressure sensors have attracted extensive attention due to their dynamic response and good sensing capability for static and small pressures. Using microstructural dielectric layers is an effective method for improving performance. However, the current state of microstructure design is primarily focused on basic shapes and is largely limited by simulation results; there is still a great deal of potential for further innovation and improvement. This paper innovatively proposes to increase the ladder structure based on the basic microstructures, for example, the long micro-ridge ladder, the cuboid ladder, and cylindrical ladder microstructures. By comparing 9 kinds of microstructures including ladder structure through finite element simulation, it is found that the sensor with a cylindrical ladder microstructure dielectric layer has the highest sensitivity. The dielectric layers with various microstructures are obtained by 3D printed molds, and the sensor with cylindrical ladder microstructure dielectric layer has the sensitivity of 0.12 kPa-1, which is about 3.9 times higher than that without microstructure. The flexible pressure sensor developed by us boasts sensitivity-optimized and operational stability, making it an ideal solution for monitoring rainfall frequency in real time.
Collapse
Grants
- U22A20248,52201236, 52105286, 52127803, 51931011, 51971233, 62174165, M-0152, U20A6001, U1909215, 52105286, 52201236, 62204246, 92064011, 62174164 National Natural Science Foundation of China
- 2022M723251 China Postdoctoral Foundation
- 174433KYSB20190038, 174433KYSB20200013 External Cooperation Program of Chinese Academy of Sciences
- YJKYYQ20200030 Instrument Developing Project of the Chinese Academy of Sciences
- GJTD-2020-11 K.C. Wong Education Foundation
- 2018334 Chinese Academy of Sciences Youth Innovation Promotion Association
- 2022C01032 "Pioneer" and "Leading Goose" R&D Program of Zhejiang
- 2021C01183 Zhejiang Provincial Key R&D Program
- LD22E010002 Natural Science Foundation of Zhejiang Province
- LGG20F010006 Zhejiang Provincial Basic Public Welfare Research Project
- 2019B10127, 2020Z022 Ningbo Scientific and Technological Innovation 2025 Major Project
- 20221JCGY010312 Ningbo Natural Science Foundations
Collapse
Affiliation(s)
- Tian Hua
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiangling Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhangling Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Dandan Sun
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Runwei Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Liang C, Sun J, Liu Z, Tian G, Liu Y, Zhao Q, Yang D, Chen J, Zhong B, Zhu M, Xu H, Qi D. Wide Range Strain Distributions on the Electrode for Highly Sensitive Flexible Tactile Sensor with Low Hysteresis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15096-15107. [PMID: 36942778 DOI: 10.1021/acsami.2c21241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible piezoresistive tactile sensors are widely used in wearable electronic devices because of their ability to detect mechanical stimuli. However, achieving high sensitivity and low hysteresis over a broad detection range remains a challenge with current piezoresistive tactile sensors. To address these obstacles, we designed elastomeric micropyramid arrays with different heights to redistribute the strain on the electrode. Furthermore, we mixed single-walled carbon nanotubes in the elastomeric micropyramids to compensate for the conductivity loss caused by random cracks in the gold film and increase the adhesion strength between the gold film (deposited on the pyramid surface) and the elastomer. Thus, the energy loss of the sensor during deformation and hysteresis (∼2.52%) was effectively reduced. Therefore, under the synactic effects of the percolation effect, tunnel effect, and multistage strain distribution, the as-prepared sensor exhibited a high sensitivity (1.28 × 106 kPa-1) and a broad detection range (4.51-54837.06 Pa). The sensitivity was considerably higher than those of most flexible pressure sensors with a microstructure design. As a proof of concept, the sensors were successfully applied in the fields of health monitoring and human-machine interaction.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Jingqi Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Zhihua Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634 Singapore
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Jianhui Chen
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Bowen Zhong
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Ming Zhu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Hongbo Xu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| |
Collapse
|
19
|
Enhancement of Self-Healing Efficacy of Conductive Nanocomposite Hydrogels by Polysaccharide Modifiers. Polymers (Basel) 2023; 15:polym15030516. [PMID: 36771818 PMCID: PMC9921321 DOI: 10.3390/polym15030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The proper design of a polysaccharide/hydrocolloid modifier significantly affects the conductivity, self-healing, and viscoelastic properties of nanocomposite hydrogels. Due to the presence of different functional groups, these hydrogels can participate in the covalent, hydrogen and dynamic bonding of a system. The improvement of interactions in this system can lead to the development of high-performance nanocomposite hydrogels. In this study, resilient, self-healing and self-adhesive conductive nanocomposite hydrogels were produced by multiple and diverse coordination connections between various polysaccharide-based modifiers (Arabic gum, sodium carboxymethyl cellulose, and xanthan), the poly(vinyl alcohol) (PVA) network and different graphene-based fillers. Graphene nanoplatelets (GNP), activated carbon black (ACB), and reduced graphene oxide (rGO) have distinct functionalized surfaces, which were analyzed by X-ray photoelectron spectroscopy (XPS). Furthermore, the introduction of fillers balanced the hydrogels' viscoelastic properties and electrical conductivity, providing the hydrogels with resilience, improved electrical conductivity, and extreme stretchability (5000%). The self-healing properties were analyzed using time-dependent measurements in a shear strain mode using an RSO Rheometer. The improvement in electrochemical and conductivity properties was confirmed by electrochemical impedance spectroscopy (EIS). The obtained conductive nanocomposite hydrogels design opens new possibilities for developing high-performance polysaccharide-based hydrogels with wearable electrical sensors and healthcare monitoring applications.
Collapse
|
20
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
21
|
Cheng L, Hao X, Liu G, Zhang W, Cui J, Zhang G, Yang Y, Wang R. A Flexible Pressure Sensor Based on Silicon Nanomembrane. BIOSENSORS 2023; 13:bios13010131. [PMID: 36671966 PMCID: PMC9856423 DOI: 10.3390/bios13010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/17/2023]
Abstract
With advances in new materials and technologies, there has been increasing research focused on flexible sensors. However, in most flexible pressure sensors made using new materials, it is challenging to achieve high detection sensitivity across a wide pressure range. Although traditional silicon-based sensors have good performance, they are not formable and, because of their rigidity and brittleness, they are not suitable for fitting with soft human skin, which limits their application in wearable devices to collect various signals. Silicon nanomembranes are ultra-thin, flexible materials with excellent piezoresistive properties, and they can be applied in various fields, such as in soft robots and flexible devices. In this study, we developed a flexible pressure sensor based on the use of silicon nanomembranes (with a thickness of only 340 nm) as piezoresistive units, which were transferred onto a flexible polydimethylsiloxane (PDMS) substrate. The flexible pressure sensor operated normally in the range of 0-200 kPa, and the sensitivity of the sensor reached 0.0185 kPa-1 in the low-pressure range of 0-5 kPa. In the high-pressure range of 5-200 kPa, the sensitivity of the sensor was maintained at 0.0023 kPa-1. The proposed sensor exhibited a fast response and excellent long-term stability and could recognize human movements, such as the bending of fingers and wrist joints, while maintaining a stable output. Thus, the developed flexible pressure sensor has promising applications in body monitoring and wearable devices.
Collapse
Affiliation(s)
- Lixia Cheng
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
- Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030051, China
| | - Xiaojian Hao
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
- Correspondence: (X.H.); (R.W.)
| | - Guochang Liu
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Wendong Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Jiangong Cui
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Guojun Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Yuhua Yang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Renxin Wang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
- Correspondence: (X.H.); (R.W.)
| |
Collapse
|
22
|
Synthesis of 2-DOF Decoupled Rotation Stage with FEA-Based Neural Network. Processes (Basel) 2023. [DOI: 10.3390/pr11010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transfer printing technology has developed rapidly in the last decades, offering a potential demand for 2-DOF rotation stages. In order to remove decoupling modeling, improve motion accuracy, and simplify the control method, the 2-DOF decoupled rotation stages based on compliant mechanisms present notable merits. Therefore, a novel 2-DOF decoupled rotation stage is synthesized of which the critical components of decoupling are the topological arrangement and a novel decoupled compound joint. To fully consider the undesired deformation of rigid segments, an FEA-based neural network model is utilized to predict the rotation strokes and corresponding coupling ratios, and optimize the structural parameters. Then, FEA simulations are conducted to investigate the static and dynamic performances of the proposed 2-DOF decoupled rotation stage. The results show larger rotation strokes of 4.302 mrad in one-axis actuation with a 1.697% coupling ratio, and 4.184 and 4.151 mrad in two-axis actuation with undesired Rz rotation of 0.014 mrad with fewer actuators than other works. In addition, the first natural frequency of 2151 Hz is also higher, enabling a wider working frequency range.
Collapse
|
23
|
Recent Advances and Progress of Conducting Polymer-Based Hydrogels in Strain Sensor Applications. Gels 2022; 9:gels9010012. [PMID: 36661780 PMCID: PMC9858134 DOI: 10.3390/gels9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Conducting polymer-based hydrogels (CPHs) are novel materials that take advantage of both conducting polymers and three-dimensional hydrogels, which endow them with great electrical properties and excellent mechanical features. Therefore, CPHs are considered as one of the most promising platforms for employing wearable and stretchable strain sensors in practical applications. Herein, we provide a critical review of distinct features and preparation technologies and the advancements in CPH-based strain sensors for human motion and health monitoring applications. The fundamentals, working mechanisms, and requirements for the design of CPH-based strain sensors with high performance are also summarized and discussed. Moreover, the recent progress and development strategies for the implementation of CPH-based strain sensors are pointed out and described. It has been surmised that electronic skin (e-skin) sensors are the upward tendency in the development of CPHs for wearable strain sensors and human health monitoring. This review will be important scientific evidence to formulate new approaches for the development of CPH-based strain sensors in the present and in the future.
Collapse
|
24
|
Kim H, Choi S, Lee B, Seo J, Lee S, Yoon J, Hong Y. Nonpatterned Soft Piezoresistive Films with Filamentous Conduction Paths for Mimicking Multiple-Resolution Receptors of Human Skin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55088-55097. [PMID: 36458332 DOI: 10.1021/acsami.2c16929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft pressure sensors play key roles as input devices of electronic skin (E-skin) to imitate real human skin. For efficient data acquisition according to stimulus types such as detailed pressure images or macroscopic strength of stimuli, soft pressure sensors can have variable spatial resolution, just like the uneven spatial distribution of pressure-sensing receptors on the human body. However, previous methods on soft pressure sensors cannot achieve such tunability of spatial resolution because their sensor materials and read-out electrodes need to be elaborately patterned for a specific sensor density. Here, we report a universal soft pressure-sensitive platform based on anisotropically self-assembled ferromagnetic particles embedded in elastomer matrices whose spatial resolution can be facilely tuned. Various spatial densities of pressure-sensing receptors of human body parts can be implemented by simply sandwiching the film between soft electrodes with different pitches. Since the anisotropically aligned nickel particles form independent filamentous conductive paths, the pressure sensors show spatial sensing ability without crosstalk, whose spatial resolution up to 100 dpi can be achieved from a single platform. The sensor array shows a wide dynamic range capable of detecting various pressure levels, such as liquid drops (∼30 Pa) and plantar (∼300 kPa) pressures. Our universal soft pressure-sensing platform would be a key enabling technology for actually imitating the receptor systems of human skin in robot and biomedical applications.
Collapse
Affiliation(s)
- Hanul Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | | | - Byeongmoon Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Jiseok Seo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Seunghwan Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| |
Collapse
|
25
|
Raza T, Tufail MK, Ali A, Boakye A, Qi X, Ma Y, Ali A, Qu L, Tian M. Wearable and Flexible Multifunctional Sensor Based on Laser-Induced Graphene for the Sports Monitoring System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54170-54181. [PMID: 36411520 DOI: 10.1021/acsami.2c14847] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The conversion of diverse polymeric substrates into laser-induced graphene (LIG) has recently emerged as a single-step method for the fabrication of patterned graphene-based wearable electronics with a wide range of applications in sensing, actuation, and energy storage. Laser-induced pyrolysis technology has many advantages over traditional graphene design: eco-friendly, designable patterning, roll-to-roll production, and controllable morphology. In this work, we designed wearable and flexible graphene-based strain and pressure sensors by laminating LIG from a commercial polyimide (PI) film. The as-prepared LIG was transferred onto a thin polydimethylsiloxane (PDMS) sheet, interwoven inside an elastic cotton sports fabric with the fabric glue as a wearable sensor. The single LIG/PDMS layer acts as a strain sensor, and a two-layer perpendicular stacking of LIG/PDMS (x and y laser-directed films) is designed for pressure sensing. This newly designed graphene textile (IGT) sensor performs four functions in volleyball sportswear, including volleyball reception detection, finger touch foul detection during blocking the ball from an opponent player, spike force measurements, and player position monitoring. An inexpensive sensor assists athletes in training and helps the coach formulate competition strategies.
Collapse
Affiliation(s)
- Tahir Raza
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Muhammad Khurram Tufail
- College of Physics, Qingdao University, Qingdao, Shandong266071, P. R. China
- College of Material Science and Engineering, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Afzal Ali
- Ocean University of China, Qingdao, Shandong266071, P. R. China
| | - Andrews Boakye
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Yulong Ma
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Amjad Ali
- Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| |
Collapse
|
26
|
Yoo H, Kim E, Chung JW, Cho H, Jeong S, Kim H, Jang D, Kim H, Yoon J, Lee GH, Kang H, Kim JY, Yun Y, Yoon S, Hong Y. Silent Speech Recognition with Strain Sensors and Deep Learning Analysis of Directional Facial Muscle Movement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54157-54169. [PMID: 36413961 DOI: 10.1021/acsami.2c14918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silent communication based on biosignals from facial muscle requires accurate detection of its directional movement and thus optimally positioning minimum numbers of sensors for higher accuracy of speech recognition with a minimal person-to-person variation. So far, previous approaches based on electromyogram or pressure sensors are ineffective in detecting the directional movement of facial muscles. Therefore, in this study, high-performance strain sensors are used for separately detecting x- and y-axis strain. Directional strain distribution data of facial muscle is obtained by applying three-dimensional digital image correlation. Deep learning analysis is utilized for identifying optimal positions of directional strain sensors. The recognition system with four directional strain sensors conformably attached to the face shows silent vowel recognition with 85.24% accuracy and even 76.95% for completely nonobserved subjects. These results show that detection of the directional strain distribution at the optimal facial points will be the key enabling technology for highly accurate silent speech recognition.
Collapse
Affiliation(s)
- Hyunjun Yoo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Eunji Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Jong Won Chung
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Hyeon Cho
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Sujin Jeong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Heeseung Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Dongju Jang
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Hayun Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Gae Hwang Lee
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Hyunbum Kang
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Joo-Young Kim
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Youngjun Yun
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| |
Collapse
|
27
|
Huang Z, Lin Y. Transfer printing technologies for soft electronics. NANOSCALE 2022; 14:16749-16760. [PMID: 36353821 DOI: 10.1039/d2nr04283e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft electronics have received increasing attention in recent years, owing to their wide range of applications in dynamic nonplanar surface integration electronics that include skin electronics, implantable devices, and soft robotics. Transfer printing is a widely used assembly technology for micro- and nano-fabrication, which enables the integration of functional devices with flexible or elastomeric substrates for the manufacturing of soft electronics. Through advanced materials and process design, numerous impressive studies related to transfer printing strategies and applications have been proposed. Herein, a discussion of transfer printing technologies toward soft electronics in terms of mechanisms and example demonstrations is provided. Moreover, the perspectives on the potential challenges and future directions of this field are briefly discussed.
Collapse
Affiliation(s)
- Zhenlong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
28
|
Cheng Y, Zhou Y, Wang R, Chan KH, Liu Y, Ding T, Wang XQ, Li T, Ho GW. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. ACS NANO 2022; 16:18608-18620. [PMID: 36318185 DOI: 10.1021/acsnano.2c07097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
On-skin patches that record biopotential and biomechanical signals are essential for wearable healthcare monitoring, clinical treatment, and human-machine interaction. To acquire wearing comfort and high-quality signals, patches with tissue-like softness, elastic recovery, damage tolerance, and robust bioelectronic interface are highly desired yet challenging to achieve. Here, we report a dry epidermal patch made from a supramolecular polymer (SESA) and an in situ transferred carbon nanotubes' percolation network. The polymer possesses a hybrid structure of copolymerized permanent scaffold permeated by multiple dynamic interactions, which imparts a desired mechanical response transition from elastic recoil to energy dissipation with increased elongation. Such SESA-based patches are soft (Young's modulus ∼0.1 MPa) and elastic within physiologically relevant strain levels (97% elastic recovery at 50% tensile strain), intrinsically mechanical-electrical damage-resilient (∼90% restoration from damage after 5 min), and interference-immune in dynamic signal acquisition (stretch, underwater, sweat). We demonstrate its versatile physiological sensing applications, including electrocardiogram recording under various disturbances, machine-learning-enabled hand-gesture recognition through electromyogram measurement, subtle radial artery pulse, and drastic knee kinematics sensing. This epidermal patch offers a promising noninvasive, long-duration, and ambulant bioelectronic interfacing with anti-interference robustness.
Collapse
Affiliation(s)
- Yin Cheng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yan Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Tongtao Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|
29
|
Paul S, Elizabeth I, Srivastava S, Tawale JS, Chandra P, Barshilia HC, Gupta BK. Epidermal Inspired Flexible Sensor with Buckypaper/PDMS Interfaces for Multimodal and Human Motion Monitoring Applications. ACS OMEGA 2022; 7:37674-37682. [PMID: 36312412 PMCID: PMC9608422 DOI: 10.1021/acsomega.2c04563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/28/2022] [Indexed: 05/17/2023]
Abstract
The advancements in the areas of wearable devices and flexible electronic skin have led to the synthesis of scalable, ultrasensitive sensors to detect and differentiate multimodal stimuli and dynamic human movements. Herein, we reveal a novel architecture of an epidermal sensor fabricated by sandwiching the buckypaper between the layers of poly(dimethylsiloxane) (PDMS). This mechanically robust sensor can be conformally adhered on skin and has the perception capability to detect real-time transient human motions and the multimodal mechanical stimuli of stretching, bending, tapping, and twisting. The sensor has feasibility for real-time health monitoring as it can distinguish a wide range of human physiological activities like breathing, gulping, phonation, pulse monitoring, and finger and wrist bending. This multimodal wearable epidermal sensor possesses an ultrahigh gauge factor (GF) of 9178 with a large stretchability of 56%, significant durability for 5000 stretching-releasing cycles, and a fast response/recovery time of 59/88 ms. We anticipate that this novel, simple, and scalable design of a sensor with outstanding features will pave a new way to consummate the requirements of wearable electronics, flexible touch sensors, and electronic skin.
Collapse
Affiliation(s)
- Sharon
J. Paul
- Department
of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
- Photonic
Materials Metrology Sub Division, Advanced Materials and Device Metrology
Division, CSIR—National Physical
Laboratory, New Delhi 110012, India
| | - Indu Elizabeth
- Surface
Engineering Division, CSIR—National
Aerospace Laboratories, Bangalore 560017, India
- ,
| | - Shubhda Srivastava
- Photonic
Materials Metrology Sub Division, Advanced Materials and Device Metrology
Division, CSIR—National Physical
Laboratory, New Delhi 110012, India
| | - Jai S. Tawale
- Indian
Reference Materials Division, CSIR—National
Physical Laboratory, New Delhi 110012, India
| | - Prakash Chandra
- Department
of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Harish C. Barshilia
- Surface
Engineering Division, CSIR—National
Aerospace Laboratories, Bangalore 560017, India
| | - Bipin K. Gupta
- Photonic
Materials Metrology Sub Division, Advanced Materials and Device Metrology
Division, CSIR—National Physical
Laboratory, New Delhi 110012, India
| |
Collapse
|
30
|
Chen L, Chang X, Chen J, Zhu Y. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43833-43843. [PMID: 36112731 DOI: 10.1021/acsami.2c14120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integrating structural anisotropy, excellent mechanical properties, and superior sensing capability into conductive hydrogels is of great importance to wearable flexible electronics yet challenging. Herein, inspired from the aligned structure of human muscle, we proposed a facile and universal method to construct an anisotropic hydrogel composed of polyacrylamide and sodium alginate by pre-stretching in a confined geometry and subsequent ionic cross-linking. The designed hydrogels showed extraordinary mechanical performances, such as ultrahigh stretchability, a comparable modulus to that of human tissues, and good toughness, ascribed to their anisotropically aligned polymer networks. Additionally, the hydrogel possessed anisotropic conductivity due to the anisotropy in ion transport channels. The hydrogel along the vertical direction was further cut and assembled into a flexible strain sensor, exhibiting a low detection limit (0.1%), wide strain range (1585%), rapid response (123 ms), distinct resilience, good stability, and repeatability, thereby being capable of monitoring and discriminating different human movements. In addition, the relatively high ionic conductivity and superior sensitivity enabled the anisotropic hydrogel sensor to be used for wireless human-machine interaction. More interestingly, the Ca2+-cross-linking strategy also endowed the hydrogel sensor with antifreezing ability, further broadening their working temperature. This work is expected to speed up the development of hydrogel sensors in the emerging wearable soft electronics.
Collapse
Affiliation(s)
- Liangren Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, People's Republic of China
| | - Xiaohua Chang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, People's Republic of China
| | - Jianwen Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, People's Republic of China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, People's Republic of China
| |
Collapse
|
31
|
Zhou Y, Lian H, Li Z, Yin L, Ji Q, Li K, Qi F, Huang Y. Crack engineering boosts the performance of flexible sensors. VIEW 2022. [DOI: 10.1002/viw.20220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yunlei Zhou
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Haoxiang Lian
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Zhenlei Li
- School of Mechanical and Electric Engineering Soochow University Suzhou China
| | - Liting Yin
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Qian Ji
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Kan Li
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Fei Qi
- School of Mechanical and Electric Engineering Soochow University Suzhou China
| | - YongAn Huang
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
32
|
Abbasi Shirsavar M, Taghavimehr M, Ouedraogo LJ, Javaheripi M, Hashemi NN, Koushanfar F, Montazami R. Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics. Biosens Bioelectron 2022; 212:114418. [DOI: 10.1016/j.bios.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
33
|
Yang J, Liu Z, Li K, Hao J, Guo Y, Guo M, Li Z, Liu S, Yin H, Shi X, Qin G, Sun G, Zhu L, Chen Q. Tough Adhesive, Antifreezing, and Antidrying Natural Globulin-Based Organohydrogels for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39299-39310. [PMID: 35972900 DOI: 10.1021/acsami.2c07213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels are often used to fabricate strain sensors; however, they also suffer from freezing at low temperatures and become dry during long-time storage. Encapsulation of hydrogels with elastomers is one of the methods to solve these problems although the adhesion between hydrogels and elastomers is usually low. In this work, using bovine serum protein (BSA) as the natural globulin model and glycerol/H2O as the mixture solvent, BSA/polyacrylamide organohydrogels (BSA/PAAm OHGs) were prepared by a facile photopolymerization approach. At the optimal condition, BSA/PAAm OHG demonstrated not only high toughness but also tough adhesion properties, which could strongly adhere to various substrates, such as glass, metals, rigid polymeric materials (even poly(tetrafluoroethylene), i.e., PTFE), and soft elastomers. Moreover, BSA/PAAm OHG was flexible and showed tough adhesion at -20 °C. The toughening mechanism and the adhesive mechanism were proposed. On being encapsulated by poly(dimethylsiloxane) (PDMS), it illustrated good antidrying performance. After introducing a conductive filler, the encapsulated BSA/PAAm OHG could be used as a strain sensor to detect human motions. This work provides a better understanding of the adhesive mechanism of natural protein-based organohydrogels.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhuangzhuang Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Ke Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jiajia Hao
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yaxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Mingxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhipeng Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuzheng Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Qiang Chen
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
34
|
Lei M, Feng K, Ding S, Wang M, Dai Z, Liu R, Gao Y, Zhou Y, Xu Q, Zhou B. Breathable and Waterproof Electronic Skin with Three-Dimensional Architecture for Pressure and Strain Sensing in Nonoverlapping Mode. ACS NANO 2022; 16:12620-12634. [PMID: 35856940 DOI: 10.1021/acsnano.2c04188] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wearable sensors have recently attracted extensive interest not only in the field of healthcare monitoring but also for convenient and intelligent human-machine interactions. However, challenges such as wearable comfort, multiple applicable conditions, and differentiation of mechanical stimuli are yet to be fully addressed. Herein, we developed a breathable and waterproof electronic skin (E-skin) that can perceive pressure/strain with nonoverlapping signals. The synergistic effect from magnetic attraction and nanoscaled aggregation renders the E-skin with microscaled pores for breathability and three-dimensional microcilia for superhydrophobicity. Upon applied pressure, the bending of conductive microcilia enables sufficient contacts for resistance decrease, while the stretching causes increased resistance due to the separation of conductive materials. The optimized E-skin exhibits a high gauge factor of 7.747 for small strain (0-80%) and a detection limit down to 0.04%. The three-dimensional microcilia also exhibit a sensitivity of -0.0198 kPa-1 (0-3 kPa) and a broad detection range up to 200 kPa with robustness. The E-skin can reliably and precisely distinguish kinds of the human joint motions, covering a broad spectrum including bending, stretching, and pressure. With the nonoverlapping readouts, ternary inputs "1", "0", and "-1" could be produced with different stimuli, which expands the command capacity for logic outputs such as effective Morse code and intuitive robotic control. Owing to the rapid response, long-term stability (10 000 cycles), breathability, and superhydrophobicity, we believe that the E-skin can be widely applied as wearable devices from body motion monitoring to human-machine interactions toward a more convenient and intelligent future.
Collapse
Affiliation(s)
- Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Kai Feng
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Mingrui Wang
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ruolin Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen 518000, Guangdong, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
35
|
Yang Y, Cui T, Li D, Ji S, Chen Z, Shao W, Liu H, Ren TL. Breathable Electronic Skins for Daily Physiological Signal Monitoring. NANO-MICRO LETTERS 2022; 14:161. [PMID: 35943631 PMCID: PMC9362661 DOI: 10.1007/s40820-022-00911-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
With the aging of society and the increase in people's concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life. In this review, the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed. By dividing them into breathable e-skin electrodes, breathable e-skin sensors, and breathable e-skin systems, we sort out their design ideas, manufacturing processes, performances, and applications and show their advantages in long-term physiological signal monitoring in daily life. In addition, the development directions and challenges of the breathable e-skin are discussed and prospected.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tianrui Cui
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ding Li
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Shourui Ji
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhikang Chen
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wancheng Shao
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Houfang Liu
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
36
|
Du H, Zhou H, Wang M, Zhao G, Jin X, Liu H, Chen W, Weng W, Ma A. Electrospun Elastic Films Containing AgNW-Bridged MXene Networks as Capacitive Electronic Skins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31225-31233. [PMID: 35762451 DOI: 10.1021/acsami.2c04593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electronic skins (e-skins) are increasingly investigated and applied in wearable devices, but the robustness and convenient production of traditional e-skins are restricted. In this work, electrospun sandwich-structured elastic films (ESEFs) are developed and utilized as capacitive e-skins. The ESEFs consist of two nanocomposite mats as the electrode layers and a sandwiched thermoplastic polyurethane (TPU) mat as the dielectric layer. The nanocomposite mats are composed of thermoplastic polyurethane (TPU) and AgNW-bridged MXene (AgNW, silver nanowire; MXene, Ti3C2Tx) conductive network. The resulting ESEFs achieve a tensile strength of 14.80 MPa, an elongation at break of 270%, and an outstanding antifatigue property. E-skins of such ESEFs have the ability to respond to both strain and pressure with a high gauge factor (GF) (strain: GF = 1.21; pressure: GF = 0.029 kPa-1), wide response range (strain: 0-150%; pressure: 0-70 kPa), low response time, and outstanding stability (2000 cycles). On the basis of integrated sensing performances, such e-skins are further applied in monitoring various mechanical stimuli in daily life, including bending of a plastic plate, joint bending, and swallowing.
Collapse
Affiliation(s)
- Haotian Du
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Mingcheng Wang
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Guoxu Zhao
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Xilang Jin
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Hanbin Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an710021, Shaanxi, P. R. China
| | - Weixing Chen
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Wanqi Weng
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| | - Aijie Ma
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, Shaanxi, P. R. China
| |
Collapse
|
37
|
Sang S, Pei Z, Zhang F, Ji C, Li Q, Ji J, Yang K, Zhang Q. Three-Dimensional Printed Bimodal Electronic Skin with High Resolution and Breathability for Hair Growth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31493-31501. [PMID: 35767549 DOI: 10.1021/acsami.2c09311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with neurological deficits face difficulties perceiving their surroundings, resulting in an urgent need for wearable electronic skin (e-skin) that can monitor external stimuli and temperature changes. However, the monolithic structure of e-skin is not conducive to breathability and hinders hair growth, limiting its wearing comfort. In this work, we prepared fully three-dimensional (3D) printed e-skin that allowed hair penetration and growth. This e-skin also achieved simultaneous pressure and temperature detection and a high tactile resolution of 100 cm-2, which is close to that of human fingertips. The temperature sensor maintained linear measurements within 10-60 °C. The pore microstructure prepared by a sacrificial template method helped the pressure-sensing unit achieve a high sensitivity of 0.213 kPa-1. Considering the distribution of human hair, the design of the main structure of the e-skin was studied to realize hair penetration and growth. High-performance pressure-sensitive inks and transparent flexible substrate inks for 3D printing were developed, and e-skins combining these functions were realized through multimaterial in situ 3D printing with high accuracy and high consistency. The temperature and pressure sensors separately performed simultaneous detection without interference, and the tactile sensor array accurately identified stimuli at different locations.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhen Pei
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Mechanical Engineering, National University of Singapore, 117575 Singapore
| | - Fan Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030024, China
| | - Chao Ji
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianlong Ji
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kun Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
38
|
Yang Y, Shen H, Yang J, Gao K, Wang Z, Sun L. Synergistic effect of reduced graphene oxide/carbon nanotube hybrid papers on cross-plane thermal and mechanical properties. RSC Adv 2022; 12:19144-19153. [PMID: 35865578 PMCID: PMC9246462 DOI: 10.1039/d2ra01723g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Graphene paper has attracted great attention as a heat dissipation material due to its excellent thermal conductivity and mechanical properties. However, the thermal conductivity of graphene paper in the normal direction is relatively poor. In this work, the cross-plane thermal conductivities (K⊥) and mechanical properties of the reduced graphene oxide/carbon nanotube papers with different CNT loadings were studied systematically. It was found that the K⊥ decreased from 0.0393 W m−1 K−1 for 0 wt% paper to 0.0250 W m−1 K−1 for 3 wt% paper, and then increased to 0.1199 W m−1 K−1 for 20 wt% paper. The papers demonstrated a maximum elastic modulus of 6.1 GPa with 10 wt% CNT loading. The CNTs acted as scaffolds to restrain the graphene sheets from corrugating and to reinforce the mechanical properties of the hybrid papers. The more CNTs that filled the gaps between graphene sheets, the greater the number of channels of the transmission of phonons and the looser the structure in the cross-plane direction. Further mechanism analysis revealed the synergistic effects of CNT loadings and graphene sheets on enhancing the thermal and mechanical performance of the papers. The top-view SEM images for (a) rGO, (b) rGO/CNT-3%, (c) rGO/CNTs-20% and the corresponding schematic diagram of photon transmission with different spacer CNTs loadings (a-i, b-ii, c-iii).![]()
Collapse
Affiliation(s)
- Yan Yang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Honglie Shen
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jiale Yang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Kai Gao
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Zehui Wang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Luanhong Sun
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
39
|
High-Sensitivity Flexible Piezoresistive Pressure Sensor Using PDMS/MWNTS Nanocomposite Membrane Reinforced with Isopropanol for Pulse Detection. SENSORS 2022; 22:s22134765. [PMID: 35808262 PMCID: PMC9269151 DOI: 10.3390/s22134765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023]
Abstract
Flexible pressure sensors with high sensitivity and good linearity are in high demand to meet the long-term and accurate detection requirements for pulse detection. In this study, we propose a composite membrane pressure sensor using polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWNTS) reinforced with isopropanol prepared by solution blending and a self-made 3D-printed mold. The device doped with isopropanol had a higher sensitivity and linearity owning to the construction of additional conductive paths. The optimal conditions for realizing a high-performance pressure sensor are a multiwalled carbon nanotube mass ratio of 7% and a composite membrane thickness of 490 μm. The membrane achieves a high linear sensitivity of −57.07 kΩ∙kPa−1 and a linear fitting correlation coefficient of 98.78% in the 0.13~5.2 kPa pressure range corresponding to pulse detection. Clearly, this device has great potential for application in pulse detection.
Collapse
|
40
|
Nguyen VH, Papanastasiou DT, Resende J, Bardet L, Sannicolo T, Jiménez C, Muñoz-Rojas D, Nguyen ND, Bellet D. Advances in Flexible Metallic Transparent Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106006. [PMID: 35195360 DOI: 10.1002/smll.202106006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Transparent electrodes (TEs) are pivotal components in many modern devices such as solar cells, light-emitting diodes, touch screens, wearable electronic devices, smart windows, and transparent heaters. Recently, the high demand for flexibility and low cost in TEs requires a new class of transparent conductive materials (TCMs), serving as substitutes for the conventional indium tin oxide (ITO). So far, ITO has been the most used TCM despite its brittleness and high cost. Among the different emerging alternative materials to ITO, metallic nanomaterials have received much interest due to their remarkable optical-electrical properties, low cost, ease of manufacturing, flexibility, and widespread applicability. These involve metal grids, thin oxide/metal/oxide multilayers, metal nanowire percolating networks, or nanocomposites based on metallic nanostructures. In this review, a comparison between TCMs based on metallic nanomaterials and other TCM technologies is discussed. Next, the different types of metal-based TCMs developed so far and the fabrication technologies used are presented. Then, the challenges that these TCMs face toward integration in functional devices are discussed. Finally, the various fields in which metal-based TCMs have been successfully applied, as well as emerging and potential applications, are summarized.
Collapse
Affiliation(s)
- Viet Huong Nguyen
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
| | | | - Joao Resende
- AlmaScience Colab, Madan Parque, Caparica, 2829-516, Portugal
| | - Laetitia Bardet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Thomas Sannicolo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carmen Jiménez
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - David Muñoz-Rojas
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Ngoc Duy Nguyen
- Département de Physique, CESAM/Q-MAT, SPIN, Université de Liège, Liège, B-4000, Belgium
| | - Daniel Bellet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| |
Collapse
|
41
|
Liu S, Tian X, Zhang X, Xu C, Wang L, Xia Y. A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Bontapalle S, Na M, Park H, Sim K. Fully soft organic electrochemical transistor enabling direct skin-mountable electrophysiological signal amplification. Chem Commun (Camb) 2022; 58:1298-1301. [PMID: 34979536 DOI: 10.1039/d1cc04884h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we propose fully soft OECTs with all soft components, including a PEDOT:PSS-based soft channel, which show substantial mechanical/electrical properties. In addition, the further demonstrated skin-mountable amplifier implies the strong potential of this work to be an innovative development in wearable electronics.
Collapse
Affiliation(s)
- Sujitkumar Bontapalle
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Myeonghyeon Na
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Haechan Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyoseung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
43
|
Soft Ionic Pressure Sensor with Aloe Vera Gel for Low-Pressure Applications. MICROMACHINES 2022; 13:mi13020146. [PMID: 35208271 PMCID: PMC8874697 DOI: 10.3390/mi13020146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
Ionic pressure sensors are made of ionic compounds suspended in a suitable solvent mixture. When external pressure is exerted on them, it is reflected as a change in electrical parameters due to physical deformation and a redistribution of ions within the sensing medium. Variations in the composition and material of the sensing medium result in different pressure sensors with varying operating ranges and sensitivity. This work presents the design and fabrication procedure of a novel soft-pressure sensor for a very low-pressure range (<20 mm Hg) using Aloe vera gel and Glycerin as the solvent for the ionic sensing medium. We also provide a comparative study on the performance of sensor prototypes with varying solvent concentrations and geometric parameters based on a series of characterization experiments. Maximum sensitivity (7.498×10−4 Ω/mmHg) was observed when using 40% glycerin in the sensing medium, filled in a toroidal geometry with outer and inner channel diameters of 8 mm and 7 mm, respectively. The proposed sensor is entirely soft and can be designed to conform to any desired geometry.
Collapse
|
44
|
WU C, WANG S, TAO O, ZHAN X. Characterization of main components in Xiao'er Xiaoji Zhike oral liquid by UPLC-MS and their taste evaluation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.82521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chunying WU
- Beijing University of Chinese Medicine, China
| | - Shuyu WANG
- Beijing University of Chinese Medicine, China
| | - Ou TAO
- Beijing University of Chinese Medicine, China
| | - Xueyan ZHAN
- Beijing University of Chinese Medicine, China
| |
Collapse
|
45
|
Wu F, Liu Y, Zhang J, Duan S, Ji D, Yang H. Recent Advances in High-Mobility and High-Stretchability Organic Field-Effect Transistors: From Materials, Devices to Applications. SMALL METHODS 2021; 5:e2100676. [PMID: 34928035 DOI: 10.1002/smtd.202100676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 06/14/2023]
Abstract
Stretchable organic field-effect transistors (OFETs) are one of the essential building blocks for next-generation wearable electronics due to the high stretchability of OFET well matching with the large deformation of human skin. In recent years, some significant progress of stretchable OFETs have already been made via the strategies of stretchable molecular design and geometry engineering. However, the main opportunity and challenge of stretchable OFETs is still to simultaneously improve their stretchability and mobility. This review covers the recent advances in the research of stretchable OFETs with high mobility. First, the core stretchable materials are summarized, including organic semiconductors, electrodes, dielectrics, and substrates. Second, the materials and healing mechanism of self-healing OFET are summarized in detail. Subsequently, their different configurations and the potential applications are summarized. Finally, an outlook of future research directions and challenges in this area is presented.
Collapse
Affiliation(s)
- Fuming Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Shuming Duan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Deyang Ji
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| |
Collapse
|
46
|
Zhang M, Gao X, Lu C, Yao D, Wu L, Li D, Fang H, A S, Sun Y. Ultrathin Superhydrophobic Flexible Tactile Sensors for Normal and Shear Force Discrimination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55735-55746. [PMID: 34761892 DOI: 10.1021/acsami.1c17391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible tactile sensors, with the ability to sense and even discriminate between different mechanical stimuli, can enable real-time and precise monitoring of dexterous and complex robotic motions. However, making them ultrathin and superhydrophobic for practical applications is still a great challenge. Here, superhydrophobic flexible tactile sensors with hierarchical micro- and nanostructures, that is, warped graphene nanosheets adhered to micron-height wrinkled surfaces, were constructed using ultrathin medical tape (40 μm) and graphene. The tactile sensor enables the discrimination of normal and shear forces and senses sliding friction and airflow. Moreover, the tactile sensor exhibits high sensitivity to normal and shear forces, extremely low detection limits (15 Pa for normal forces and 6.4 mN for shear forces), and cyclic robustness. Based on the abovementioned characteristics, the tactile sensor enables real-time and accurate monitoring of the robotic arm's motions, such as moving, gripping, and lifting, during the process of picking up objects. The superhydrophobicity even allows the sensor to monitor the motions of the robotic arm underwater in real time. Our tactile sensors have potential applications in the fields of intelligent robotics and smart prosthetics.
Collapse
Affiliation(s)
- Mengpei Zhang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- College of Chemical Engineering & Pharmaceutics, National United Engineer Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Lanlan Wu
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dongxue Li
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Hanqing Fang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Shiwei A
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Yafei Sun
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
47
|
Gao X, Zhou F, Li M, Wang X, Chen S, Yu J. Flexible Stannum-Doped SrTiO 3 Nanofiber Membranes for Highly Sensitive and Reliable Piezoresistive Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52811-52821. [PMID: 34714633 DOI: 10.1021/acsami.1c17789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanically flexible ceramic fiber-based electronic skins are attractive materials ascribed to the features of monitoring signals of various physical parameters in a harsh environment, but the inherent brittleness of the ceramic fibers has limited their wide applications in emerging fields, such as fire-protecting clothing. Herein, a strategy to fabricate the flexible stannum(IV)-doped SrTiO3 (SSTO) nanofiber membranes by a facile sol-gel electrospinning method is reported. The calcination temperature and Sn4+ doping content play vital roles in regulating the crystalline and pore structures that are closely relevant to the flexibility and mechanical properties of the resultant SSTO nanofiber membranes. The as-prepared SSTO nanofiber membranes exhibited exceptional flexibility with an optimum tensile strength of 0.22 MPa, an elongation rate of 1.8%, and a Young's modulus of 13.3 MPa. Significantly, the flexible SSTO nanofiber-based piezoresistive sensors exhibited intriguing sensing performance toward pressure involving high sensitivity (2.24 kPa-1) in a low-pressure range (<400 Pa), fast response time (12 ms) and recovery time (32 ms), good durability (>1000 cycles), and excellent stability at different humidity levels and elevated temperatures. Furthermore, the sensor can also accurately monitor the signals of human motion such as finger bending, throat swallowing, and radial pulse. The fabrication of flexible ceramic nanofiber-based piezoresistive sensors would pave the way to fabricate wearable devices for fire-protecting clothing, personal healthcare, real-time human activity detection.
Collapse
Affiliation(s)
- Xue Gao
- College of Textiles and Clothing, Qingdao University, Shandong 266071, China
| | - Fang Zhou
- College of Textiles and Clothing, Qingdao University, Shandong 266071, China
| | - Mengyuan Li
- College of Textiles and Clothing, Qingdao University, Shandong 266071, China
| | - Xueqin Wang
- College of Textiles and Clothing, Qingdao University, Shandong 266071, China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Shandong 266071, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
48
|
Shi Y, Wei X, Wang K, He D, Yuan Z, Xu J, Wu Z, Wang ZL. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50329-50337. [PMID: 34641665 DOI: 10.1021/acsami.1c13420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of wearable electronic skins (E-skins) requires devices with high flexibility, breathability, and antibacterial activity, as in sports sensing technology. Here, we report a flexible, breathable, and antibacterial triboelectric nanogenerator (TENG)-based E-skin for self-powered sensing in volleyball reception statistics and analytics, which is fabricated by sandwiching a silver nanowire (Ag NW) electrode between a thermoplastic polyurethane (TPU) sensing layer and a poly(vinyl alcohol)/chitosan (PVA/CS) substrate. Benefiting from an outstanding breathability of 10.32 kg m-2 day-1 and biocidal properties of CS and Ag NW, the E-skin offers excellent thermal-moisture comfort and a remarkable antibacterial effect on Escherichia coli and Staphylococcus aureus. A pressure sensitivity of 0.3086 V kPa-1 is demonstrated in the sensing range of 6.65-19.21 kPa. Besides, a volleyball reception statistical and analytical system is further developed based on a 2 × 3 E-skin array. According to this work, the integration of wearable electronic devices with self-powered sensors may expand practical applications in sports.
Collapse
Affiliation(s)
- Yapeng Shi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaimeng Wang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Dongdong He
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhihao Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jiahui Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
49
|
Li C. Towards conductive hydrogels in e-skins: a review on rational design and recent developments. RSC Adv 2021; 11:33835-33848. [PMID: 35497297 PMCID: PMC9042588 DOI: 10.1039/d1ra04573c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past decades, electronic skins (e-skins) have attracted significant attention owing to their feasibility of applications in health monitoring, motion detection, and entertainment. As a class of soft materials, conductive hydrogels feature biocompatibility, stretchability, adhesiveness, and self-healing properties, making them one of the most important candidates for high-performance e-skins. However, profound challenges remain for achieving the combination of superior mechanical strength and conductivity of conductive hydrogels simultaneously without sacrificing their multifunctionalities. Herein, a framework for rational designs to fabricate conductive hydrogels are proposed, including the fundamental strategies of copolymerization, doping, and self-assembly. In addition, we provide a comprehensive analysis of their merits and demerits when the conductive hydrogels are fabricated in different ways. Furthermore, the recent progress and future perspective for conductive hydrogels in terms of electronic skins are highlighted.
Collapse
Affiliation(s)
- Chujia Li
- Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an Shaanxi Province 710072 China
| |
Collapse
|
50
|
Hua W, Mitchell K, Raymond L, Godina B, Zhao D, Zhou W, Jin Y. Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages. ACS Biomater Sci Eng 2021; 7:4736-4756. [PMID: 34582176 DOI: 10.1021/acsbiomaterials.1c00910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluid bath-assisted three-dimensional (3D) printing is an innovative 3D printing strategy that extrudes liquid ink materials into a fluid bath to form various 3D configurations. Since the support bath can provide in situ support, extruded filaments are able to freely construct complex 3D structures. Meanwhile, the supporting function of the fluid bath decreases the dependence of the ink material's cross-linkability, thus broadening the material selections for biomedical applications. Fluid bath-assisted 3D printing can be divided into two subcategories: embedded 3D printing and support bath-enabled 3D printing. This review will introduce and discuss three main manufacturing processes, or stages, for these two strategies. The stages that will be discussed include preprinting, printing, and postprinting. In the preprinting stage, representative fluid bath materials are introduced and the bath material preparation methods are also discussed. In addition, the design criteria of fluid bath materials including biocompatibility, rheological properties, physical/chemical stability, hydrophilicity/hydrophobicity, and other properties are proposed in order to guide the selection and design of future fluid bath materials. For the printing stage, some key technical issues discussed in this review include filament formation mechanisms in a fluid bath, effects of nozzle movement on printed structures, and design strategies for printing paths. In the postprinting stage, some commonly used postprinting processes are introduced. Finally, representative biomedical applications of fluid bath-assisted 3D printing, such as standalone organoids/tissues, biomedical microfluidic devices, and wearable and bionic devices, are summarized and presented.
Collapse
Affiliation(s)
- Weijian Hua
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Kellen Mitchell
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Lily Raymond
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Beatriz Godina
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Danyang Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangzhou, Guangdong 510642, China.,Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yifei Jin
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|