1
|
Pan T, Gao TY, Fan XH, Sa ML, Yang XJ, Xu JN, Xu X, Ma M, Wang R, Zhang Y, Ye W, Shi YP, Zhang HX, Zeng ZC. Development of a cost-effective confocal Raman microscopy with high sensitivity. Talanta 2025; 281:126754. [PMID: 39241646 DOI: 10.1016/j.talanta.2024.126754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Confocal Raman microscopy is a powerful technique for identifying materials and molecular species; however, the signal from Raman scattering is extremely weak. Typically, handheld Raman instruments are cost-effective but less sensitive, while high-end scientific-grade Raman instruments are highly sensitive but extremely expensive. This limits the widespread use of Raman technique in our daily life. To bridge this gap, we explored and developed a cost-effective yet highly sensitive confocal Raman microscopy system. The key components of the system include an excitation laser based on readily available laser diode, a lens-grating-lens type spectrometer with high throughput and image quality, and a sensitive detector based on a linear charge-coupled device (CCD) that can be cooled down to -30 °C. The developed compact Raman instrument can provide high-quality Raman spectra with good spectral resolution. The 3rd order 1450 cm-1 peak of Si (111) wafer shows a signal-to-noise ratio (SNR) better than 10:1, demonstrating high sensitivity comparable to high-end scientific-grade Raman instruments. We also tested a wide range of different samples (organic molecules, minerals and polymers) to demonstrate its universal application capability.
Collapse
Affiliation(s)
- Ting Pan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tian-Yu Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiang-Hua Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Mei-Ling Sa
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiu-Jia Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Nan Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Xinxin Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Mengmeng Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Ran Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuewen Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| | - Hai-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhi-Cong Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Huang C, Zhang Y, Zhang Q, He D, Dong S, Xiao X. Rapid detection of perfluorooctanoic acid by surface enhanced Raman spectroscopy and deep learning. Talanta 2024; 280:126693. [PMID: 39167934 DOI: 10.1016/j.talanta.2024.126693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Perfluorooctanoic acid (PFOA) has received increasing concerns in recent years due to its wide distribution and potential toxicity. Existing detection techniques of PFOA require complex pre-treatment, therefore often taking several hours. Here, we developed a rapid PFOA detection mode to detect approximate concentrations of PFOA (ranging from 10-15 to 10-3 mol/L) in deionized water, and detecting one sample takes only 20 min. The detection mode was achieved using a deep learning model trained by a large surface enhanced Raman spectra dataset, based on the agglomeration of PFOA with crystal violet. In addition, transfer learning approach was used to fine tune the model, the fine-tuned model was generalizable across water samples with different impurities and environments to determine whether meet the safety standards of PFOA, the accuracy was 96.25 % and 94.67 % for tap water and lake water samples, respectively. The mechanism and specificity of the detection mode were further confirmed by molecular dynamics simulation. Our work provides a promising solution for PFOA detection, especially in the context of the increasingly widespread application of PFOA.
Collapse
Affiliation(s)
- Chaoning Huang
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Ying Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Dong He
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Shilian Dong
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China.
| | - Xiangheng Xiao
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China; Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Liu L, Xu Y, Su J, Wei J, Liu X, Peng Q, Chang J, Teng B. Exploring microstructures of metal-doped oxides via simulated Raman spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124616. [PMID: 38857547 DOI: 10.1016/j.saa.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Solid solution of metal-doped oxide has been widely used in material industry and catalysis process. Its performance is highly correlated with the distribution of doped ions. Due to the complex distribution of doped ions in solid solution and its variation with temperatures, to obtain the microstructures of metal-doped ions in solid solution remains a substantial challenge. Taken Ce1-xZrxO2 as a model, the global structure searching, structures proportion with temperature determined by Boltzmann distribution, and the weighted simulation Raman spectra were integrated to explore the microstructures of metal-doped solid solution oxides. It was further verified by application into rutile and anatase TiO2 mixture, indicating that the present method is feasible to deduce the microstructure of metal composite oxides. We anticipate that it provides a powerful solution to explore microstructures of solid solution and complex metal oxides.
Collapse
Affiliation(s)
- Le Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuxing Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junchao Su
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiangtao Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Qing Peng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Chang
- Institute of Sustainability of Chemical, Energy and Environment, Agency for Science, Technology and Research, Singapore 627833, Singapore.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department of Electricity and Electronics, University of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM, UdR Brescia, Via Branze 38, Brescia 25123, Italy
- Department of Information Engineering (DII), University of Brescia, Via Branze 38, Brescia 25123, Italy
- INO-CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K
| | | | - Phillip Christopher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K Jain
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Holger Lange
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M Liz-Marzán
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T Lucas
- Nantes Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ U.K
| | - Raul Quesada-Cabrera
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Department of Chemistry, Institute of Environmental Studies and Natural Resources (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M Weckhuysen
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
5
|
Li H, Lin Y, Duan J, Wen Q, Liu Y, Zhai T. Stability of electrocatalytic OER: from principle to application. Chem Soc Rev 2024; 53:10709-10740. [PMID: 39291819 DOI: 10.1039/d3cs00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogen energy, derived from the electrolysis of water using renewable energy sources such as solar, wind, and hydroelectric power, is considered a promising form of energy to address the energy crisis. However, the anodic oxygen evolution reaction (OER) poses limitations due to sluggish kinetics. Apart from high catalytic activity, the long-term stability of electrocatalytic OER has garnered significant attention. To date, several research studies have been conducted to explore stable electrocatalysts for the OER. A comprehensive review is urgently warranted to provide a concise overview of the recent advancements in the electrocatalytic OER stability, encompassing both electrocatalyst and device developments. This review aims to succinctly summarize the primary factors influencing OER stability, including morphological/phase change and electrocatalyst dissolution, as well as mechanical detachment, alongside chemical, mechanical, and operational degradation observed in devices. Furthermore, an overview of contemporary approaches to enhance stability is provided, encompassing electrocatalyst design (structural regulation, protective layer coating, and stable substrate anchoring) and device optimization (bipolar plates, gas diffusion layers, and membranes). Hopefully, more attention will be paid to ensuring the stable operation of electrocatalytic OER and the future large-scale water electrolysis applications. This review presents design principles aimed at addressing challenges related to the stability of electrocatalytic OER.
Collapse
Affiliation(s)
- HuangJingWei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Yu Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
6
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
7
|
Romay L, Nuñez-Marinero P, Perales-Rondon JV, Heras A, Del Campo FJ, Colina A. New screen-printed electrodes for Raman spectroelectrochemistry. Determination of p-aminosalicylic acid. Anal Chim Acta 2024; 1325:343095. [PMID: 39244301 DOI: 10.1016/j.aca.2024.343095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The availability of new surface enhanced Raman scattering (SERS) substrates is essential to develop quantitative analytical methods. Electrochemistry is an easy, fast and reproducible methodology to prepare SERS substrates on screen-printed electrodes (SPEs). RESULTS This work proposes new SPEs based on a three-electrode system all made of silver. Using the same ink for the whole electrode system facilitates the fabrication process, reduces production costs, and leads to excellent analytical performance. The results showed that Raman enhancement depends strongly on the type of silver ink. To demonstrate the capabilities of the new electrodes developed, 4-aminosalicylic acid was determined in complex matrices and in the presence of strong interfering compounds such as salicylic acid and acetylsalicylic acid. The proposed analytical method is based on the electrochemical surface oxidation enhanced Raman scattering (EC-SOERS) strategy. AgCl nanocrystals are generated on the working electrode surface, which amplify the Raman signal of 4-aminosalicylic acid. Good figures of merit were obtained both in the absence and in the presence of the interfering compounds, achieving a correct estimation of a 4-aminosalicylic test sample in complex matrices. SIGNIFICANCE The new SPEs have been demonstrated to be very sensitive and reproducible which, together to the high specificity of the Raman signal, makes this methodology very attractive for chemical analysis.
Collapse
Affiliation(s)
- Luis Romay
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Pello Nuñez-Marinero
- BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Parque Científico, E-48940, Leioa, Bizkaia, Spain
| | - Juan V Perales-Rondon
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain; Hydrogen and Power-to-X Department, Iberian Centre for Research in Energy Storage, Polígono 13, Parcela 31, «El Cuartillo», E-10004, Cáceres, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - F Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Parque Científico, E-48940, Leioa, Bizkaia, Spain; IKERBASQUE, Fundación Vasca para la Ciencia, E-48009, Bilbao, Spain.
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain.
| |
Collapse
|
8
|
Chen M, Lai X, Su B, Jiang X, Xu J, Fu F, Lin Z, Dong Y. Rapid detection of tebuconazole based on hydrogel SERS chips. Talanta 2024; 277:126309. [PMID: 38795591 DOI: 10.1016/j.talanta.2024.126309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Tebuconazole is one of the most commonly used fungicides in agricultural production, that has the merits of highly effectiveness, broad spectrum and systemic function. Excessive tebuconazole may pose a great threat to human and animal health. Traditional detection techniques for tebuconazole usually have limitations such as expensive equipment, poor antibody stability, and time-consuming procedures. Herein, a sensitive sensor is developed for the rapid detection of tebuconazole based on hydrogel surface-enhanced Raman scattering (SERS) chips. Aggregated Ag nanoparticles (a-AgNPs) with tunable localized surface plasmon resonance (LSPR) wavelength are in-situ synthesized in polyvinyl alcohol (PVA) solution for preparing hydrogel SERS chips. Three hydrogel SERS chips are obtained to match the three commonly used laser wavelengths. On the basis, a match laser wavelength is selected according to the energy levels of tebuconazole and the Fermi level of a-AgNPs to gain a strong chemical enhancement. At the same time, the chip with a corresponding LSPR wavelength to the laser is applied to obtain a strong electromagnetic enhancement. Thus, highly sensitive SERS signal of tebuconazole is obtained. Furthermore, the obtained hydrogel SERS chips have good repeatability, outstanding reproducibility and strong anti-interference ability, and show outstanding reliability in practical applications. As a result, the SERS chips offer a reliable and convenient platform for the quick detection of tebuconazole in foods. The detection limit is as low as 1 ppb, and the recoveries is distributed in the range of 94.66-106.70 %. This work would promote greatly the application of SERS in small molecule detection.
Collapse
Affiliation(s)
- Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaojing Lai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bihang Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jinhua Xu
- Fujian Inspection and Research Institute for Product Quality, National Center of Processed Foods Quality Supervision and Inspection, Fuzhou, 350002, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yongqing Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
9
|
Dall'Osto G, Corni S. Time-dependent surface-enhanced Raman scattering: A theoretical approach. J Chem Phys 2024; 161:044103. [PMID: 39037131 DOI: 10.1063/5.0214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
A new procedure for computing the time-dependent Raman scattering of molecules in the proximity of plasmonic nanoparticles (NPs) is proposed, drawing inspiration from the pioneering Lee and Heller's theory. This strategy is based on a preliminary simulation of the molecular vibronic wavefunction in the presence of a plasmonic nanostructure and an incident light pulse. Subsequently, the Raman signal is evaluated through an inverse Fourier Transform of the coefficients' dynamics. Employing a multiscale approach, the system is treated by coupling the quantum mechanical description of the molecule with the polarizable continuum model for the NP. This method offers a unique advantage by providing insights into the time evolution of the plasmon-enhanced Raman signal, tracking the dynamics of the incident electric field. It not only provides for the total Raman signal at the process's conclusion but also gives transient information. Importantly, the flexibility of this approach allows for the simulation of various incident electric field profiles, enabling a closer alignment with experimental setups. This adaptability ensures that the method is relevant and applicable to diverse real-world scenarios.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35100, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35100, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena 41100, Italy
| |
Collapse
|
10
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
11
|
Campbell E, Sazanovich IV, Towrie M, Watson MJ, Lezcano-Gonzalez I, Beale AM. Methanol-to-Olefins Studied by UV Raman Spectroscopy as Compared to Visible Wavelength: Capitalization on Resonance Enhancement. J Phys Chem Lett 2024; 15:6826-6834. [PMID: 38916593 PMCID: PMC11229064 DOI: 10.1021/acs.jpclett.4c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Resonance Raman spectroscopy can provide insights into complex reaction mechanisms by selectively enhancing the signals of specific molecular species. In this work, we demonstrate that, by changing the excitation wavelength, Raman bands of different intermediates in the methanol-to-hydrocarbons reactions can be identified. We show in particular how UV excitation enhances signals from short-chain olefins and cyclopentadienyl cations during the induction period, while visible excitation better detects later-stage aromatics. However, visible excitation is prone to fluorescence that can obscure Raman signals, and hence, we show how fast fluorescence rejection techniques like Kerr gating are necessary for extracting useful information from visible excitation measurements.
Collapse
Affiliation(s)
- Emma Campbell
- Cardiff
Catalysis Institute School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11
0FA, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell
Campus, Didcot OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell
Campus, Didcot OX11 0QX, U.K.
| | - Michael J. Watson
- Johnson
Matthey Technology Centre, P O Box 1, Belasis Avenue, Billingham TS23 1LB, U.K.
| | - Ines Lezcano-Gonzalez
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11
0FA, U.K.
| | - Andrew M. Beale
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11
0FA, U.K.
| |
Collapse
|
12
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
13
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
14
|
Abidin NZ, Hashim H, Zubairi SI, Maskat MY, Purhanudin N, Awang R, Ali JM, Yaakob H. Enhancing polytetrafluoroethylene (PTFE) coated film for food processing: Unveiling surface transformations through oxygenated plasma treatment and parameter optimization using response surface methodology. PLoS One 2024; 19:e0303931. [PMID: 38820420 PMCID: PMC11142506 DOI: 10.1371/journal.pone.0303931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Spray drying fruit juice powders poses challenges because sugars and organic acids with low molecular weight and a low glass transition temperature inherently cause stickiness. This study employed a hydrophobic polytetrafluoroethylene (PTFE) film to mimic the surface of the drying chamber wall. The Central Composite Design (CCD) using response surface methodology investigated the impact of power (X1, Watt) and the duration of oxygenated plasma treatment (X2, minutes) on substrate contact angle (°), reflecting surface hydrophobicity. To validate the approach, Morinda citrofolia (MC) juice, augmented with maltodextrins as drying agents, underwent spray drying on the improved PTFE-coated surface. The spray drying process for MC juice was performed at inlet air temperatures of 120, 140, and 160°C, along with Noni juice-to-maltodextrin solids ratios of 4.00, 1.00, and 0.25. The PTFE-coated borosilicate substrate, prepared at a radio frequency (RF) power of 90W for 15 minutes of treatment time, exhibited a porous and spongy microstructure, correlating with superior contact angle performance (171°) compared to untreated borosilicate glass. Optimization data indicated that the PTFE film attained an optimum contact angle of 146.0° with a specific combination of plasma RF operating power (X1 = 74 W) and treatment duration (X2 = 10.0 minutes). RAMAN spectroscopy indicated a structural analysis with an ID/IG ratio of 0.2, while Brunauer-Emmett-Teller (BET) surface area analysis suggested an average particle size of less than 100 nm for all coated films. The process significantly improved the powder's hygroscopicity, resistance to caking, and moisture content of maltodextrin-MC juice. Therefore, the discovery of this modification, which applies oxygen plasma treatment to PTFE-coated substrates, effectively enhances surface hydrophobicity, contact angle, porosity, roughness, and ultimately improves the efficacy and recovery of the spray drying process.
Collapse
Affiliation(s)
- Noraziani Zainal Abidin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Haslaniza Hashim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Saiful Irwan Zubairi
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Noorain Purhanudin
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Rozidawati Awang
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jarinah Mohd Ali
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Harisun Yaakob
- Institute Bioproduct Development (IBD), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
15
|
Aeindartehran L, Sadri Z, Rahimi F, Alinejad T. Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research. Methods Appl Fluoresc 2024; 12:032002. [PMID: 38697201 DOI: 10.1088/2050-6120/ad46e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Zahra Sadri
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75205, United States of America
| | - Fateme Rahimi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou 325015, Zhejiang, People's Republic of China
- Institute of Cell Growth Factor, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
16
|
Yang J, Yan P, Chen Z, Liu W, Liu Z, Ma Z, Xu Q. Interfacial Bonding Induced Charge Transfer in Two-Dimensional Amorphous MoO 3-x/Graphdiyne Oxide Non-Van der Waals Heterostructures for Dominant SERS Enhancement. Chemistry 2024; 30:e202400227. [PMID: 38501673 DOI: 10.1002/chem.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
Two-dimensional semiconductor-based nanomaterials have shown to be an effective substrate for Surface-enhanced Raman Scattering (SERS) spectroscopy. However, the enhancement factor (EF) tends to be relatively weak compared to that of noble metals and does not allow for trace detection of molecules. In this work, we report the successful preparation of two-dimensional (2D) amorphous non-van der Waals heterostructures MoO3-x/GDYO nanomaterials using supercritical CO2. Due to the synergistic effect of the localized surface plasmon resonance (LSPR) effect and the charge transfer effect, it exhibits excellent SERS performance in the detection of methylene blue (MB) molecules, with a detection limit as low as 10-14 M while the enhancement factor (EF) can reach an impressive 2.55×1011. More importantly, the chemical bond bridging at the MoO3-x/GDYO heterostructures interface can accelerate the electron transfer between the interfaces, and the large number of defective surface structures on the heterostructures surface facilitates the chemisorption of MB molecules. And the charge recombination lifetime can be proved by a ~1.7-fold increase during their interfacial electron-transfer process for MoO3-x/GDYO@MB mixture, achieving highly sensitive SERS detection.
Collapse
Affiliation(s)
- Jian Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Pengfei Yan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Wei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhaoxi Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zijian Ma
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| |
Collapse
|
17
|
Taudul B, Tielens F, Calatayud M. Raman Characterization of Plastics: A DFT Study of Polystyrene. J Phys Chem B 2024; 128:4243-4254. [PMID: 38632700 DOI: 10.1021/acs.jpcb.3c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Plastic materials are ubiquitous and raise concerns about their impact on health and the environment. To address these concerns, it is crucial to characterize the structural, size, and textural properties of plastics throughout their lifecycle from production to degradation. Raman spectroscopy appears as a valuable tool for this purpose, offering speed, robustness, and sensitivity to nanoscale and amorphous particles. In order to be properly used for plastics, the Raman response of reference materials needs to be carefully assessed, with the literature on such assessments being scarce. This study addresses this gap by using theoretical calculations to generate ab initio spectra for polystyrene, a reference material. The aim is to explain the origins of the spectral peaks and their consistency across various compositions and structures using linear ordered polymeric and finite amorphous models. The CRYSTAL package is employed to obtain full Raman spectra based on a careful benchmark of computational settings. While some peaks are present across all spectra and can serve for calibration, others exhibit structure-dependent behavior, enabling polymer identification. We conclude that Raman spectroscopy is a well-suited technique for plastics characterization provided that a careful analysis of signal origin is conducted to fully interpret the spectra and deploy applications.
Collapse
Affiliation(s)
- Beata Taudul
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4 Place Jussieu, F-75005 Paris, France
| | - Frederik Tielens
- Department of General Chemistry (ALGC)─Materials Modelling Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Monica Calatayud
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|
18
|
Herold D, Brauser M, Kind J, Thiele CM. Evolution of a Combined UV/Vis and NMR Setup with Fixed Pathlengths for Mass-limited Samples. Chemistry 2024; 30:e202304016. [PMID: 38360972 DOI: 10.1002/chem.202304016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
The investigation of reaction mechanisms is a complex task that usually requires the use of several techniques. To obtain as much information as possible on the reaction and any intermediates - possibly invisible to one technique - the combination of techniques is a solution. In this work we present a new setup for combined UV/Vis and NMR spectroscopy and compare it to an established alternative. The presented approach allows a versatile usage of different commercially-available components like mirrors and fiber bundles as well as different fixed pathlengths according to double transmission or single transmission measurements. While a previous approach is based on a dip-probe setup for conventional NMR probes, the new one is based on a micro-Helmholtz coil array (LiquidVoxel™). This makes the use of rectangular cuvettes possible, which ensure well-defined pathlengths allowing for quantification of species. Additionally, very low quantities of compound can be analyzed due to the microfabrication and small cuvette size used. As proof-of-principle this new setup for combined UV/Vis and NMR spectroscopy is used to examine a well-studied photochromic system of the dithienylethene compound class. A thorough comparison of the pros and cons of the two setups for combined UV/Vis and NMR measurements is performed.
Collapse
Affiliation(s)
- Dominik Herold
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| | - Matthias Brauser
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| | - Jonas Kind
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| | - Christina M Thiele
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| |
Collapse
|
19
|
DongFei LI, JiaRui L, NaiCui Z, Mi Z, YinQi C. High pressure Raman study of isobutyramide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124045. [PMID: 38364515 DOI: 10.1016/j.saa.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Isobutyramide (IBA) has attracted considerable attention due to its expansive prospects for practical applications in the synthesis of drugs, dyes and other organic compounds. Herein we perform the high-pressure studies of IBA crystal by Raman spectral measurements at room temperature from ambient pressure to 30 GPa by using diamond anvil cells (DACs) to gain comprehensive insights into its structure and stability. Raman vibrational modes of IBA crystal at ambient pressure are resolved based on the experimental results and the first-principles theoretical calculations. High-pressure Raman scattering results show the Raman bands splitting, emergence/disappearance of the Raman bands and discontinuous wavenumber shifts at 1, 2 and 10 GPa, which indicate that IBA crystal undergoes three structural phase transitions at corresponding pressure. In addition, softening of the C = O and N-H stretching vibrational modes of IBA with increasing pressure can be interpreted by the reorganization of the hydrogen bond network of IBA molecules due to phase transition.
Collapse
Affiliation(s)
- L I DongFei
- College of Physics, Changchun Normal University, Changchun 130032, People's Republic of China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin Province, People's Republic of China.
| | - Liu JiaRui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin Province, People's Republic of China
| | - Zhai NaiCui
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun 130061, Jilin Province, People's Republic of China
| | - Zhou Mi
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin Province, People's Republic of China
| | - Chen YinQi
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin Province, People's Republic of China.
| |
Collapse
|
20
|
Jensen MN, Guerreiro EM, Enciso-Martinez A, Kruglik SG, Otto C, Snir O, Ricaud B, Hellesø OG. Identification of extracellular vesicles from their Raman spectra via self-supervised learning. Sci Rep 2024; 14:6791. [PMID: 38514697 PMCID: PMC10957939 DOI: 10.1038/s41598-024-56788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Extracellular vesicles (EVs) released from cells attract interest for their possible role in health and diseases. The detection and characterization of EVs is challenging due to the lack of specialized methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of EVs. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction accuracy is maintained despite large variances in frequency range and noise level. It is also shown that the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs label-free differentiation, including separating EVs from activated vs. non-activated blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify the spectra according to their sample origin. The classification reveals a test sensitivity of 92.2 % and selectivity of 92.3 % over 769 measurements from two labs that have different measurement configurations.
Collapse
Affiliation(s)
- Mathias N Jensen
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eduarda M Guerreiro
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Agustin Enciso-Martinez
- Oncode Institute and Ten Dijke/Chemical Signaling Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Amsterdam Vesicle Center, Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sergei G Kruglik
- CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Sorbonne University, Paris, France
| | - Cees Otto
- Department of Medical Cell BioPhysics, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Omri Snir
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Benjamin Ricaud
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Olav Gaute Hellesø
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
21
|
Lv S, Lou X, Gai Q, Mu T. Calibration of Dual-Channel Raman Spectrometer via Optical Frequency Comb. SENSORS (BASEL, SWITZERLAND) 2024; 24:1217. [PMID: 38400375 PMCID: PMC10892772 DOI: 10.3390/s24041217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
The portable Raman spectrometer boasts portability, rapid analysis, and high flexibility. It stands as a crucial and powerful technical tool for analyzing the chemical composition of samples, whether biological or non-biological, across diverse fields. To improve the resolution of grating spectrometers and ensure a wide spectral range, many spectrometer systems have been designed with double-grating structures. However, the impact of external forces, such as installation deviations and inevitable collisions, may cause differences between the actual state of the internal spectrometer components and their theoretical values. Therefore, spectrometers must be calibrated to establish the relationship between the wavelength and the pixel positions. The characteristic peaks of commonly used calibration substances are primarily distributed in the 200-2000 cm-1 range. The distribution of characteristic peaks in other wavenumber ranges is sparse, especially for spectrometers with double-channel spectral structures and wide spectral ranges. This uneven distribution of spectral peaks generates significant errors in the polynomial fitting results used to calibrate spectrometers. Therefore, to satisfy the calibration requirements of a dual-channel portable Raman spectrometer with a wide spectral range, this study designed a calibration method based on an optical frequency comb, which generates dense and uniform comb-like spectral signals at equal intervals. The method was verified experimentally and compared to the traditional calibration method of using a mercury-argon lamp. The results showed that the error bandwidth of the calibration results of the proposed method was significantly smaller than that of the mercury-argon lamp method, thus demonstrating a substantial improvement in the calibration accuracy.
Collapse
Affiliation(s)
| | | | | | - Taotao Mu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| |
Collapse
|
22
|
Petcu G, Anghel EM, Atkinson I, Culita DC, Apostol NG, Kuncser A, Papa F, Baran A, Blin JL, Parvulescu V. Composite Photocatalysts with Fe, Co, and Ni Oxides on Supports with Tetracoordinated Ti Embedded into Aluminosilicate Gel during Zeolite Y Synthesis. Gels 2024; 10:129. [PMID: 38391459 PMCID: PMC10888282 DOI: 10.3390/gels10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of β-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by modifying the gel during the zeolitization process. The formation of the zeolite Y structure and its microporous structure were evidenced by X-ray diffraction and N2 physisorption. The structure, composition, reduction, and optical properties were studied by X-ray diffraction, H2-TPR, XPS, Raman, photoluminescence, and UV-Vis spectroscopy. The obtained results indicated a zeolite Y structure for all photocatalysts with tetracoordinated Ti4+ sites. The second transitional metals supported by the post-synthesis method were obtained in various forms, such as oxides and/or in the metallic state. A red shift of the absorption edge was observed in the UV-Vis spectra of photocatalysts upon the addition of Fe, Co, or Ni species. The photocatalytic performances were evaluated for the degradation of cefuroxime in water under visible light irradiation. The best results were obtained for iron-immobilized photocatalysts. Scavenger experiments explained the photocatalytic results and their mechanisms. A different contribution of the active species to the photocatalytic reactions was evidenced.
Collapse
Affiliation(s)
- Gabriela Petcu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Maria Anghel
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Daniela C Culita
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Nicoleta G Apostol
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Florica Papa
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Adriana Baran
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Jean-Luc Blin
- Faculty of Sciences and Technology, University of Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Viorica Parvulescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
23
|
Gao X, Zhang S, Wang P, Jaroniec M, Zheng Y, Qiao SZ. Urea catalytic oxidation for energy and environmental applications. Chem Soc Rev 2024; 53:1552-1591. [PMID: 38168798 DOI: 10.1039/d3cs00963g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shuai Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
24
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
25
|
Gomes GJ, Zalazar MF, Padilha JC, Costa MB, Bazzi CL, Arroyo PA. Unveiling the mechanisms of carboxylic acid esterification on acid zeolites for biomass-to-energy: A review of the catalytic process through experimental and computational studies. CHEMOSPHERE 2024; 349:140879. [PMID: 38061565 DOI: 10.1016/j.chemosphere.2023.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.
Collapse
Affiliation(s)
- Glaucio José Gomes
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina; Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil; Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil.
| | - María Fernanda Zalazar
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina.
| | - Janine Carvalho Padilha
- Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil
| | - Michelle Budke Costa
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Claudio Leones Bazzi
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Pedro Augusto Arroyo
- Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil
| |
Collapse
|
26
|
Pu T, Setiawan A, Foucher AC, Guo M, Jehng JM, Zhu M, Ford ME, Stach EA, Rangarajan S, Wachs IE. Revealing the Nature of Active Oxygen Species and Reaction Mechanism of Ethylene Epoxidation by Supported Ag/α-Al 2O 3 Catalysts. ACS Catal 2024; 14:406-417. [PMID: 38205022 PMCID: PMC10775145 DOI: 10.1021/acscatal.3c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The oxygen species on Ag catalysts and reaction mechanisms for ethylene epoxidation and ethylene combustion continue to be debated in the literature despite decades of investigation. Fundamental details of ethylene oxidation by supported Ag/α-Al2O3 catalysts were revealed with the application of high-angle annular dark-field-scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (HAADF-STEM-EDS), in situ techniques (Raman, UV-vis, X-ray diffraction (XRD), HS-LEIS), chemical probes (C2H4-TPSR and C2H4 + O2-TPSR), and steady-state ethylene oxidation and SSITKA (16O2 → 18O2 switch) studies. The Ag nanoparticles are found to carry a considerable amount of oxygen after the reaction. Density functional theory (DFT) calculations indicate the oxidative reconstructed p(4 × 4)-O-Ag(111) surface is stable relative to metallic Ag(111) under the relevant reaction environment. Multiple configurations of reactive oxygen species are present, and their relevant concentrations depend on treatment conditions. Selective ethylene oxidation to EO proceeds with surface Ag4-O2* species (dioxygen species occupying an oxygen site on a p(4 × 4)-O-Ag(111) surface) only present after strong oxidation of Ag. These experimental findings are strongly supported by the associated DFT calculations. Ethylene epoxidation proceeds via a Langmuir-Hinshelwood mechanism, and ethylene combustion proceeds via combined Langmuir-Hinshelwood (predominant) and Mars-van Krevelen (minor) mechanisms.
Collapse
Affiliation(s)
- Tiancheng Pu
- Operando
Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Adhika Setiawan
- Computational
Catalysis and Materials Design Group, Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alexandre C. Foucher
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mingyu Guo
- Operando
Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jih-Mirn Jehng
- Operando
Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Minghui Zhu
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Michael E. Ford
- Operando
Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Eric A. Stach
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Srinivas Rangarajan
- Computational
Catalysis and Materials Design Group, Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Israel E. Wachs
- Operando
Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
27
|
Wang MF, Deng YH, Hong YX, Gu JH, Cao YY, Liu Q, Braunstein P, Lang JP. In situ observation of a stepwise [2 + 2] photocycloaddition process using fluorescence spectroscopy. Nat Commun 2023; 14:7766. [PMID: 38012167 PMCID: PMC10682429 DOI: 10.1038/s41467-023-42604-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
Using highly sensitive and selective in situ techniques to investigate the dynamics of intermediates formation is key to better understand reaction mechanisms. However, investigating the early stages of solid-state reactions/transformations is still challenging. Here we introduce in situ fluorescence spectroscopy to observe the evolution of intermediates during a two-step [2 + 2] photocycloaddition process in a coordination polymer platform. The structural changes and kinetics of each step under ultraviolet light irradiation versus time are accompanied by the gradual increase-decrease of intensity and blue-shift of the fluorescence spectra from the crystals. Monitoring the fluorescence behavior using a laser scanning confocal microscope can directly visualize the inhomogeneity of the photocycloaddition reaction in a single crystal. Theoretical calculations allow us to rationalize the fluorescence behavior of these compounds. We provide a convenient strategy for visualizing the solid-state photocycloaddition dynamics using fluorescence spectroscopy and open an avenue for kinetic studies of a variety of fast reactions.
Collapse
Affiliation(s)
- Meng-Fan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Yun-Hu Deng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yu-Xuan Hong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jia-Hui Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yong-Yong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081, Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Thyr J, Edvinsson T. Evading the Illusions: Identification of False Peaks in Micro-Raman Spectroscopy and Guidelines for Scientific Best Practice. Angew Chem Int Ed Engl 2023; 62:e202219047. [PMID: 37702274 DOI: 10.1002/anie.202219047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/14/2023]
Abstract
Micro-Raman spectroscopy is an important analytical tool in a large variety of science disciplines. The technique is suitable for both identification of chemical bonds and studying more detailed phenomena like molecular interactions, material strain, crystallinity, defects, and bond formations. Raman scattering has one major weakness however: it is a very low probability process. The weak signals require very sensitive detection systems, which leads to a high probability of picking up signals from origins other than the sample. This complicates the analysis of the results and increases the risk of misinterpreting data. This work provides an overview of the sources of spurious signals occurring in Raman spectra, including photoluminescence, cosmic rays, stray light, artefacts caused by spectrometer components, and signals from other compounds in or surrounding the sample. The origins of these false Raman peaks are explained and means to identify and counteract them are provided.
Collapse
Affiliation(s)
- Jakob Thyr
- Department of Materials Science and Engineering, Uppsala university, Box 35, 75103, Uppsala, Sweden
| | - Tomas Edvinsson
- Department of Materials Science and Engineering, Uppsala university, Box 35, 75103, Uppsala, Sweden
- Energy Materials Laboratory, Chemistry: School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
29
|
Song G, Wu H, Jing J, Zhang X, Wang X, Li S, Zhou M. Insights into Electrochemical Dehalogenation by Non-Noble Metal Single-Atom Cobalt with High Efficiency and Low Energy Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14482-14492. [PMID: 37699122 DOI: 10.1021/acs.est.3c06021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
It is critical to discover a non-noble metal catalyst with high catalytic activity capable of replacing palladium in electrochemical reduction. In this work, a highly efficient single-atom Co-N/C catalyst was synthesized with metal-organic frameworks (MOFs) as a precursor for electrochemical dehalogenation. X-ray absorption spectroscopy (XAS) revealed that Co-N/C exhibited a Co-N4 configuration, which had more active sites and a faster charge-transfer rate and thus enabled the efficient removal of florfenicol (FLO) at a wide pH, achieving a rate constant 3.5 and 2.1 times that of N/C and commercial Pd/C, respectively. The defluorination and dechlorination efficiencies were 67.6 and 95.6%, respectively, with extremely low Co leaching (6 μg L-1), low energy consumption (22.7 kWh kg-1), and high turnover frequency (TOF) (0.0350 min-1), demonstrating excellent dehalogenation performance. Spiking experiments and density functional theory (DFT) verified that Co-N4 was the active site and had the lowest energy barrier for forming atomic hydrogen (H*) (ΔGH*). Capture experiments, electron paramagnetic resonance (EPR), electrochemical tests, and in situ Fourier transform infrared (FTIR) proved that H* and direct electron transfer were responsible for dehalogenation. Toxicity assessment indicated that FLO toxicity decreased significantly after dehalogenation. This work develops a non-noble metal catalyst with broad application prospects in electrocatalytic dehalogenation.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huizhong Wu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuyang Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuaishuai Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
30
|
Chen Z, Fan Q, Zhou J, Wang X, Huang M, Jiang H, Cölfen H. Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by In Situ and Operando Techniques. Angew Chem Int Ed Engl 2023:e202309293. [PMID: 37650657 DOI: 10.1002/anie.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Developing efficient and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier that needs to be overcome for the practical applications of hydrogen production via water electrolysis, transforming CO2 to value-added chemicals, and metal-air batteries. Recently, hydroxides have shown promise as electrocatalysts for OER. In situ or operando techniques are particularly indispensable for monitoring the key intermediates together with understanding the reaction process, which is extremely important for revealing the formation/OER catalytic mechanism of hydroxides and preparing cost-effective electrocatalysts for OER. However, there is a lack of comprehensive discussion on the current status and challenges of studying these mechanisms using in situ or operando techniques, which hinders our ability to identify and address the obstacles present in this field. This review offers an overview of in situ or operando techniques, outlining their capabilities, advantages, and disadvantages. Recent findings related to the formation mechanism and OER catalytic mechanism of hydroxides revealed by in situ or operando techniques are also discussed in detail. Additionally, some current challenges in this field are concluded and appropriate solution strategies are provided.
Collapse
Affiliation(s)
- Zongkun Chen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Current address: Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der, Ruhr, Germany
| | - Qiqi Fan
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jian Zhou
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Xingkun Wang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, P. R. China
| | - Heqing Jiang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Helmut Cölfen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
31
|
Rajan A, Pushkar AP, Dharmalingam BC, Varghese JJ. Iterative multiscale and multi-physics computations for operando catalyst nanostructure elucidation and kinetic modeling. iScience 2023; 26:107029. [PMID: 37360694 PMCID: PMC10285649 DOI: 10.1016/j.isci.2023.107029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Modern heterogeneous catalysis has benefitted immensely from computational predictions of catalyst structure and its evolution under reaction conditions, first-principles mechanistic investigations, and detailed kinetic modeling, which are rungs on a multiscale workflow. Establishing connections across these rungs and integration with experiments have been challenging. Here, operando catalyst structure prediction techniques using density functional theory simulations and ab initio thermodynamics calculations, molecular dynamics, and machine learning techniques are presented. Surface structure characterization by computational spectroscopic and machine learning techniques is then discussed. Hierarchical approaches in kinetic parameter estimation involving semi-empirical, data-driven, and first-principles calculations and detailed kinetic modeling via mean-field microkinetic modeling and kinetic Monte Carlo simulations are discussed along with methods and the need for uncertainty quantification. With these as the background, this article proposes a bottom-up hierarchical and closed loop modeling framework incorporating consistency checks and iterative refinements at each level and across levels.
Collapse
Affiliation(s)
- Ajin Rajan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Anoop P. Pushkar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Balaji C. Dharmalingam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jithin John Varghese
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
32
|
Petcu G, Papa F, Anghel EM, Atkinson I, Preda S, Somacescu S, Culita DC, Baran A, Ciobanu EM, Jecu LM, Constantin M, Parvulescu V. Effects of Aluminosilicate Gel Treatment and TiO 2 Loading on Photocatalytic Properties of Au-TiO 2/Zeolite Y. Gels 2023; 9:503. [PMID: 37367173 DOI: 10.3390/gels9060503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The present work reports the synthesis of efficient Ti-Au/zeolite Y photocatalysts by different processing of aluminosilicate gel and studies the effect of titania content on the structural, morphological, textural, and optical properties of the materials. The best characteristics of zeolite Y were obtained by aging the synthesis gel in static conditions and mixing the precursors under magnetic stirring. Titania (5, 10, 20%) and gold (1%) species were incorporated in zeolite Y support by the post-synthesis method. The samples were characterized by X-ray diffraction, N2-physisorption, SEM, Raman, UV-Vis and photoluminescence spectroscopy, XPS, H2-TPR, and CO2-TPD. The photocatalyst with the lowest TiO2 loading shows only metallic Au on the outermost surface layer, while a higher content favors the formation of additional species such as: cluster type Au, Au1+, and Au3+. A high TiO2 content contributes to increasing the lifetime of photogenerated charge careers, and the adsorption capacity of the pollutant. Therefore, an increase in the photocatalytic performances (evaluated in degradation of amoxicillin in water under UV and visible light) was evidenced with the titania content. The effect is more significant in visible light due to the surface plasmon resonance (SPR) effect of gold interacting with the supported titania.
Collapse
Affiliation(s)
- Gabriela Petcu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Florica Papa
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Maria Anghel
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Silviu Preda
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Simona Somacescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Daniela C Culita
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Adriana Baran
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Madalina Ciobanu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Luiza Maria Jecu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Mariana Constantin
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Viorica Parvulescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
33
|
Yu X, Cheng Y, Li Y, Polo-Garzon F, Liu J, Mamontov E, Li M, Lennon D, Parker SF, Ramirez-Cuesta AJ, Wu Z. Neutron Scattering Studies of Heterogeneous Catalysis. Chem Rev 2023. [PMID: 37315192 DOI: 10.1021/acs.chemrev.3c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure-catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron-nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis.
Collapse
Affiliation(s)
- Xinbin Yu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Jue Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meijun Li
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Lennon
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stewart F Parker
- ISIS Pulsed Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
| | - Anibal J Ramirez-Cuesta
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
34
|
Zhou Y, Lu Y, Liu Y, Hu X, Chen H. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies. Biosens Bioelectron 2023; 228:115231. [PMID: 36934607 DOI: 10.1016/j.bios.2023.115231] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
With the progressive nanofabrication technology, plasmonic nanoparticles (PNPs) have been increasingly deployed in the field of biosensing. PNPs have favorable biocompatibility, conductivity, and tunable optical properties. In addition, the localized surface plasmon resonance (LSPR) of PNPs plays a vital role in surface-enhanced Raman scattering (SERS). PNPs-based SERS biosensing enables wide-ranging applications for sensitive detection and high spatial and temporal resolution imaging. Numerous reviews of PNPs in the field of SERS biosensing highlight the fabrication or applications in one or more fields. However, the specific strategies for the SERS biosensor construction had not been summarized systematically. Thus, this work offers a comprehensive overview of SERS enhancement strategies based on PNPs, with a focus on SERS label-free detection along with label detection sensing construction, as well as its challenges and future trends.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
35
|
Filip M, Anghel EM, Rednic V, Papa F, Somacescu S, Munteanu C, Aldea N, Zhang J, Parvulescu V. Variation in Metal-Support Interaction with TiO 2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101647. [PMID: 37242063 DOI: 10.3390/nano13101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The control of catalytic performance using synthesis conditions is one of the main goals of catalytic research. Two series of Pt-Ti/SBA-15 catalysts with different TiO2 percentages (n = 1, 5, 10, 30 wt.%) were obtained from tetrabutylorthotitanate (TBOT) and peroxotitanate (PT), as titania precursors and Pt impregnation. The obtained catalysts were characterized using X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), N2 sorption, Raman, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), hydrogen temperature-programmed reduction (H2-TPR) and H2-chemisorption measurements. Raman spectroscopy showed framework titanium species in low TiO2 loading samples. The anatase phase was evidenced for samples with higher titania loading, obtained from TBOT, and a mixture of rutile and anatase for those synthesized by PT. The rutile phase prevails in rich TiO2 catalysts obtained from PT. Variable concentrations of Pt0 as a result of the stronger interaction of PtO with anatase and the weaker interaction with rutile were depicted using XPS. TiO2 loading and precursors influenced the concentration of Pt species, while the effect on Pt nanoparticles' size and uniform distribution on support was insignificant. The Pt/PtO ratio and their concentration on the surface were the result of strong metal-support interaction, and this influenced catalytic performance in the complete oxidation of methane at a low temperature. The highest conversion was obtained for sample prepared from PT with 30% TiO2.
Collapse
Affiliation(s)
- Mihaela Filip
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Elena Maria Anghel
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Vasile Rednic
- National Institute for R&D of Isotopic and Molecular Technologies, Donat St. 67-103, 400293 Cluj-Napoca, Romania
| | - Florica Papa
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Simona Somacescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Cornel Munteanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Nicolae Aldea
- National Institute for R&D of Isotopic and Molecular Technologies, Donat St. 67-103, 400293 Cluj-Napoca, Romania
| | - Jing Zhang
- Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory,19B Yuquan Road, Beijing 100049, China
| | - Viorica Parvulescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
36
|
Jurina T, Sokač Cvetnić T, Šalić A, Benković M, Valinger D, Gajdoš Kljusurić J, Zelić B, Jurinjak Tušek A. Application of Spectroscopy Techniques for Monitoring (Bio)Catalytic Processes in Continuously Operated Microreactor Systems. Catalysts 2023. [DOI: 10.3390/catal13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In the last twenty years, the application of microreactors in chemical and biochemical industrial processes has increased significantly. The use of microreactor systems ensures efficient process intensification due to the excellent heat and mass transfer within the microchannels. Monitoring the concentrations in the microchannels is critical for a better understanding of the physical and chemical processes occurring in micromixers and microreactors. Therefore, there is a growing interest in performing in-line and on-line analyses of chemical and/or biochemical processes. This creates tremendous opportunities for the incorporation of spectroscopic detection techniques into production and processing lines in various industries. In this work, an overview of current applications of ultraviolet–visible, infrared, Raman spectroscopy, NMR, MALDI-TOF-MS, and ESI-MS for monitoring (bio)catalytic processes in continuously operated microreactor systems is presented. The manuscript includes a description of the advantages and disadvantages of the analytical methods listed, with particular emphasis on the chemometric methods used for spectroscopic data analysis.
Collapse
Affiliation(s)
- Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Bruno Zelić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| |
Collapse
|
37
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
38
|
Yuan LJ, Sui XL, Liu C, Zhuo YL, Li Q, Pan H, Wang ZB. Electrocatalysis Mechanism and Structure-Activity Relationship of Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Electrocatalytic Reactions. SMALL METHODS 2023; 7:e2201524. [PMID: 36642792 DOI: 10.1002/smtd.202201524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Atomically dispersed metal-nitrogen-carbon catalysts (M-N-C) have been widely used in the field of energy conversion, which has already attracted a huge amount of attention. Due to their unsaturated d-band electronic structure of the center atoms, M-N-C catalysts can be applied in different electrocatalytic reactions by adjusting their own microscopic electronic structures to achieve the optimization of the structure-activity relationship. Consequently, it is of great significance for the revelation of electrocatalytic mechanism and structure-activity relationship of M-N-C catalysts. Thus, this review first introduces the relative research methods, including in situ/operando characterization techniques and theoretical calculation methods. Furthermore, clarifying the electrocatalytic mechanism and structure-activity relationship of M-N-C catalysts in different electrochemical energy conversion reactions is focused. Moreover, the future research directions are pointed out based on the discussion. This review will provide good guidance to systematically study the catalytic mechanism of single-atom catalysts and reasonably design the single-atom catalysts.
Collapse
Affiliation(s)
- Long-Ji Yuan
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xu-Lei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chang Liu
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Ling Zhuo
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qi Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, 999078, China
| | - Zhen-Bo Wang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
39
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
40
|
Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
41
|
Ren X, Wang H, Chen J, Xu W, He Q, Wang H, Zhan F, Chen S, Chen L. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204121. [PMID: 36526607 DOI: 10.1002/smll.202204121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu-O, Cu-S, Cu-Se, Cu-N, and Cu-P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal-air batteries, water-splitting, and CO2 reduction reaction (CO2 RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.
Collapse
Affiliation(s)
- Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
42
|
Lenk T, Schröder U. An experimental guide to in operando electrochemical Raman spectroscopy. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractElectrochemical Raman spectroscopy can provide valuable insights into electrochemical reaction mechanisms. However, it also shows various pitfalls and challenges. This paper gives an overview of the necessary theoretical background, crucial practical considerations for successful measurement, and guidance for in situ/in operando electrochemical Raman spectroscopy. Several parameters must be optimized for suitable reaction and measurement conditions. From the experimental side, considerations for the setup, suitable signal enhancement methods, choice of material, laser, and objective lens are discussed. Different interface phenomena are reviewed in the context of data interpretation and evaluation.
Graphical Abstract
Collapse
|
43
|
Zhao J, Lian J, Zhao Z, Wang X, Zhang J. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. NANO-MICRO LETTERS 2022; 15:19. [PMID: 36580130 PMCID: PMC9800687 DOI: 10.1007/s40820-022-00984-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 06/03/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal-O2/air batteries, etc. However, the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process, and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction. This makes them difficult to be accurately captured, making the identification of ORR active sites and the elucidation of ORR mechanisms difficult. Thus, it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR. This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts. Specifically, the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized, such as phase, valence, electronic transfer, coordination, and spin states varies. In-situ revelation of intermediate adsorption/desorption behavior, and the real-time monitoring of the product nucleation, growth, and reconstruction evolution are equally emphasized in the discussion. Other interference factors, as well as in-situ signal assignment with the aid of theoretical calculations, are also covered. Finally, some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
Collapse
Affiliation(s)
- Jinyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Jie Lian
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Zhenxin Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xiaomin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Jiujun Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
44
|
Hu J, Gong Y, Niu L, Li C, Liu X. Sulfur Vacancy-Rich CuS for Improved Surface-Enhanced Raman Spectroscopy and Full-Spectrum Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:128. [PMID: 36616037 PMCID: PMC9823980 DOI: 10.3390/nano13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
There are growing interests in the development of bifunctional semiconducting nanostructures for photocatalysis and real-time monitoring of degradation process on catalysts. Defect engineering is a low-cost approach to manipulating the properties of semiconductors. Herein, we prepared CuS nanoplates by a hydrothermal method at increasing amounts of thioacetamide (CS-1, CS-2, and CS-3) and investigated the influence of sulfur vacancy (Vs) on surface-enhanced Raman spectroscopy (SERS) and photocatalysis performance. SERS intensity of 4-nitrobenzenethiol on CS-3 is 346 and 17 times that of CS-1 and CS-2, respectively, and enhancement factor is 1.34 × 104. Moreover, SERS is successfully applied to monitor the photodegradation of methyl orange. In addition, CS-3 also exhibited higher efficiency of Cr(VI) photoreduction than CS-1 and CS-2, and removal rate is 88%, 96%, and 73% under 2 h UV, 4 h visible, and 4 h near-infrared illumination, respectively. A systematic study including electron paramagnetic resonance spectra, photoelectrochemical measurements, and nitrogen adsorption isotherms were conducted to investigate the underlying mechanism. This work may help to understand the impact of vacancy defect on SERS and photocatalysis, and provide an effective and low-cost approach for the design of multifunctional materials.
Collapse
Affiliation(s)
- Jiapei Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Yinyan Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Lengyuan Niu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Can Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
45
|
Moura RT, Quintano M, Antonio JJ, Freindorf M, Kraka E. Automatic Generation of Local Vibrational Mode Parameters: From Small to Large Molecules and QM/MM Systems. J Phys Chem A 2022; 126:9313-9331. [DOI: 10.1021/acs.jpca.2c07871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Renaldo T. Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas75275-0314, United States
- Department of Chemistry and Physics Center of Agrarian Sciences, Federal University of Paraiba, Areia, PB58397-000, Brazil
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas75275-0314, United States
| |
Collapse
|
46
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
47
|
Kraka E, Quintano M, La Force HW, Antonio JJ, Freindorf M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J Phys Chem A 2022; 126:8781-8798. [DOI: 10.1021/acs.jpca.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Hunter W. La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| |
Collapse
|
48
|
Colin S, Fernández JM, Barrot C, Baldas L, Bajić S, Rojas-Cárdenas M. Review of Optical Thermometry Techniques for Flows at the Microscale towards Their Applicability to Gas Microflows. MICROMACHINES 2022; 13:1819. [PMID: 36363841 PMCID: PMC9694003 DOI: 10.3390/mi13111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Thermometry techniques have been widely developed during the last decades to analyze thermal properties of various fluid flows. Following the increasing interest for microfluidic applications, most of these techniques have been adapted to the microscale and some new experimental approaches have emerged. In the last years, the need for a detailed experimental analysis of gaseous microflows has drastically grown due to a variety of exciting new applications. Unfortunately, thermometry is not yet well developed for analyzing gas flows at the microscale. Thus, the present review aims at analyzing the main currently available thermometry techniques adapted to microflows. Following a rapid presentation and classification of these techniques, the review is focused on optical techniques, which are the most suited for application at microscale. Their presentation is followed by a discussion about their applicability to gas microflows, especially in confined conditions, and the current challenges to be overcome are presented. A special place is dedicated to Raman and molecular tagging thermometry techniques due to their high potential and low intrusiveness.
Collapse
Affiliation(s)
- Stéphane Colin
- Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-ISAE-Mines Albi-UPS, 31400 Toulouse, France
- Fédération de recherche FERMAT, CNRS, 31400 Toulouse, France
| | - José M. Fernández
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia IEM-CSIC, 28006 Madrid, Spain
| | - Christine Barrot
- Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-ISAE-Mines Albi-UPS, 31400 Toulouse, France
- Fédération de recherche FERMAT, CNRS, 31400 Toulouse, France
| | - Lucien Baldas
- Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-ISAE-Mines Albi-UPS, 31400 Toulouse, France
- Fédération de recherche FERMAT, CNRS, 31400 Toulouse, France
| | - Slaven Bajić
- Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-ISAE-Mines Albi-UPS, 31400 Toulouse, France
- Fédération de recherche FERMAT, CNRS, 31400 Toulouse, France
| | - Marcos Rojas-Cárdenas
- Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-ISAE-Mines Albi-UPS, 31400 Toulouse, France
- Fédération de recherche FERMAT, CNRS, 31400 Toulouse, France
| |
Collapse
|
49
|
Dall’Osto G, Corni S. Time Resolved Raman Scattering of Molecules: A Quantum Mechanics Approach with Stochastic Schroedinger Equation. J Phys Chem A 2022; 126:8088-8100. [PMID: 36278928 PMCID: PMC9639147 DOI: 10.1021/acs.jpca.2c05245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Raman scattering is a very powerful tool employed to
characterize
molecular systems. Here we propose a novel theoretical strategy to
calculate the Raman cross-section in time domain, by computing the
cumulative Raman signal emitted during the molecular evolution in
time. Our model is based on a numerical propagation of the vibronic
wave function under the effect of a light pulse of arbitrary shape.
This approach can therefore tackle a variety of experimental setups.
Both resonance and nonresonance Raman scattering can be retrieved,
and also the time-dependent fluorescence emission is computed. The
model has been applied to porphyrin considering both resonance and
nonresonance conditions and varying the incident field duration. Moreover
the effect of the vibrational relaxation, which should be taken into
account when its time scale is similar to that of the Raman emission,
has been included through the stochastic Schroedinger equation approach.
Collapse
Affiliation(s)
- Giulia Dall’Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, 41125, Italy
| |
Collapse
|
50
|
Chiarello GL, Bernareggi M, Selli E. Redox Dynamics of Pt and Cu Nanoparticles on TiO 2 during the Photocatalytic Oxidation of Methanol under Aerobic and Anaerobic Conditions Studied by In Situ Modulated Excitation X-ray Absorption Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gian Luca Chiarello
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| | - Massimo Bernareggi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| |
Collapse
|