1
|
Xu H, Xue Z, Wang P, Lee Q, Chen Z, Liu B, Liu X, Zeng F. Edible fungi polysaccharides modulate gut microbiota and lipid metabolism: A review. Int J Biol Macromol 2024:137427. [PMID: 39537059 DOI: 10.1016/j.ijbiomac.2024.137427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Edible fungi polysaccharides (EFPs) and gut microbiota (GM) play an important role in lipid metabolism. The structure of GM is complex and can be dynamically affected by the diet. EFPs can be used as dietary intervention to improve lipid metabolism directly, or by regulate the GM to participate in the host lipid metabolism by a complex mechanism. In this paper, we reviewed that EFPs regulate the balance of GM by increasing the number of beneficial bacteria and decreasing the number of harmful bacteria in the intestinal tract. The metabolites of GM are mainly bile acids (BAs), short-chain fatty acids (SCFAs), and lipopolysaccharides (LPS). EFPs can promote the synthesis of BAs and increase the content of SCFAs that produced by GM fermented EFPs, but reduce the content of LPS to regulate lipid metabolism. This review provides a valuable reference for further elucidation of the relationship between EFPs-GM-lipid metabolism and EFPs targeted regulation of GM to improve public health.
Collapse
Affiliation(s)
- Huanyi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhixiang Xue
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Pengyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China.
| |
Collapse
|
2
|
Fu J, Zhao J, Shang H. Functions and mechanisms of nonstarch polysaccharides in monogastric animal production. Int J Biol Macromol 2024; 281:136488. [PMID: 39393723 DOI: 10.1016/j.ijbiomac.2024.136488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
As natural active ingredients, polysaccharides are a class of biological macromolecules that are ubiquitous in living organisms and have antibacterial, antioxidant, antitumor and intestinal flora-regulating functions. Nonstarch polysaccharides (NSPs) are an important class of polysaccharides that include both soluble and insoluble nonstarch polysaccharides. As green feed additives, NSPs play important roles in promoting immunity and disease resistance in the body, regulating the intestinal microbial balance and improving the quality of animal products. NSPs regulate cell signal transduction mainly via interactions between short-chain fatty acids and G protein-coupled receptors and inhibiting the histone deacetylation pathway to protect the intestinal barrier in animals. In this paper, the composition, physiological functions, and molecular mechanisms of the gut protective effects of NSPs are reviewed to provide a reference for the application of NSPs in monogastric animal production.
Collapse
Affiliation(s)
- Jia Fu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Liu A, Tian B, Qiu C, Su KJ, Jiang L, Zhao C, Song M, Liu Y, Qu G, Zhou Z, Zhang X, Gnanesh SSM, Thumbigere-Math V, Luo Z, Tian Q, Zhang LS, Wu C, Ding Z, Shen H, Deng HW. Multi-View Integrative Approach For Imputing Short-Chain Fatty Acids and Identifying Key factors predicting Blood SCFA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614767. [PMID: 39386638 PMCID: PMC11463355 DOI: 10.1101/2024.09.25.614767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fiber within gastrointestinal tract. SCFAs produced by gut microbiotas (GMs) are absorbed by host, reach bloodstream, and are distributed to different organs, thus influencing host physiology. However, due to the limited budget or the poor sensitivity of instruments, most studies on GMs have incomplete blood SCFA data, limiting our understanding of the metabolic processes within the host. To address this gap, we developed an innovative multi-task multi-view integrative approach (M2AE, Multi-task Multi-View Attentive Encoders), to impute blood SCFA levels using gut metagenomic sequencing (MGS) data, while taking into account the intricate interplay among the gut microbiome, dietary features, and host characteristics, as well as the nuanced nature of SCFA dynamics within the body. Here, each view represents a distinct type of data input (i.e., gut microbiome compositions, dietary features, or host characteristics). Our method jointly explores both view-specific representations and cross-view correlations for effective predictions of SCFAs. We applied M2AE to two in-house datasets, which both include MGS and blood SCFAs profiles, host characteristics, and dietary features from 964 subjects and 171 subjects, respectively. Results from both of two datasets demonstrated that M2AE outperforms traditional regression-based and neural-network based approaches in imputing blood SCFAs. Furthermore, a series of gut bacterial species (e.g., Bacteroides thetaiotaomicron and Clostridium asparagiforme), host characteristics (e.g., race, gender), as well as dietary features (e.g., intake of fruits, pickles) were shown to contribute greatly to imputation of blood SCFAs. These findings demonstrated that GMs, dietary features and host characteristics might contribute to the complex biological processes involved in blood SCFA productions. These might pave the way for a deeper and more nuanced comprehension of how these factors impact human health.
Collapse
Affiliation(s)
- Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Chen Zhao
- College of Computing and Software Engineering, Kennesaw State University, GA, USA
| | - Meng Song
- College of Science, Xi'an Shiyou University, Xi'an, P.R. China
| | - Yong Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Ziyu Zhou
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Shashank Sajjan Mungasavalli Gnanesh
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland Baltimore School of Dentistry, Baltimore, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA
| | - Zhengming Ding
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Tian B, Xu LL, Jiang LD, Lin X, Shen J, Shen H, Su KJ, Gong R, Qiu C, Luo Z, Yao JH, Wang ZQ, Xiao HM, Zhang LS, Deng HW. Identification of the serum metabolites associated with cow milk consumption in Chinese Peri-/Postmenopausal women. Int J Food Sci Nutr 2024; 75:537-549. [PMID: 38918932 DOI: 10.1080/09637486.2024.2366223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Cow milk consumption (CMC) and downstream alterations of serum metabolites are commonly considered important factors regulating human health status. Foods may lead to metabolic changes directly or indirectly through remodelling gut microbiota (GM). We sought to identify the metabolic alterations in Chinese Peri-/Postmenopausal women with habitual CMC and explore if the GM mediates the CMC-metabolite associations. 346 Chinese Peri-/Postmenopausal women participants were recruited in this study. Fixed effects regression and partial least squares discriminant analysis (PLS-DA) were applied to reveal alterations of serum metabolic features in different CMC groups. Spearman correlation coefficient was computed to detect metabolome-metagenome association. 36 CMC-associated metabolites including palmitic acid (FA(16:0)), 7alpha-hydroxy-4-cholesterin-3-one (7alphaC4), citrulline were identified by both fixed effects regression (FDR < 0.05) and PLS-DA (VIP score > 2). Some significant metabolite-GM associations were observed, including FA(16:0) with gut species Bacteroides ovatus, Bacteroides sp.D2. These findings would further prompt our understanding of the effect of cow milk on human health.
Collapse
Affiliation(s)
- Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Lu-Lu Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lin-Dong Jiang
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Rui Gong
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- Department of Cadre Ward Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Jia-Heng Yao
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zhuo-Qi Wang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
5
|
Son SU, Kim TE, Park JH, Suh HJ, Shin KS. Immunostimulating effects of ulvan type polysaccharide isolated from Korean Ulva pertusa in cyclophosphamide-induced immunosuppressed BALB/c mice. Int J Biol Macromol 2024; 275:133518. [PMID: 38960236 DOI: 10.1016/j.ijbiomac.2024.133518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study aimed to determine the immunostimulatory activities of ulvan type polysaccharides isolated from Ulva pertusa. First, U. pertusa polysaccharide (UPP) mainly consists of rhamnose, glucuronic acid, iduronic acid, and xylose, which are typical ulvan type monosaccharides. UPP induced phosphorylation of the mitogen-activated protein kinase and nuclear factor-kappa B pathways in macrophages, subsequently triggering cytokine release and phagocytosis. The effects were closely associated with pattern recognition receptors such as dectin-1, mannose receptor, CD11b, CD14, and Toll-like receptors 2 and 4. Moreover, prophylactic administration of UPP was found to protect against body weight loss and lymphatic organ damage in cyclophosphamide-induced immunosuppressed mice. In addition, UPP demonstrated significant stimulatory effects on various immunocytes, such as T cells, B cells, macrophages, and natural killer cells derived from the spleen. These effects were closely related to the mitogen-activated protein kinase and nuclear factor-kappa B pathways, and significant secretion of immunostimulatory cytokines such as IL-6, -12, and TNF-α was noted in both blood and spleen samples. Impairment of the short-chain fatty acid balance in the cecum was prevented by UPP administration in a dose-dependent manner. Consequently, these results suggest that the UPP isolated from U. pertusa contributes to immune system activation.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea.
| | - Tae Eun Kim
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Ju-Hyeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Hyung Joo Suh
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
6
|
Ma G, Li X, Tao Q, Ma S, Du H, Hu Q, Xiao H. Impacts of preparation technologies on biological activities of edible mushroom polysaccharides - novel insights for personalized nutrition achievement. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38821105 DOI: 10.1080/10408398.2024.2352796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xinyi Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Qi Tao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Sai Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Liu S, Hu H, Zhang M, Zhang Y, Geng R, Jin Y, Cao Y, Guo W, Liu J, Fu S. Puerarin Delays Mammary Gland Aging by Regulating Gut Microbiota and Inhibiting the p38MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10879-10896. [PMID: 38686994 DOI: 10.1021/acs.jafc.3c09444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-β-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijie Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Meng Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ruiqi Geng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuhang Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Huang Y, Hu J, Xia Q, Tang M, Wang Y, Wang G, Shao X, Yuan H, Li S, Huang P, Peng C, Guo J, Gui S. Amelioration of obesity and inflammation by polysaccharide from unripe fruits of raspberry via gut microbiota regulation. Int J Biol Macromol 2024; 261:129825. [PMID: 38309402 DOI: 10.1016/j.ijbiomac.2024.129825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Raspberry, a traditional medicine food homology species, has important benefits in patients with metabolic syndrome. However, the mechanism of raspberry polysaccharides (RP) on obesity remains unclear. In our study, we showed that RP intervention is negatively associated with body weight gain, hyperlipidemia, inflammation, and fat accumulation in obese mice. RP ameliorated HFD-induced gut microbiota dysbiosis, produced short-chain fatty acids, maintained intestinal barrier integrity, and prevented metabolic endotoxemia, manifested by decreased host lipopolysaccharide level, and increased colon expression of tight junction proteins. These effects might be related with driven by a SCFAs-producing bacterium and downregulation of TLR4/NF-κB signaling transduction. Notably, the abundance of Ruminococcaceae_UCG - 014, Lactobacillus taiwanensis, Bifidobacterium pseudolongum, and Turicibacter are markedly correlated with enhanced intestinal barrier function induced by RP treatment. Thus, we believe that RP could be as a potential health supplement or prebiotic for obesity therapy.
Collapse
Affiliation(s)
- Yuzhe Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China
| | - Jingjing Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qijun Xia
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xinyuan Shao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hao Yuan
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Shuhan Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Peng Huang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China..
| |
Collapse
|
9
|
Ren D, Ding M, Su J, Ye J, He X, Zhang Y, Shang X. Stachyose in combination with L. rhamnosus GG ameliorates acute hypobaric hypoxia-induced intestinal barrier dysfunction through alleviating inflammatory response and oxidative stress. Free Radic Biol Med 2024; 212:505-519. [PMID: 38211833 DOI: 10.1016/j.freeradbiomed.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
High altitude is closely related to intestinal mucosal damage and intestinal microbiota imbalance, and there is currently no effective prevention and treatment measures. In this study, the effects of stachyose (STA), L. rhamnosus GG (LGG) and their combination on inflammatory response, oxidatve stress and intestinal barrier function in mice exposed to acute hypobaric hypoxia were investigated. Our results indicated the combination of STA and LGG could more effectively regulate intestinal microbiota disorders caused by hypobaric hypoxia than STA or LGG alone. When mice were administered with STA + LGG, the content of short chain fatty acids (SCFAs) especially butyric acid significantly increased, which helped intestinal cells to form tight connections, improve the level of anti-inflammatory cytokine (TGF-β) and antioxidant enzymes (SOD, CAT, GSH-Px), and decrease the expression of pro-inlammatory cytokines and hypoxia-inducing factors (IFN-γ, IL-1β, IL-6, TNF-α and HIF-1α), thereby enhance the strong intestinal barrier function. Furthermore, the synbiotics significantly reduced the ratio of Firmicutes to Bacteroidetes, while significantly increased the relative abundance of Rikenella, Bacteroides, Odoribacter, Ruminiclostridium_5 and Gordonibacter, which were correlated with production of SCFAs and anti-inflammatory role. Correlation analysis showed that the protective effect of synbiotics on intestinal barrier function was associated with its anti-inflammatory activity and antioxidant capacity. It provided a strong foundation for further research on the role of STA and LGG in maintaining normal intestinal function at high altitude. Our study has identified and demonstrated a new synbiotic that may be one of the ideal intervention measures for preventing and treating intestinal dysfunction at high altitude.
Collapse
Affiliation(s)
- Dingxin Ren
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Mengying Ding
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Junqing Su
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jianzhou Ye
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Xiaoqin He
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yafeng Zhang
- No. 889, Xi'an Institute for Food and Drug, Cangtai West Road, Chang'an District, Xi'an, Shaanxi, 710700, PR China
| | - Xiaoya Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
10
|
Zhao WX, Wang T, Zhang YN, Chen Q, Wang Y, Xing YQ, Zheng J, Duan CC, Chen LJ, Zhao HJ, Wang SJ. Molecular Mechanism of Polysaccharides Extracted from Chinese Medicine Targeting Gut Microbiota for Promoting Health. Chin J Integr Med 2024; 30:171-180. [PMID: 35583582 DOI: 10.1007/s11655-022-3522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The accumulating evidence revealed that gut microbiota plays an important role in pathological process of disease including obesity, type 2 diabetes mellitus, heart failure, and non-alcoholic fatty liver disease. Polysaccharides extracted from Chinese medicine (CM) can not only alleviate pathological status but also promote health by anti-inflammatory, regulating immunity, lowering blood glucose and lipids, anti-cancer, and anti-oxidation. The alterations of gut microbiota composition and metabolism pathways are the potential mechanisms of CM polysaccharides treatment. In addition, they exert functions through gut-organ axis or play an indirect role by synergistic actions with other drugs or components mediated by gut microbiota. This review summarizes the molecular mechanisms of CM polysaccharides interacted with intestinal microbial inhabitants as potential prebiotics for promoting health.
Collapse
Affiliation(s)
- Wen-Xiao Zhao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Ya-Nan Zhang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Qian Chen
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yuan Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yan-Qing Xing
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Jun Zheng
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Chen-Chen Duan
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Li-Jun Chen
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Hai-Jun Zhao
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Shi-Jun Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| |
Collapse
|
11
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Huang Q, Zhang Y, Chu Q, Song H. The Influence of Polysaccharides on Lipid Metabolism: Insights from Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300522. [PMID: 37933720 DOI: 10.1002/mnfr.202300522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Polysaccharides are complex molecules of more than ten monosaccharide residues interconnected through glycosidic linkages formed via condensation reactions. Polysaccharides are widely distributed in various food resources and have gained considerable attention due to their diverse biological activities. This review presented a critical analysis of the existing research literature on anti-obesity polysaccharides and investigates the complex interplay between their lipid-lowering activity and the gut microbiota, aiming to provide a comprehensive overview of the lipid-lowering properties of polysaccharides and the underlying mechanisms of action. METHODS AND RESULTS In this review, the study summarized the roles of polysaccharides in improving lipid metabolism via gut microbiota, including the remodeling of the intestinal barrier, reduction of inflammation, inhibition of pathogenic bacteria, reduction of trimethylamine N-oxide (TMAO) production, and regulation of the metabolism of short-chain fatty acids (SCFAs) and bile acids (BAs). CONCLUSION These mechanisms collectively contributed to the beneficial effects of polysaccharides on lipid metabolism and overall metabolic health. Furthermore, polysaccharide-based nanocarriers combined with gut microbiota have broad prospects for developing targeted and personalized therapies for hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| |
Collapse
|
13
|
Zhang J, Zhao J, Liu G, Li Y, Liang L, Liu X, Xu X, Wen C. Advance in Morchella sp. polysaccharides: Isolation, structural characterization and structure-activity relationship: A review. Int J Biol Macromol 2023; 247:125819. [PMID: 37455001 DOI: 10.1016/j.ijbiomac.2023.125819] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Morchella sp. is a kind of precious medicinal and edible fungus with a unique flavor and is rich in various amino acids and organic germanium needed by the human body. Most notably, Morchella sp. polysaccharides have attracted widespread attention due to their significant bioactivity in recent years. At present, extensive studies have been carried out on the extraction methods, structural characterization and activity evaluation of Morchella sp. polysaccharides, which provides a good theoretical basis for its further development and application. However, the systematic summary of the related research of Morchella sp. polysaccharides has not been reported yet. Therefore, this review mainly focused on the isolation and purification methods, structural characterization, biological activities and structure-activity relationship of Morchella sp. polysaccharides. This work will help to have a better in-depth understanding of Morchella sp. polysaccharides and provide a scientific basis and direct reference for more scientific and rational applications.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
14
|
Tu R, Zhou C, Huang W, Feng Z, Zhao Q, Shi X, Cui L, Chen K. Fuzi polysaccharides improve immunity in immunosuppressed mouse models by regulating gut microbiota composition. Heliyon 2023; 9:e18244. [PMID: 37519691 PMCID: PMC10372400 DOI: 10.1016/j.heliyon.2023.e18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Rationale and objectives Fuzi, the dried root of Aconitum carmichaelii Debx, is one of the widely used traditional Chinese medicines. Fuzi polysaccharides are considered the most bioactive compounds with immunomodulatory functions, however, the mechanisms have not been evaluated. This study aims to systematically investigate the effects of Fuzi polysaccharides on the gut microbiota and immune function using a mouse model immunosuppressed with cyclophosphamide. Methods The short-chain fatty acid levels in cecal contents were measured by gas chromatography-mass spectrometry. The gut microbiota 16S rRNA gene were sequenced by next generation sequencing. The mRNA expression levels of NF-κB, IL-6, TNF-α, iNOS and COX-2 were measured using quantitative real-time polymerase chain reaction. The protein expression of occludin and zonula occludens-1 were analyzed by Western blot. The white blood cells were counted using automated hematology analyzer, and CD4+FOXP3+/CD4+ ratio was measured by flow cytometry. Results and Conclusions Fuzi polysaccharides had the function of elevating the concentration of acetic acid, propionic acid, isobutyric acid, and n-butyric acid in the cecum. Meanwhile, Fuzi polysaccharides could decrease the relative abundance of Helicobacter, Anaerotruncus, Faecalibacterium, Lachnospira, Erysipelotrichaceae_UCG-003, Mucispirillum, and Mycoplasma, and increase the relative abundance of Rhodospirillales, Ruminococcaceae_UCG-013, Mollicutes_RF39, Ruminococcus_1, Christensenellaceae_R-7_group, and Muribaculaceae in the gut. Furthermore, Fuzi polysaccharides exhibited the function of increasing spleen and thymus indices and number of white blood cells and lymphocytes. Fuzi polysaccharides could reverse the decreased mRNA expression of NF-кB, IL-6, and iNOS, differentiation of CD4+FOXP3+ regulatory T cells as well as protein expression of occludin and zonula occludens-1 induced by cyclophosphamide. In addition, the mRNA and protein expression of cytokines were significantly correlated with the abundance of gut microbiota under Fuzi polysaccharides treatment. Collectively, the above results demonstrated that Fuzi polysaccharides could regulate inflammatory cytokines and gut microbiota composition of immunosuppressive mice to improve immunity, thereby shedding light on revealing the molecular mechanism of polysaccharides of traditional Chinese medicines in the future.
Collapse
Affiliation(s)
- Ran Tu
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Cheng Zhou
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Wenfeng Huang
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Zhengping Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- Yan'an Hospital of Traditional Chinese Medicine, Yan'an, Shaanxi, China
| | - Qiufang Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaofei Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Jing Y, Zhang Y, Yan M, Zhang R, Hu B, Sun S, Zhang D, Zheng Y, Wu L. Structural characterization of a heteropolysaccharide from the fruit of Crataegus pinnatifida and its bioactivity on the gut microbiota of immunocompromised mice. Food Chem 2023; 413:135658. [PMID: 36780857 DOI: 10.1016/j.foodchem.2023.135658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Crataegus pinnatifida is a common food in China, Europe and North America. In order to confirm polysaccharide was the material basis for C. pinnatifida to exert immune regulation. A polysaccharide (CPP) with a molecular weight of 13.58 kDa was isolated from C. pinnatifida. The structure of CPP was determined to be a backbone composed of → 3,5)-α-l-Araf-(1→, with two branches consisting of → 4)-α-d-Galp-(1 → and → 5)-α-l-Araf-(1→, with α-l-Araf and α-d-Manp as the terminal unit. CPP (10 ∼ 500 μg/mL) could promote the secretion of nitric oxide, interleukin-2, interleukin-6 and tumor necrosis factor-α in vitro. CPP could significantly restore the body weight of immunosuppressive mice and improve the immune organ index and interleukin-2, interleukin-6, and tumor necrosis factor-α secretion. In addition, CPP increased the abundance of Bacteroidetes and Verrucomicrobia and decreased the abundance of Proteobacteria at the phylum level. So CPP can regulate the gut microbiota and play an important role in immune regulation.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yameng Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Ruijuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
16
|
Mora-Flores LP, Moreno-Terrazas Casildo R, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The Role of Carbohydrate Intake on the Gut Microbiome: A Weight of Evidence Systematic Review. Microorganisms 2023; 11:1728. [PMID: 37512899 PMCID: PMC10385781 DOI: 10.3390/microorganisms11071728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Carbohydrates are the most important source of nutritional energy for the human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation are the focus of multiple studies. The objective of this weight of evidence systematic review is to investigate the potential relationship between ingested carbohydrates and the gut microbiota composition at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques were used to evaluate the relationship between dietary carbohydrates and the relative abundance of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase, insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase. Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This work provides, for the first time, an integrative review of the subject by using statistical techniques that have not been previously employed in microbiota reviews.
Collapse
Affiliation(s)
- Lorena P Mora-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Rubén Moreno-Terrazas Casildo
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - José Fuentes-Cabrera
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Hugo Alexer Pérez-Vicente
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| | - Elier Ekberg Neri-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| |
Collapse
|
17
|
Tian B, Liu R, Xu T, Cai M, Mao R, Huang L, Yang K, Zeng X, Peilong S. Modulating effects of Hericium erinaceus polysaccharides on the immune response by regulating gut microbiota in cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3050-3064. [PMID: 36546454 DOI: 10.1002/jsfa.12404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The gut microbiota (GM) is recognized as a significant contributor to the immune system. In the present study, the effects of Hericium erinaceus polysaccharides (HEP) on immunoregulation and GM in cyclophosphamide (CTX)-treated mice were investigated to elucidate the attenuate of immunosuppression by modulating GM. RESULTS The results revealed that HEP significantly improved the body weight and immune organ index in immunodeficient mice (P < 0.05). They significantly increased operational taxonomic units (OTUs) (P < 0.05), adjusted the α and β diversity of the GM, and the bacterial community structure was more similar to that of control group. Taxonomic composition analysis found that HEP increased the abundance of Alistipse, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, uncultured_bacterium_f_Lachnospiracea, uncultured_bacterium_f_Ruminococcaceae and Ruminococcaceae_UCG-014, and decreased Lactobacillus, Bacteroides, and Alloprevotella, suggesting that HEP can improve the GM structure and inhibit CTX-induced GM dysregulation. Moreover, HEP increased short-chain fatty acid (SCFA)-producing bacteria, recovered SCFA levels, alleviated immunosuppression caused by CTX, enhanced the serum immune cytokine factors, and upregulated TLR4/NF-κB pathway key proteins (TLR4, NF-κB p65) at mRNA and protein levels. CONCLUSION Hericium erinaceus polysaccharides effectively regulated GM and enhancement of intestinal immune function, so they have the potential to be developed as functional ingredients or foods to modulate immune responses. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Renjian Liu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. LTD, Quzhou, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
18
|
Cui Y, Zhang L, Liu Y, Liu W, Shi W, Bao Y. Compound small peptide of Chinese medicine alleviates cyclophosphamide induced immunosuppression in mice by Th17/Treg and jejunum intestinal flora. Front Microbiol 2023; 14:1039287. [PMID: 37056742 PMCID: PMC10089124 DOI: 10.3389/fmicb.2023.1039287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to explore the efficacy of Compound small peptide of Chinese medicine (CSPCM) on cyclophosphamide (CTX) induced immunosuppression in mice. The 100 male Kunming mice were divided into 5 groups: group A (control group), group B (model group), group C (100 mg/kg.bw CSPCM), group D (200 mg/kg.bw CSPCM) and group E (400 mg/kg.bw CSPCM). At 1–3 days, mice of group B, C, D and E were intraperitoneally injected with 80 mg/kg.bw CTX. The results showed that compared with group A, the immune organ index, body weight change, RORγ T gene expression, RORγ T protein expression, CD3+ cell number, Th17 number and Alpha index, white blood cell count, lymphocyte count and monocyte count were significantly decreased in group B (p < 0.05), while Foxp3 gene expression, Foxp3 protein expression and Treg cell number were significantly increased (p < 0.05), CSPCM has a good therapeutic effect on the above abnormalities caused by CTX. CTX caused the decrease of intestinal flora richness and the abnormal structure of intestinal flora, and CSPCM could change the intestinal flora destroyed by CTX to the direction of intestinal flora of healthy mice. On the whole, CSPCM has a good therapeutic effect on CTX-induced immunosuppression in mice, which is reflected in the index of immune organs, the number of T lymphocytes and Th17 cells increased, the number of Treg cells decreased and the structure of intestinal flora was reconstructed.
Collapse
Affiliation(s)
- Yuqing Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lu Zhang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wei Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Pharmacoefficacy Laboratory, Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
- *Correspondence: Wanyu Shi,
| | - Yongzhan Bao
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Pharmacoefficacy Laboratory, Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
- Yongzhan Bao,
| |
Collapse
|
19
|
Li Y, Chen H, Zhang X. Cultivation, nutritional value, bioactive compounds of morels, and their health benefits: A systematic review. Front Nutr 2023; 10:1159029. [PMID: 37006947 PMCID: PMC10063854 DOI: 10.3389/fnut.2023.1159029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Morels are valuable mushrooms being used as foods and medical substances for a long history. The commonly cultivated morel species include M. eximia, M. importuna, and M. sextelata in China, M. conica and M. esculenta in the US. Morels' nutritional profile mainly consists of carbohydrates, proteins, fatty acids, vitamins, minerals, and organic acids, which are also responsible for its complex sensory attributes and health benefits. The bioactive compounds in morels including polysaccharides, phenolics, tocopherols, and ergosterols contribute to the anti-oxidative abilities, anti-inflammation, immunoprotection, gut health preservation, and anti-cancer abilities. This review depicted on the cultivation of morels, major bioactive compounds of different morel species both from fruit bodies and mycelia, and their health benefits to provide a comprehensive understanding of morels and support the future research and applications of morels as high-value functional food sources.
Collapse
Affiliation(s)
- Yitong Li
- Bannerbio Nutraceuticals Inc., Shenzhen, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xi Zhang
- Bannerbio Nutraceuticals Inc., Shenzhen, China
- *Correspondence: Xi Zhang
| |
Collapse
|
20
|
Chen J, Xiao Y, Li D, Zhang S, Wu Y, Zhang Q, Bai W. New insights into the mechanisms of high-fat diet mediated gut microbiota in chronic diseases. IMETA 2023; 2:e69. [PMID: 38868334 PMCID: PMC10989969 DOI: 10.1002/imt2.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
High-fat diet (HFD) has been recognized as a primary factor in the risk of chronic disease. Obesity, diabetes, gastrointestinal diseases, neurodegenerative diseases, and cardiovascular diseases have long been known as chronic diseases with high worldwide incidence. In this review, the influences of gut microbiota and their corresponding bacterial metabolites on the mechanisms of HFD-induced chronic diseases are systematically summarized. Gut microbiota imbalance is also known to increase susceptibility to diseases. Several studies have proven that HFD has a negative impact on gut microbiota, also exacerbating the course of many chronic diseases through increased populations of Erysipelotrichaceae, facultative anaerobic bacteria, and opportunistic pathogens. Since bile acids, lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide have long been known as common features of bacterial metabolites, we will explore the possibility of synergistic mechanisms among those metabolites and gut microbiota in the context of HFD-induced chronic diseases. Recent literature concerning the mechanistic actions of HFD-mediated gut microbiota have been collected from PubMed, Google Scholar, and Scopus. The aim of this review is to provide new insights into those mechanisms and to point out the potential biomarkers of HFD-mediated gut microbiota.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
- School of Chinese Medicine, Centre for Cancer and Inflammation ResearchHong Kong Baptist UniversityHong KongChina
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| | - Dongmei Li
- Department of Microbiology & ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Shiqing Zhang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yingzi Wu
- School of Chinese Medicine, Centre for Cancer and Inflammation ResearchHong Kong Baptist UniversityHong KongChina
| | - Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| |
Collapse
|
21
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
22
|
Lei J, Zhang Y, Guo D, Meng J, Feng C, Xu L, Cheng Y, Liu R, Chang M, Geng X. Extraction optimization, structural characterization of soluble dietary fiber from Morchella importuna, and its in vitro fermentation impact on gut microbiota and short-chain fatty acids. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2093979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Yuting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| |
Collapse
|
23
|
Liu JP, Wang J, Zhou SX, Huang DC, Qi GH, Chen GT. Ginger polysaccharides enhance intestinal immunity by modulating gut microbiota in cyclophosphamide-induced immunosuppressed mice. Int J Biol Macromol 2022; 223:1308-1319. [PMID: 36395935 DOI: 10.1016/j.ijbiomac.2022.11.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
In this study, the immunity-enhancing effect of ginger polysaccharides UGP1 and UGP2 on CTX-induced immunosuppressed mice was evaluated. The results showed that ginger polysaccharide could effectively alleviate the symptoms of weight loss and dietary intake reduction induced by CTX, increase fecal water content, reduce fecal pH, and protect immune organs of immunosuppressed mice. In addition, ginger polysaccharides also stimulated the secretion of cytokines IL-2, IL-4, TNF-α and immunoglobulin Ig-G in the serum of mice, increased the expression of Occludin and Claudin-1, and restored the level of short-chain fatty acids in the intestine to improve immune deficiency. Furthermore, ginger polysaccharides significantly reduced the relative abundance ratio of the Firmicutes and Bacteroidetes in mice and increased the relative abundance of Verrucomicrobia and Bacteroidetes at the phylum level. At the family level, ginger polysaccharides increased the relative abundance of beneficial bacteria such as Muribaculaceae, Bacteroidaceae and Lactobacillaceae, and decreased the relative abundance of harmful bacteria such as Rikenellaceae and Lachnospiraceae. Spearman correlation analysis indicated that ginger polysaccharides could enhance intestinal immunity by modulating gut microbiota associated with immune function. These results indicated that ginger polysaccharides have the potential to be a functional food ingredients or a natural medicine for the treatment of intestinal barrier injury.
Collapse
Affiliation(s)
- Jun-Ping Liu
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - Jie Wang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - Si-Xuan Zhou
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - De-Chun Huang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - Guo-Hong Qi
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| | - Gui-Tang Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Wang J, Wang L, Yu S, Jin Y, Wang Y, Chai R, Zhao Z, Bian Y, Zhao S. Condensed Fuzheng extract increases immune function in mice with cyclophosphamide-induced immunosuppression. Food Sci Nutr 2022; 10:3865-3875. [PMID: 36348791 PMCID: PMC9632192 DOI: 10.1002/fsn3.2982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Our general purpose was to examine the effect of condensed Fuzheng extract (CFE) on the alleviation of immunosuppression. A mouse model of immunosuppression was established by intraperitoneal injection of CTX. A healthy control group received no CTX and no CFE; different intragastric doses of CFE were administered to three groups of mice for 28 days (4500, 2250, or 1125 mg/kg/day); a negative control received CTX alone, and a positive control received CTX and levamisole hydrochloride. We evaluated the effects of CFE on the immune system organs, cells, and molecules by comparing the different groups. CFE significantly improved immune system organs (spleen and thymus indices and histology), stimulated immune cell activities (number of white blood cells and lymphocytes, phagocytosis of mononuclear phagocytes, proliferation of splenic lymphocytes, antibody formation, and NK cell activity), and increased the levels of immunoglobulins (IgA, IgG, and IgM) and cytokines (IL-2 and IFN-γ). Thus CFE effectively alleviated CTX-mediated immunosuppression and oxidative stress and enhanced the immunological functions of mice.
Collapse
Affiliation(s)
- Ji‐Da Wang
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Li Wang
- Pharmaceutical DepartmentTianjin Second People's HospitalTianjinChina
- School of Intergrative MedicineTianjin UniversityTianjinChina
| | - Shuang Yu
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yu‐Tong Jin
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yi‐Yang Wang
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Run‐Dong Chai
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ze‐Yu Zhao
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yu‐Hong Bian
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shu‐Wu Zhao
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
25
|
Zhang D, Liu J, Cheng H, Wang H, Tan Y, Feng W, Peng C. Interactions between polysaccharides and gut microbiota: A metabolomic and microbial review. Food Res Int 2022; 160:111653. [DOI: 10.1016/j.foodres.2022.111653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
|
26
|
Shi T, Zhang T, Wang X, Wang X, Shen W, Guo X, Liu Y, Li Z, Jiang Y. Metagenomic Analysis of in Vitro Ruminal Fermentation Reveals the Role of the Copresent Microbiome in Plant Biomass Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12095-12106. [PMID: 36121066 DOI: 10.1021/acs.jafc.2c03522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.
Collapse
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Tingting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xiangnan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, P.R. China
| | - Xi Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yuqin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| |
Collapse
|
27
|
Feng W, Liu J, Cheng H, Zhang D, Tan Y, Peng C. Dietary compounds in modulation of gut microbiota-derived metabolites. Front Nutr 2022; 9:939571. [PMID: 35928846 PMCID: PMC9343712 DOI: 10.3389/fnut.2022.939571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Gut microbiota, a group of microorganisms that live in the gastrointestinal tract, plays important roles in health and disease. One mechanism that gut microbiota in modulation of the functions of hosts is achieved through synthesizing and releasing a series of metabolites such as short-chain fatty acids. In recent years, increasing evidence has indicated that dietary compounds can interact with gut microbiota. On one hand, dietary compounds can modulate the composition and function of gut microbiota; on the other hand, gut microbiota can metabolize the dietary compounds. Although there are several reviews on gut microbiota and diets, there is no focused review on the effects of dietary compounds on gut microbiota-derived metabolites. In this review, we first briefly discussed the types of gut microbiota metabolites, their origins, and the reasons that dietary compounds can interact with gut microbiota. Then, focusing on gut microbiota-derived compounds, we discussed the effects of dietary compounds on gut microbiota-derived compounds and the following effects on health. Furthermore, we give our perspectives on the research direction of the related research fields. Understanding the roles of dietary compounds on gut microbiota-derived metabolites will expand our knowledge of how diets affect the host health and disease, thus eventually enable the personalized diets and nutrients.
Collapse
Affiliation(s)
- Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Shan Y, Sun C, Li J, Shao X, Wu J, Zhang M, Yao H, Wu X. Characterization of Purified Mulberry Leaf Glycoprotein and Its Immunoregulatory Effect on Cyclophosphamide-Treated Mice. Foods 2022; 11:foods11142034. [PMID: 35885277 PMCID: PMC9324946 DOI: 10.3390/foods11142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mulberry leaf protein is a potentially functional food component and health care agent with antioxidant and anti-inflammatory properties. However, its composition, immunoregulatory effects, and gut microbial regulatory effects are unclear. Herein, ultra-filtrated and gel-fractionated mulberry leaf protein (GUMP) was characterized. Its effects on cyclophosphamide-induced immunosuppressed mice were further investigated. The results indicated that GUMP is a glycoprotein mainly containing glucose, arabinose, and mannose with 9.23% total sugar content. Its secondary structure is mainly β-sheet. LC–MS/MS analysis showed that GUMP closely matched with a 16.7 kDa mannose-binding lectin and a 52.7 kDa Rubisco’s large subunit. GUMP intervention significantly improved serous TNF-α, IL-6, and IL-2 contents; increased serum immunoglobulins (IgA and IgG) levels; and reversed splenic damage prominently. Moreover, GUMP administration increased fecal shot-chain fatty acid concentration and up-regulated the relative abundance of Odoribacter, which was positively correlated with SCFAs and cytokine contents. Overall, GUMP alleviated immunosuppression through the integrated modulation of the gut microbiota and immune response. Therefore, GUMP could be a promising dietary supplement to help maintain gut health.
Collapse
Affiliation(s)
- Yangwei Shan
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
| | - Chongzhen Sun
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China
- Correspondence: (C.S.); (X.W.)
| | - Jishan Li
- Faculty of Engineering Technology, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium;
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
| | - Junfeng Wu
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Hong Yao
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
- Correspondence: (C.S.); (X.W.)
| |
Collapse
|
29
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
30
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
31
|
Liang J, Zhang M, Wang X, Ren Y, Yue T, Wang Z, Gao Z. Edible fungal polysaccharides, the gut microbiota, and host health. Carbohydr Polym 2021; 273:118558. [PMID: 34560969 DOI: 10.1016/j.carbpol.2021.118558] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
The plasticity of the gut microbiota (GM) creates an opportunity to reshape the biological output of gut microbes by manipulating external factors. It is well known that edible fungal polysaccharides (EFPs) can reach the distal intestine and be assimilated to reshape the GM. The GM has unique devices that utilize various EFPs and produce oligosaccharides, which can selectively promote the growth of beneficial bacteria and are fermented into short-chain fatty acids that interact closely with intestinal cells. Here we review EFPs-based interventions for the GM, particularly the key microorganisms, functions, and metabolites. In addition, we discuss the bi-directional causality between GM imbalance and diseases, and the beneficial effects of EFPs on host health via GM. This review can offer a valuable reference for the design of edible fungal polysaccharide- or oligosaccharide-based nutrition interventions or drug development for maintaining human health by targeted regulation of the GM.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meina Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yichen Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Chen X, Sun W, Xu B, Wu E, Cui Y, Hao K, Zhang G, Zhou C, Xu Y, Li J, Si H. Polysaccharides From the Roots of Millettia Speciosa Champ Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Intestinal Injury and Immunosuppression. Front Immunol 2021; 12:766296. [PMID: 34745141 PMCID: PMC8567740 DOI: 10.3389/fimmu.2021.766296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophosphamide (CTX), a common anticancer drug, can cause a variety of side effects such as immunosuppression and intestinal mucosal injury. Polysaccharides are the major bioactive components of the roots of Millettia Speciosa Champ and have gained attention for their immunomodulatory activity. This study was designed to evaluate the immunomodulatory effect of Millettia Speciosa Champ polysaccharide (MSCP) on CTX-induced mice and the possible mechanism. The results showed that MSCP attenuated the CTX-induced decrease in body weight and immune organ indices in mice and promoted the secretion of immune-related cytokines (IL-2, IL-4, IL-10, TNF-α, and IgG). Meanwhile, MSCP restored intestinal morphology, increased the ratio of villus height/crypt depth (V/C), and improved the number of goblet cells and mucins expression. At the mRNA level, MSCP activated the TLRs/MyD88/NF-κB p65 pathway and enhanced the expression of genes related to intestinal mucosal integrity (Occludin1, Claudin1, and MUC-2). In addition, MSCP as a prebiotic improved microbial community diversity, regulated the relative abundance of dominant microbiota from the phylum level to the genus level, restored CTX-induced gut microbial dysbiosis, and promoted short-chain fatty acid production in mice. Based on the present findings, MSCP may modulate the immune response depending on enhancing intestinal health, suggesting that MSCP holds promise as a promising immunostimulant in functional foods and drugs.
Collapse
Affiliation(s)
- Xiaogang Chen
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Baichang Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Enyun Wu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Jiang Li
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Polysaccharide from Patinopecten yessoensis Skirt Boosts Immune Response via Modulation of Gut Microbiota and Short-Chain Fatty Acids Metabolism in Mice. Foods 2021; 10:foods10102478. [PMID: 34681527 PMCID: PMC8535924 DOI: 10.3390/foods10102478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Polysaccharide from marine shellfish has various bioactivities. In this study, the effects of polysaccharide from Patinopecten yessoensis skirt (PS) on boosting immune response in mice were evaluated, and the potential mechanisms were explored. The results showed that PS administration effectively increased the serum IgG and IgM levels, implying that PS had immune response-boosting properties. Moreover, PS administration could modulate the composition of the gut microbiota, and significantly improve short-chain fatty acids (SCFAs) metabolism, especially butyrate metabolism. Of note, the expression of the Tlr2, Tlr7, MyD88, Tnfa, and Il1b genes in toll-like receptor (TLR) signaling pathway was significantly increased. In summary, PS could boost immune response by modulating the gut microbiota and SCFAs metabolism correlating with the activation of the TLR signaling pathway. Therefore, PS can be developed as a special ingredient for functional product.
Collapse
|
34
|
Xie Y, Wang L, Sun H, Shang Q, Wang Y, Zhang G, Yang W, Jiang S. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. Food Funct 2021; 11:9035-9047. [PMID: 33021613 DOI: 10.1039/d0fo01711f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alfalfa polysaccharide (APS) has been proposed to exhibit growth-promoting and immune-enhancing bodily functions in vivo. However, little is known about its downstream immunomodulatory and intrinsic molecular mechanisms. Herein, mouse splenic lymphocytes were isolated to characterize the immunomodulatory effects and molecular mechanisms of APS in vitro. The results demonstrated that APS selectively improved the cell viability and IgM production of B cells, but no effects on T cell viability or secretion of IL-2, IL-4 and IFN-γ were observed in vitro. The receptor blocking assay showed that TLR4 was the primary receptor involved in APS-mediated B cell activation, which was confirmed by the results obtained using C57BL/10ScNJ (TLR4 gene-deficient) mice. Moreover, APS activated the TLR4-MyD88 signaling pathway at the translational level by significantly increasing the protein expression of TLR4 and MyD88. Downstream pathway blocking assay demonstrated that both the MAPK and NF-κB pathways were involved in APS-induced B cell activation. Additionally, APS significantly enhanced the phosphorylation of p38, ERK, and JNK and activated the nuclear translocation of the NF-κB p65 subunit. Therefore, we concluded that APS specifically activates the immune functions of splenic B cells by TLR4, acting through the MAPK and NF-κB signaling pathways, and potently activates the p38 pathway.
Collapse
Affiliation(s)
- Yuhuai Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Hua Sun
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Qinghui Shang
- Department of Animal Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Yuxi Wang
- Lethbridge Research Centre, Agriculture and Agri-Food C, anadaLethbridge, Alberta T1J 4B1, Canada
| | - Guiguo Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
35
|
Lv L, Mu D, Du Y, Yan R, Jiang H. Mechanism of the Immunomodulatory Effect of the Combination of Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus on Immunocompromised Rats. Front Immunol 2021; 12:694344. [PMID: 34211480 PMCID: PMC8239396 DOI: 10.3389/fimmu.2021.694344] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Immunodeficiency is a very common condition in suboptimal health status and during the development or treatment of many diseases. Recently, probiotics have become an important means for immune regulation. The present study aimed to investigate the mechanism of the immunomodulatory effect of a combination of live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus (CBLEB), which is a drug used by approximately 10 million patients every year, on cyclophosphamide-immunosuppressed rats. Cyclophosphamide (40 mg/kg) was intraperitoneally injected to induce immunosuppression in a rat model on days 1, 2, 3, and 10. Starting from day 4, the rats were continuously gavaged with CBLEB solution for 15 days. The samples were collected to determine routine blood test parameters, liver and kidney functions, serum cytokine levels, gut microbiota, fecal and serum metabolomes, transcriptomes, and histopathological features. The results indicated that CBLEB treatment reduced cyclophosphamide-induced death, weight loss, and damage to the gut, liver, spleen, and lungs and eliminated a cyclophosphamide-induced increase in the mean hemoglobin content and GGT, M-CSF, and MIP-3α levels and a decrease in the red blood cell distribution width and total protein and creatinine levels in the blood. Additionally, CBLEB corrected cyclophosphamide-induced dysbiosis of the gut microbiota and eliminated all cyclophosphamide-induced alterations at the phylum level in rat feces, including the enrichment in Proteobacteria, Fusobacteriota, and Actinobacteriota and depletion of Spirochaetota and Cyanobacteria. Furthermore, CBLEB treatment alleviated cyclophosphamide-induced alterations in the whole fecal metabolome profile, including enrichment in 1-heptadecanol, succinic acid, hexadecane-1,2-diol, nonadecanoic acid, and pentadecanoic acid and depletion of benzenepropanoic acid and hexane. CBLEB treatment also alleviated cyclophosphamide-induced enrichment in serum D-lyxose and depletion of serum succinic acid, D-galactose, L-5-oxoproline, L-alanine, and malic acid. The results of transcriptome analysis indicated that the mechanism of the effect of CBLEB was related to the induction of recovery of cyclophosphamide-altered carbohydrate metabolism and signal transduction. In conclusion, the present study provides an experimental basis and comprehensive analysis of application of CBLEB for the treatment of immunodeficiency.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Deguang Mu
- Zhejiang Provincal People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yiling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Chen S, Wang J, Fang Q, Dong N, Fang Q, Cui SW, Nie S. A polysaccharide from natural Cordyceps sinensis regulates the intestinal immunity and gut microbiota in mice with cyclophosphamide-induced intestinal injury. Food Funct 2021; 12:6271-6282. [PMID: 34105571 DOI: 10.1039/d1fo00596k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A polysaccharide from Cordyceps sinensis (NCSP) was reported to attenuate intestinal injury and regulate the balance of T helper (Th)1/Th2 cells in immunosuppressed mice. However, whether it influences Th17 and regulatory T (Treg) cells as well as gut ecology remains unknown. In the present study, the intestinal injury mouse model was also established by intraperitoneal injection of cyclophosphamide (Cy) for three consecutive days. NCSP was found to increase the number of CD4+ T cells, stimulate the secretion of interleukins (IL)-17 and IL-21, and the expression of transcription factor (retinoic acid-related orphan receptor (ROR)-γt). The levels of transforming growth factor (TGF)-β3 and transcription factor (forkhead box (Fox)p-3) were increased in NCSP-treated groups. Moreover, NCSP upregulated the mRNA expression of toll like receptors (TLR-2, -6 and -9), while it downregulated the TLR-4 expression. In addition, NCSP modulated the intestinal microbiota composition and increased the levels of SCFAs. These findings indicated that NCSP may enhance intestinal immunity and have the potential to become a prebiotic to regulate intestinal microbiota.
Collapse
Affiliation(s)
- Shuping Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sang T, Guo C, Guo D, Wu J, Wang Y, Wang Y, Chen J, Chen C, Wu K, Na K, Li K, Fang L, Guo C, Wang X. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation. Carbohydr Polym 2021; 256:117594. [DOI: 10.1016/j.carbpol.2020.117594] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
|
38
|
The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr Polym 2020; 250:116942. [DOI: 10.1016/j.carbpol.2020.116942] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
|
39
|
The Prebiotic-Like Effects of Coprinus comatus Polysaccharides on Gut Microbiota in Normal Mice and Those with Acute Alcoholic Liver Injury: A Comparative Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2027570. [PMID: 33312220 PMCID: PMC7719511 DOI: 10.1155/2020/2027570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
This study aims to investigate the prebiotic-like effects of Coprinus comatus polysaccharides (CCP) on gut microbiota. Mice were divided into four groups: normal group (NG), alcohol group (AG), polysaccharides group (PG), and alcohol + polysaccharides group (APG). The gut microbiota structure of feces was analyzed by determining the V3-V4 region sequence in 16S rDNA. The results showed CCP could increase the diversity of gut microbiota. Compared with NG, PG had a significantly higher relative abundance of Firmicutes and Lactobacillaceae and a lower abundance of Rikenellaceae. These changes in gut microbiota result in positive effects on gut due to a series of prebiotic-like effects of CCP. At the same time, CCP could improve some adverse changes in gut microbiota caused by acute alcohol intake, such as the increased proportion of Firmicutes, Bacteroidetes, Muribaculaceae, and Lachnospiraceae and the decreased proportion of Rikenellaceae. In conclusion, the CCP has certain prebiotic effects not only on normal mice but also on mice with acute alcoholic liver injury.
Collapse
|
40
|
Liu YS, Li S, Wang XF, Xing T, Li JL, Zhu XD, Zhang L, Gao F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult Sci 2020; 100:273-282. [PMID: 33357691 PMCID: PMC7772697 DOI: 10.1016/j.psj.2020.09.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study was designed to evaluate the effects of γ-irradiated Astragalus polysaccharides (IAPS) on growth performance, cecal microbiota populations, and concentrations of cecal short-chain fatty acids of immunosuppressed broilers. A total of 144 one-day-old broiler chicks were randomly assigned into 3 groups: nontreated group (control), cyclophosphamide (CPM)-treated groups fed either a basal diet or the diets containing 900 mg/kg IAPS, respectively. On day 16, 18, and 20, broilers in the control group were intramuscularly injected with 0.5 mL sterilized saline (0.75%, wt/vol), and those in the CPM and IAPS groups were intramuscularly injected with 0.5 mL CPM (40 mg/kg of BW). The trial lasted 21 d. Compared with the control group, CPM treatment decreased the broiler average daily gain (ADG) and feed intake (P < 0.05) but did not affect the overall microbial diversity and compositions, as well as the concentrations of cecal acetate, propionate, and butyrate in cecum of broilers (P > 0.05). Dietary IAPS supplementation increased broiler ADG, Shannon index, and decreased Simpson index (P < 0.05). Specifically, broilers fed diets containing IAPS showed lower abundances of Faecalibacterium, Bacteroides, and Butyricicoccus and higher proportions of Ruminococcaceae UCG-014, Negativibacillus, Shuttleworthia, Sellimonas, and Mollicutes RF39_norank, respectively (P < 0.05). The IAPS treatment also increased butyrate concentration (P < 0.05) and tended to elevate acetate concentration (P = 0.052) in cecal digesta. The results indicated that IAPS are effective in increasing the cecal beneficial bacteria and short-chain fatty acids production, contributing to improvement in the growth performance of immunosuppressive broilers. These findings may expand our knowledge about the function of modified Astragalus polysaccharides in broiler chickens.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - S Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
HUO W, QI P, CUI L, ZHANG L, DAI L, LIU Y, HU S, FENG Z, QIAO T, LI J. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:219-226. [PMID: 33117620 PMCID: PMC7573107 DOI: 10.12938/bmfh.2020-018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023]
Abstract
Polysaccharides from morels possess many characteristics beneficial to health, such as anti-tumor and immunomodulatory activities. The gut microbiota plays a critical role in the modulation of immune function. However, the impact of morel polysaccharides on the gut microbiota has not yet been explored. In this study, a high-throughput pyrosequencing technique was used to investigate the effects of MP, a new heteropolysaccharide extracted from wild morels, on the diversity and composition of microbiota along the intestine in mice, as well as the production of short-chain fatty acids (SCFAs). The results showed that MP treatment increased the number of operational taxonomic unit (OTUs) and diversity along the intestine, especially in the small intestine. MP treatment induced a significant decrease in the number of Firmicutes and a significant increase in the number of Bacteroidetes in the small intestine microbiota. It was also observed that the relative abundance of SCFA-producing bacteria, especially Lachnospiraceae, was increased in both the cecum and colon of MP-treated mice. Moreover, MP promoted the production of SCFAs in mice. These results provide a foundation for further understanding the health benefits conferred by morel polysaccharides.
Collapse
Affiliation(s)
- Wenyan HUO
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Peng QI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Langjun CUI
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Liguang ZHANG
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Lu DAI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Yu LIU
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Suying HU
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Zhengping FENG
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Ting QIAO
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Junzhi LI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| |
Collapse
|