1
|
Ji X, Yu H, Wang L, Bao X, Si T, Li X, Wang H, Borjigidai A, Kusuma Aji G, Bai L, Fu M. Gut microbiota and metabolomics unveil the mechanisms of Lomatogonium rotatum in ameliorating visceral fat and serum lipids in high-fat diet-induced obese mice. Front Pharmacol 2024; 15:1418063. [PMID: 39559734 PMCID: PMC11570273 DOI: 10.3389/fphar.2024.1418063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Lomatogonium rotatum (LR) is a folk medicinal herb traditionally used as a lipid-lowering and anti-obesity agent; but its pharmacological mechanism is unclear. In this study, we assessed the alterations of LR on gut microbes and serum metabolites in obese mice and their associated mechanisms of modulation on visceral fat and serum lipid by integrating gut microbiota and metabolomics analyses. Mice were fed a high-fat diet (HFD) to generate obesity and were then given LR and Orlistat orally at different doses (0.18, 0.9, 1.8 g/kg for LR and 0.048 g/kg for Orlistat) for a duration of 9 weeks. The impact of LR on weight loss was assessed through the examination of fat deposition, serum lipid indices, liver indices, and HE pathohistology. The effects of LR on gut microbiota and serum metabolites in obese mice were then investigated by 16S rRNA sequencing technology and untargeted metabolomics, and correlation analysis was performed. LR significantly reduced body weight, feed intake, Lee's index, visceral fat accumulation, serum TG, TC, AST and ALT, and elevated serum HDL levels in obese mice. In addition, 16S rRNA sequencing results indicated that the LR intervention remodeled microbial diversity and composition, increased the relative abundance of gut microbes Bacteroidetes and Porphyromonadaceae in HFD-induced obese mice, and decreased the Deferribacteres, Firmicutes and the Firmicutes/Bacteroidetes ratio. Correlation analyses showed that LR regulation of L-tyrosine and hesperetin metabolism, as well as alterations in the metabolic pathways of Phenylalanine, tyrosine and tryptophan biosynthesis, were associated with the changes in abundance of Bacteroidetes, Firmicutes, Porphyromonadaceae and Deferribacteres. Our study demonstrated that LR has lipid lowering and visceral fat reduction effects and its function may be closely related to the improvement of the gut microbiota and its associated metabolites.
Collapse
Affiliation(s)
- Xiaoping Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hongzhen Yu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lianqian Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xuemei Bao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Tegele Si
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Xiaoman Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Hugejiletu Wang
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Galih Kusuma Aji
- Research Center for Agroindustry, National Research and Innovation Agency, Jakarta Pusat, Indonesia
| | - Laxinamujila Bai
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
2
|
Chang X, Du M, Wei J, Zhang Y, Feng X, Deng B, Liu P, Wang Y. Serum tsncRNAs reveals novel potential therapeutic targets of Salvianolic Acid B on atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155994. [PMID: 39243751 DOI: 10.1016/j.phymed.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Salvianolic Acid B (SalB) has been proven to delay the progression of atherosclerosis. The therapeutic mechanisms of this compound are unclear. A novel class of short non-coding RNAs, pre-transfer RNA and mature transfer RNA (tsncRNAs) may regulate gene expression. TsncRNAs-sequencing revealed novel therapeutic targets for SalB. This is the first study focusing on tsncRNAs to treat atherosclerosis using SalB. PURPOSE To explore the potential mechanism of SalB treating atherosclerosis through tsncRNAs. METHODS Five groups of mice were created at random: control group (CON), atherosclerosis model group (MOD), SalB with high dose-treated group (SABH), SalB with low dose-treated group (SABL), and Simvastatin-treated group (ST). Aortic sinus plaque, body weight and inflammatory cytokines were evaluated. The Illumina NextSeq equipment was used to do expression profiling of tsncRNAs from serum. The targets of tsncRNAs were then predicted using tRNAscan and TargetScan. The KEGG pathway and GO analysis were utilized to forecast the bioinformatics analysis. Potential tsncRNAs and associated mRNAs were validated using quantitative real-time PCR. RESULTS tRF-Glu-CTC-014 and tRF-Gly-GCC-074 were markedly increased by SalB with high dose treatment and validated with quantitative real-time PCR. Two mRNAs SRF and Arrb related to tRF-Glu-CTC-014 changed consistently. GO analysis revealed that the altered target genes of the selected tsncRNAs were most enriched in protein binding and cellular process. Moreover, KEGG pathway analysis demonstrated that altered target genes of tsncRNAs were most enriched in MAPK signaling pathway. CONCLUSION SalB can promote the expression of tRF-Glu-CTC-014 to treat atherosclerosis.
Collapse
Affiliation(s)
- Xindi Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Min Du
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Jing Wei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Xiaoteng Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
3
|
Zhang C, Xiang J, Wang G, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Zhang Y, Wang Y, Liu H. Salvianolic acid B improves diabetic skin wound repair through Pink1/Parkin-mediated mitophagy. Arch Physiol Biochem 2024:1-12. [PMID: 39101795 DOI: 10.1080/13813455.2024.2387693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Diabetic skin wound is a disturbing and rapidly evolving clinical issue. Here, we investigated how salvianolic acid B (Sal B) affected the diabetic wound healing process. Following Sal B administration, histopathological damage was investigated by H&E and Masson staining, and CD34, apoptosis and mitophagy markers were measured by immunofluorescence, immunohistochemistry, and western blotting. Migration, proliferation, and mitochondrial function of high glucose (HG) -induced HMEC-1 cells were measured. The effects of si-Parkin on endothelial cell migration, apoptosis and mitochondrial autophagy were examined. Sal B alleviated inflammatory cell infiltration and promoted angiogenesis in skin wound tissue. Apoptosis and mitophagy were ameliorated by Sal B in diabetic skin wound tissues and HG-induced HMEC-1 cells. Parkin inhibition impaired the migratorypromoted cell apoptosis and inhibited mitophagy of HMEC-1 cells. This finding demonstrated that Sal B promoted diabetic skin wound repair via Pink1/Parkin-mediated mitophagy, improved our understanding of the diabetic wound healing process.
Collapse
Affiliation(s)
- Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Xiang
- Department of Monitoring, Guizhou Center for Disease Control and Prevention, Institute of Chronic Disease Prevention and Treatment, Guiyang, China
| | - Gengxin Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tietao Di
- Department of Trauma Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lianggang Wei
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueli Wu
- Central Laboratory, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yun Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanhui Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haiyan Liu
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Wang C, An T, Lu C, Liu T, Shan X, Zhu Z, Gao Y. Tangzhiping Decoction Improves Glucose and Lipid Metabolism and Exerts Protective Effects Against White Adipose Tissue Dysfunction in Prediabetic Mice. Drug Des Devel Ther 2024; 18:2951-2969. [PMID: 39050798 PMCID: PMC11268521 DOI: 10.2147/dddt.s462603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prediabetes, characterized by a series of metabolic abnormalities, increases the risk of diabetes and cardiovascular diseases. Tangzhiping (TZP), a clinically validated traditional Chinese medicine formula, is used to treat impaired glucose tolerance. However, the underlying mechanism of TZP in intervening prediabetes is not fully elucidated. Purpose The current study aimed to evaluate the protective effect of TZP against prediabetes mice and explore its potential mechanism. Methods After establishing a prediabetic animal model through 12 weeks of high-fat diet (HFD) feeding, mice were subjected to TZP for 8 weeks. Various parameters related to body weight, glucose and lipid metabolism, and insulin sensitivity were measured. Histopathological examinations observed adipose cell size and liver lipid deposition. The Sable Promethion system assessed energy metabolism activity. Transcriptomic analysis of Epididymal white adipose tissue (EWAT) identified enriched pathways and genes. The key genes in the enriched pathways were identified through RT-PCR. Results Our data revealed that the administration of TZP reduced body weight and fat mass in a prediabetes mouse model. TZP normalized the glucose and insulin levels, improved insulin resistance, and decreased plasma TC and FFA. The alleviation of adipose tissue hypertrophy and lipid deposition by TZP was demonstrated through pathological examination. Indirect calorimetry measurements indicated a potential increase in VO2 and EE levels with TZP. The results of EWAT transcription showed that TZP reversed pathways and genes related to inflammation and catabolic metabolism. RT-PCR demonstrated that the mRNA expression of inflammation and lipolysis, including Tlr2, Ccr5, Ccl9, Itgb2, Lipe, Pnpla2, Cdo1, Ces1d, Echs1, and Acad11, were changed by TZP treatment. Conclusion TZP effectively alleviates obesity, impaired glucose and lipid metabolism, and insulin resistance. The effect of TZP might be associated with the regulation of gene expression in dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Cuiting Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tian An
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Cong Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Zhiyao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Kompoura V, Karapantzou I, Mitropoulou G, Parisis NA, Gkalpinos VK, Anagnostou VA, Tsiailanis AD, Vasdekis EP, Koutsaliaris IK, Tsouka AN, Karapetsi L, Madesis P, Letsiou S, Florou D, Koukkou AI, Barbouti A, Tselepis AD, Kourkoutas Y, Tzakos AG. Exploiting the beneficial effects of Salvia officinalis L. extracts in human health and assessing their activity as potent functional regulators of food microbiota. Food Chem 2024; 441:138175. [PMID: 38194793 DOI: 10.1016/j.foodchem.2023.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.
Collapse
Affiliation(s)
- Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Karapantzou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos A Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios K Gkalpinos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki A Anagnostou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Antonis D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioannis K Koutsaliaris
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Aikaterini N Tsouka
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Stavroula Letsiou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Florou
- Department of Forensic Medicine & Toxicology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna-Irini Koukkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; University Research Center of Ioannina, Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
7
|
Wang Y, Chang J, Qiao S, Yang Y, Yun C, Li Y, Wang F. Salvianolic acid B attenuates diabetic nephropathy through alleviating ADORA2B, NALP3 in flammasome, and NFκB activity. Can J Physiol Pharmacol 2024; 102:318-330. [PMID: 38070193 DOI: 10.1139/cjpp-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy is one of the microvascular complications of diabetes. This study is aimed at investigating the role and mechanisms of salvianolic acid B (Sal B) in diabetic nephropathy. High glucose (HG)-induced human renal tubular epithelial HK-2 cells were treated with Sal B, BAY-60-6583 (agonist of adenosine 2B receptor), or PSB-603 (antagonist of adenosine 2B receptor) for 24 h. Adenosine A2b receptor (ADORA2B), NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NALP3), and nuclear factor Kappa B (NFκB) expressions, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels were examined. Following 6 weeks of Sal B treatment, db/db mice blood and kidney tissue were harvested for biochemical detection with hematoxylin-eosin (H&E), Masson's, periodic acid schiff (PAS), and Sirius red staining and detection of ADORA2B, NALP3, NFκB, interleukin 1β (IL-1β), and toll-like receptor 4 (TLR4) activity. NFκB, NALP3, and ADORA2B were found to be downregulated in Sal B treated HK-2 cells exposed to high glucose (HG), accompanied by elevated levels of MMPs and reduced intracellular ROS production. Sal B-treated diabetic mice had the improvement in body weight, water intake, hyperglycemia, hyperlipidemia, and liver and kidney function. Altogether, Sal B attenuates HG-induced kidney tubule cell injury and diabetic nephropathy in diabetic mice, providing clues to other novel mechanisms by which Sal B is beneficial in diabetic nephropathy.
Collapse
Affiliation(s)
- Ying Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Jiang Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Shubin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Department of Pulmonary and Critical Care Medicine, Beijing 100071, China
| | - Ying Yang
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Chuan Yun
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Yongyan Li
- Department of Nephrology, Hainan Medical University, Haikou 570102, Hainan, China
| | - Fa Wang
- Department of Anesthesiology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
8
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Jiangtang Decoction Ameliorates Diabetic Kidney Disease Through the Modulation of the Gut Microbiota. Diabetes Metab Syndr Obes 2023; 16:3707-3725. [PMID: 38029001 PMCID: PMC10674671 DOI: 10.2147/dmso.s441457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to elucidate the impact of Jiangtang decoction (JTD) on diabetic kidney disease (DKD) and its association with alterations in the gut microbiota. Methods Using a diabetic mouse model (KK-Ay mice), daily administration of JTD for eight weeks was undertaken. Weekly measurements of body weight and blood glucose were performed, while kidney function, uremic toxins, inflammation factors, and fecal microbiota composition were assessed upon sacrifice. Ultra-structural analysis of kidney tissue was conducted to observe the pathological changes. Results The study findings demonstrated that JTD improve metabolism, kidney function, uremic toxins and inflammation, while also exerting a modulatory effect on the gut microbiota. Specifically, the genera Rikenella, Lachnoclostridium, and unclassified_c_Bacilli exhibited significantly increased abundance following JTD treatment, accompanied by reduced abundance of norank_f_Lachnospiraceae compared to the model group. Importantly, Rikenella and unclassified_c_Bacilli demonstrated negative correlations with urine protein levels. Lachnoclostridium and norank_f_Lachnospiraceae were positively associated with creatinine (Cr), indoxyl sulfate (IS) and interleukin (IL)-6. Moreover, norank_f_Lachnospiraceae exhibited positive associations with various indicators of DKD severity, including weight, blood glucose, urea nitrogen (UN), kidney injury molecule-1 (KIM-1) levels, trimethylamine-N-oxide (TMAO), p-cresyl sulfate (pCS), nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) and IL-17A production. Conclusion These findings suggested that JTD possess the ability to modulate the abundance of Rikenella, Lachnoclostridium, unclassified_c_Bacilli and norank_f_Lachnospiraceae within the gut microbiota. This modulation, in turn, influenced metabolic processes, kidney function, uremic toxin accumulation, and inflammation, ultimately contributing to the amelioration of DKD.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
10
|
Zhao Y, Shao C, Zhou H, Yu L, Bao Y, Mao Q, Yang J, Wan H. Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155002. [PMID: 37572566 DOI: 10.1016/j.phymed.2023.155002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs). METHODS In vivo studies, LDLR-/- mice were fed a high-fat diet (HFD) for 14 weeks to establish an AS model to evaluate the protective effect of Sal B on the development of AS. Total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels were determined in the blood serum. En face and cross section lipid deposits were measured and quantified with Oil Red O staining. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to quantify atherosclerotic plaque size and collagen fiber content in aortic root sections. Reactive oxygen species (ROS) were detected in aortic root using dihydroethylenediamine (DHE) staining. Apoptosis rate was determined by TdT-mediated dUTP nick end labeling (TUNEL) staining. Immunofluorescence (IF) staining was used to detect the expression of the nuclear factor kappa-B (NF-κB) p65 and NOD-like receptor family pyrin domain containing 3 (NLRP3). To further investigate the protective effect of Sal B, we used TNF-α induced HUVECs inflammation model. We examined cell viability, lactate dehydrogenase (LDH) content, and ROS production. The transcription of NF-κB was evaluated by immunofluorescence. The mRNA levels of NLRP3, caspase-1, and IL-1β were detected by RT-PCR. Pyroptosis related proteins were detected by Western blot. RESULTS The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. IN VIVO STUDIES we were able to show that the serum lipids TC, TG and LDL-C were increased in the model group and that the treatment with Sal B reduced the levels of serum lipids. Histological staining showed that the LDLR-/- mice had a large amount of foam cell deposition accompanied by inflammatory cell infiltration and the formation of atherosclerotic plaques in theMOD group. The pathological abnormalities were significantly improved by Sal B treatment. ROS release and apoptosis were significantly increased after HFD in aortic root, which was attenuated by Sal B. IF results showed that the expression of NF-κB p65 and NLRP3 was significantly increased in the MOD group and significantly decreased in the Sal B group, suggesting that Sal B may act through the NF-κB/NLRP3 pathway. And in vitro studies: inflammatory damage of HUEVCs was induced by TNF-α, and Sal B treatmented significantly increased cell viability and reduced LDH release. It was also found that Sal B inhibited ROS level increase after TNF-α-induced HUEVCs. Activation of NF-κB p65 by TNF-α stimulation, NF-κB p65 is transferred to the nucleus. Sal B treatment could reverse this effect. RT-PCR and Western blot showed that Sal B affected NF-κB transcription and NLRP3 inflammasome activation and could significantly inhibit TNF-α-induced NLRP3 inflammasome activation. These results suggest that Sal B may participate in antiatherosclerotic and inflammatory responses through the NF-κB/NLRP3 pathway. CONCLUSIONS This study shows that Sal B ameliorates the development of AS lesions in HFD-induced LDLR-/- mice. Furthermore, under TNF-α conditions, Sal B reduced ROS release and reversed nuclear translocation of NF-κB, and inhibited atherosclerosis and inflammation by modulating the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Yali Zhao
- College of Life Science Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chongyu Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Huifen Zhou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Li Yu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Yida Bao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Qianping Mao
- College of Life Science Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China.
| | - Haitong Wan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China.
| |
Collapse
|
11
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
12
|
He G, Chen G, Liu W, Ye D, Liu X, Liang X, Song J. Salvianolic Acid B: A Review of Pharmacological Effects, Safety, Combination Therapy, New Dosage Forms, and Novel Drug Delivery Routes. Pharmaceutics 2023; 15:2235. [PMID: 37765204 PMCID: PMC10538146 DOI: 10.3390/pharmaceutics15092235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Salvianolic acid B is extracted from the roots and rhizomes of Danshen (Salvia miltiorrhiza Bge., family Labiatae). It is a water-soluble, weakly acidic drug that has demonstrated antitumor and anti-inflammatory effects on various organs and tissues such as the lung, heart, kidney, intestine, bone, liver, and skin and protective effects in diseases such as depression and spinal cord injury. The mechanisms underlying the protective effects of salvianolic acid B are mainly related to its anti-inflammatory, antioxidant, anti- or pro-apoptotic, anti- or pro-autophagy, anti-fibrotic, and metabolism-regulating functions. Salvianolic acid B can regulate various signaling pathways, cells, and molecules to achieve maximum therapeutic effects. This review summarizes the safety profile, combination therapy potential, and new dosage forms and delivery routes of salvianolic acid B. Although significant research progress has been made, more in-depth pharmacological studies are warranted to identify the mechanism of action, related signaling pathways, more suitable combination drugs, more effective dosage forms, and novel routes of administration of salvianolic acid B.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Guangfeng Chen
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Jing Song
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd., Dezhou 251200, China
| |
Collapse
|
13
|
Huang Y, Zhang Y, Wu Y, Xiang Q, Yu R. An Integrative Pharmacology-Based Strategy to Uncover the Mechanism of Zuogui Jiangtang Shuxin Formula in Diabetic Cardiomyopathy. Drug Des Devel Ther 2023; 17:237-260. [PMID: 36726736 PMCID: PMC9885885 DOI: 10.2147/dddt.s390883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose This study aimed to explore the mechanism of Zuogui Jiangtang Shuxin formula (ZGJTSXF) in the treatment of diabetic cardiomyopathy (DCM) by an integrative strategy combining serum pharmacochemistry, network pharmacology analysis, and experimental validation. Methods An Ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-Q-Exactive-Orbitrap-MS) method was constructed to identify compounds in rat serum after oral administration of ZGJTSXF. A component-target network between the targets of ZGJTSXF ingredients and DCM was established using Cytoscape. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to deduce ZGJTSXF-associated targets and pathways. The DCM model mice were treated with ZGJTSXF, and the predicted important signaling pathways were verified using quantitative PCR and Western blot. Results We identified 78 compounds in serum of medicated rats, which mainly included flavonoids, small peptides, nucleosides, organic acids, phenylpropanoids, alkaloids, phenanthrenequinones, iridoids, phenols, and saponins. Network pharmacology analysis revealed that ZGJTSXF may regulate targets including ALB, TNF, AKT1, GAPDH, VEGFA, EGFR, SRC, CASP3, MAPK3, JUN, and PI3K/AKT signaling pathway in the treatment of DCM. ZGJTSXF administration improved blood sugar levels, heart function, and cardiac morphological changes in DCM mice. Notably, ZGJTSXF inhibited cardiomyocytes apoptosis, which was associated with restored PI3K/Akt signaling and upregulated Bcl-2 and Bcl-xL proteins expression. Conclusion Our preliminary results proposed the material basis and possible mechanisms of ZGJTSXF in treating DCM, which is related to the activation of the PI3K/AKT signaling pathway and apoptosis inhibition. These findings shed new light in developing ZGJTSXF-based therapeutics in treating DCM.
Collapse
Affiliation(s)
- Yalan Huang
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410021, People’s Republic of China
| | - Yanling Zhang
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,General Hospital of Ningxia Medical University, Ningxia, 750003, People’s Republic of China
| | - Yongjun Wu
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qin Xiang
- Science and Technology Department, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,Qin Xiang, Science and Technology Department, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China, Email
| | - Rong Yu
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,Correspondence: Rong Yu, Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China, Email
| |
Collapse
|
14
|
Li A, Ding J, Shen T, Liang Y, Wei F, Wu Y, Iqbal M, Kulyar MFEA, Li K, Wei K. Radix paeoniae alba polysaccharide attenuates lipopolysaccharide-induced intestinal injury by regulating gut microbiota. Front Microbiol 2023; 13:1064657. [PMID: 36713189 PMCID: PMC9878331 DOI: 10.3389/fmicb.2022.1064657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence indicated that oxidative stress is closely related to inflammation and the progression of multiple chronic diseases, which seriously threaten the host health. Currently, multiple plant-derived polysaccharides have been demonstrated to ameliorate the negative effects of oxidative stress on the host, but the potential protective effect of radix paeoniae alba polysaccharide (RPAP) on host have not been well characterized. Here, we investigated whether different doses of RPAP administration could alleviate lipopolysaccharide (LPS)-induced intestinal injury and gut microbial dysbiosis in mice. Results indicated that RPAP administration effectively alleviated LPS-induced intestinal damage in dose dependent. Additionally, amplicon sequencing showed that RPAP administration reversed the significant decrease in gut microbial diversity caused by LPS exposure and restored the alpha-diversity indices to normal levels. Microbial taxonomic investigation also indicated that LPS exposure resulted in significant changes in the gut microbial composition, characterized by a decrease in the abundances of beneficial bacteria (Lactobacillus, Alistipes, Bacillus, Rikenellaceae_RC9_gut_group, etc.) and an increase in the contents of pathogenic bacteria (Klebsiella, Helicobacter, Enterococcus, etc.). However, RPAP administration, especially in high doses, could improve the composition of the gut microbiota by altering the abundance of some bacteria. Taken together, this study demonstrated that RPAP administration could ameliorate LPS-induced intestinal injury by regulating gut microbiota. Meanwhile, this also provides the basis for the popularization and application of RPAP and alleviating oxidative stress from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxue Ding
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Shen
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Kun Li,
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,*Correspondence: Kunhua Wei,
| |
Collapse
|
15
|
Zhang P, Wang T, Zhu X, Feng L, Wang J, Li Y, Zhang X, Cui T, Li M. Jiedu Yizhi Formula Improves Cognitive Function by Regulating the Gut Dysbiosis and TLR4/NF-κB Signaling Pathway. Neuropsychiatr Dis Treat 2023; 19:49-62. [PMID: 36627886 PMCID: PMC9826640 DOI: 10.2147/ndt.s393773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The objective of this study was to explore the neuroprotective mechanism of JDYZF in treating AD from the perspective of inflammation and intestinal microflora. METHODS A total of 24 APP/PS1 mice were randomly divided into four groups: model (n = 6), JDYZF low-dose (n = 6), JDYZF high-dose (n = 6), and positive drug (n = 6), six C57 mice were used as the control group. The body weights and diets of all mice were examined daily. After 8 weeks of administration, the learning and memory of mice were evaluated by the Morris water maze test. The histopathological changes of hippocampus, liver and kidney in mice were observed by HE staining after being euthanized. The expression of p-tau in hippocampus tissue was detected by immunohistochemistry. After that, 16S rDNA sequencing was used to investigate the relationship between JDYZF and intestinal microbiota. Finally, a comparison of TLR4, p65, p-p65, iκB, p-iκB, and IL-1β protein expression in the hippocampus tissue of mice in each group was measured by Western blot. RESULTS The results showed that APP/PS1 mice taking JDYZF orally were generally in good condition. Compared with the control group, JDYZF significantly improved learning and memory ability in ethology. Histology showed that JDYZF improved the hippocampal structure of mice and inhibited the deposition of p-tau. JDYZF treatment could regulate the gut microbiota of APP/PS1 mice by increasing the richness of Lachnospiraceae, Ruminococcaceae, and Actinobacteria and reducing that of Alistipes and Muribaculaceae. It also significantly inhibited the activation of the TLR4/NF-κB signaling pathway in the brain. In addition, no obvious toxic reactions were found in the liver and kidney of APP/PS1 mice after taking JDYZF for 8 weeks. CONCLUSION The findings revealed that JDYZF improved cognitive ability and alleviated the TLR4/NF-κB signaling pathway in APP/PS1 mice, and the modulating the gut microbiota presented here may help illuminate its activation mechanism.
Collapse
Affiliation(s)
- Pengqi Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Tianye Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Xiaoting Zhu
- Neurology Department, Third Affiliated Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Lina Feng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Jiale Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Yunqiang Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Xinyue Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Tingting Cui
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Mingquan Li
- Neurology Department, Third Affiliated Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
- Correspondence: Mingquan Li, Neurology Department, Third Affiliated Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130033, People’s Republic of China, Tel +86-15543120222, Email
| |
Collapse
|
16
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|
17
|
Adzuki Bean MY59 Extract Reduces Insulin Resistance and Hepatic Steatosis in High-Fat-Fed Mice via the Downregulation of Lipocalin-2. Nutrients 2022; 14:nu14235049. [PMID: 36501079 PMCID: PMC9739659 DOI: 10.3390/nu14235049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Adzuki bean is well known as a potential functional food that improves metabolic complications from obesity and diabetes. Lipocalin-2 (LCN2) has been implicated to have an important role in obesity and diabetes. However, the protective roles of adzuki bean MY59 extract (ABE) on insulin resistance and hepatic steatosis are not fully understood. In the present study, we investigated the effects of ABE on LCN2 expression in high-fat diet (HFD)-fed mice. ABE reduced HFD-induced fat mass and improved insulin resistance. In addition to hepatic steatosis, HFD-fed mice showed many apoptotic cells and neutrophils in the epididymal fat pads. However, these findings were significantly reduced by ABE supplementation. In particular, we found that increased LCN2 proteins from serum, epididymal fat pads, and liver in HFD-fed mice are significantly reduced by ABE. Furthermore, ABE reduced increased heme oxygenase-1 and superoxide dismutase-1 expressions in adipose tissue and liver in HFD-fed mice. We found that hepatic nuclear factor-kappa B (NF-κB) p65 expression in HFD-fed mice was also reduced by ABE. Thus, these findings indicate that ABE feeding could improve insulin resistance and hepatic steatosis by decreasing LCN2-mediated inflammation and oxidative stress in HFD-fed mice.
Collapse
|
18
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Wang X, Sun X, Abulizi A, Xu J, He Y, Chen Q, Yan R. Effects of salvianolic acid A on intestinal microbiota and lipid metabolism disorders in Zucker diabetic fatty rats. Diabetol Metab Syndr 2022; 14:135. [PMID: 36127704 PMCID: PMC9490915 DOI: 10.1186/s13098-022-00868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Salvianolic acid A (SalA) is the main water-soluble component isolated from Salvia miltiorrhiza. This study explored the influences of SalA on intestinal microbiota composition and lipid metabolism in Zucker diabetic fatty (ZDF) rats. The 6-week-old male ZDF rats were treated with distilled water (N = 10) and low dose (SalA 0.5 mg/kg/d, N = 10), medium dose (SalA 1 mg/kg/d, N = 10), and high dose (SalA 2 mg/kg/d, N = 10) of SalA, with the male Zucker lean normoglycemic rats of the same week age as controls (given distilled water, N = 10). The blood glucose, body weight, and food intake of rats were examined. After 7 and 8 weeks of continuous administration, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed, respectively. Serum fasting insulin (FINS), total cholesterol (TC), triglyceride (TG), and free fatty acid (FFA) were determined. Liver tissues were stained using hematoxylin-eosin (HE) and oil red O staining. Fecal samples were analyzed by 16S rRNA gene sequencing. Small intestinal tissues were stained using HE and immunohistochemistry. The tight junction proteins (ZO-1/Occludin/Claudin-1) and serum levels of LPS/TNF-α/IL-6 were evaluated. SalA reduced insulin resistance, liver injury, serum FFA, liver TC and TG levels in ZDF rats, and improved lipid metabolism. After SalA treatment, intestinal microbiota richness and diversity of ZDF rats were promoted. SalA retained the homeostasis of intestinal core microbiota. SalA reduced intestinal epithelial barrier damage, LPS, and inflammatory cytokines in ZDF rats. Overall, SalA can sustain intestinal microbiota balance and improve the lipid metabolism of ZDF rats.
Collapse
Affiliation(s)
- Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Abulikemu Abulizi
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Jinyao Xu
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Yun He
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Ruicheng Yan
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China.
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China.
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China.
| |
Collapse
|
20
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
(20R)-Panaxadiol as a Natural Active Component with Anti-Obesity Effects on ob/ob Mice via Modulating the Gut Microbiota. Molecules 2022; 27:molecules27082502. [PMID: 35458705 PMCID: PMC9032863 DOI: 10.3390/molecules27082502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is an important cause of diseases such as type 2 diabetes, non-alcoholic fatty liver and atherosclerosis. The use of ingredients extracted from traditional Chinese medicine for weight loss is now receiving more and more attention. Ginseng has been recorded since ancient times for the treatment of diabetes. The (20R)-Panaxadiol (PD) belongs to the ginseng diol type compounds, which are moderately bioavailable and may remain in the intestinal tract for a longer period of time. This study investigated the potential positive effect of PD in ob/ob mice and evaluated its effect against obesity. The ob/ob mice were administered PD for ten weeks. Our study showed that PD could improve obesity, glucose tolerance disorder, as well as gut dysbiosis. Panaxadiol decreased ob/ob mice’s Firmicutes/Bacteroidetes (F/B). Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that PD changed the composition of the gut microbiota in ob/ob mice and modulated specific bacteria such as lactobacillus, prevotellace and so on. Moreover, PD improved the intestinal wall integrity. In conclusion, our results suggest that (20R)-Panaxadiol, as an active ingredient of the traditional Chinese medicinal herb ginseng, may improve obesity to some extent via improving gut microbiota
Collapse
|
22
|
Xu Y, Geng L, Zhang Y, Jones JA, Zhang M, Chen Y, Tan R, Koffas MAG, Wang Z, Zhao S. De novo Biosynthesis of Salvianolic Acid B in Saccharomyces cerevisiae Engineered with the Rosmarinic Acid Biosynthetic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2290-2302. [PMID: 35157428 DOI: 10.1021/acs.jafc.1c06329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salvianolic acid B (SAB), also named lithospermic acid B, belongs to a class of water-soluble phenolic acids, originating from plants such as Salvia miltiorrhiza. SAB exhibits a variety of biological activities and has been clinically used to treat cardio- and cerebrovascular diseases and also has great potential as a health care product and medicine for other disorders. However, its biosynthetic pathway has not been completely elucidated. Here, we report the de novo biosynthesis of SAB in Saccharomyces cerevisiae engineered with the heterologous rosmarinic acid (RA) biosynthetic pathway. The created pathway contains seven genes divided into three modules on separate plasmids, pRS424-FjTAL-Sm4CL2, pRS425-SmTAT-SmHPPR or pRS425-SmTAT-CbHPPR, and pRS426-SmRAS-CbCYP-CbCPR. These three modules were cotransformed into S. cerevisiae, resulting in the recombinant strains YW-44 and YW-45. Incubation of the recombinant strains in a basic medium without supplementing any substrates yielded 34 and 30 μg/L of SAB. The findings in this study indicate that the created heterologous RA pathway cooperates with the native metabolism of S. cerevisiae to enable the de novo biosynthesis of SAB. This provides a novel insight into a biosynthesis mechanism of SAB and also lays the foundation for the production of SAB using microbial cell factories.
Collapse
Affiliation(s)
- Yingpeng Xu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Geng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - J Andrew Jones
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Meihong Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institutes, Troy, New York 12180, United States
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Xiang J, Zhang C, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Wang G, Zhang Y. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered 2022; 13:3486-3502. [PMID: 35068334 PMCID: PMC8974099 DOI: 10.1080/21655979.2022.2026552] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jie Xiang
- Monitoring Department, Guizhou Center for Disease Control and Prevention, Institute of Chronic Disease Prevention and Treatment, Guiyang, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Tietao Di
- Department of Trauma Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wei Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lianggang Wei
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xueli Wu
- Central Laboratory, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Gengxin Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yun Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
24
|
Zhang FX, Cui SS, Yuan YLL, Li C, Li RM. Dissection of the potential anti-diabetes mechanism of salvianolic acid B by metabolite profiling and network pharmacology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9205. [PMID: 34636119 DOI: 10.1002/rcm.9205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Salvianolic acid B (Sal B), the Q-marker in Salvia miltiorrhiza, was proved to present an obvious anti-diabetes effect when treated as a food intake. Until now, the metabolism feature, tissue distribution and anti-diabetes mechanism of Sal B have not been fully elucidated. METHODS The metabolites of Sal B in rats were profiled using ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry. The potential anti-diabetes mechanism of Sal B was predicted by network pharmacology. RESULTS A total of 31 metabolites were characterized in rats after ingestion of Sal B at a dosage of 40 mg/kg, including 1 in plasma, 19 in urine, 31 in feces, 0 in heart, 0 in liver, 0 in spleen, 1 in lung, 1 in kidney and 0 in brain. Among them, 18 metabolites were reported for the first time. Phase I reactions of hydrolysis, hydrogenation, dehydroxylation, hydroxylation, decarboxylation and isomerization, and phase II reactions of methylation were found in Sal B. Notably, decarboxylation and dehydroxylation were revealed in Sal B for the first time. The pharmacology network results showed that Sal B and its metabolites could regulate ALB, PLG, ACE, CASP3, MMP9, MMP2, MTOR, etc. The above targets were involved in insulin signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, TNF signaling pathway, etc. CONCLUSIONS: The metabolism feature of Sal B in vivo was systematically revealed, and its anti-diabetes mechanism for further pharmacological validations was predicted based on metabolite profiling and network pharmacology for the first time.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuang-Shuang Cui
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Lin-Lan Yuan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui-Man Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Liu P, Zhou W, Xu W, Peng Y, Yan Y, Lu L, Mi J, Zeng X, Cao Y. The Main Anthocyanin Monomer from Lycium ruthenicum Murray Fruit Mediates Obesity via Modulating the Gut Microbiota and Improving the Intestinal Barrier. Foods 2021; 11:foods11010098. [PMID: 35010223 PMCID: PMC8750395 DOI: 10.3390/foods11010098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins have been shown to exert certain antiobesity properties, but the specific relationship between anthocyanin-induced beneficial effects and the gut microbiota remains unclear. Petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) (P3G) is the main anthocyanin monomer from the fruit of Lycium ruthenicum Murray. Therefore, in this study, we investigated the antiobesity and remodeling effects of P3G on gut microbiota through a high-fat diet (HFD)-induced obesity mouse model and a fecal microbiota transplantation experiment. P3G was found to reduce body weight gain, fat accumulation, and liver steatosis in HFD-induced obese mice. Moreover, supplementation with P3G alleviated the HFD-induced imbalance in gut microbiota composition, and transferring the P3G-regulated gut microbiota to recipient mice provided comparable protection against obesity. This is the first time evidence is provided that P3G has an antiobesity effect by changing the intestinal microbiota. Our present data highlight a link between P3G intervention and enhancement in gut barrier integrity. This may be a promising option for obesity prevention.
Collapse
Affiliation(s)
- Peiyun Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
- Correspondence: (X.Z.); (Y.C.); Tel.: +86-25-84396791 (X.Z.); +86-951-6886783 (Y.C.)
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
- Correspondence: (X.Z.); (Y.C.); Tel.: +86-25-84396791 (X.Z.); +86-951-6886783 (Y.C.)
| |
Collapse
|
26
|
Zhong H, Wang J, Abdullah, Hafeez MA, Guan R, Feng F. Lactobacillus plantarum ZJUFB2 Prevents High Fat Diet-Induced Insulin Resistance in Association With Modulation of the Gut Microbiota. Front Nutr 2021; 8:754222. [PMID: 34805244 PMCID: PMC8604096 DOI: 10.3389/fnut.2021.754222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus plantarum ZJUFB2 is a novel probiotic isolate derived from Chinese traditional sourdough that possesses promising probiotics properties. This study aimed to investigate the effects of L. plantarum ZJUFB2 (B2) on insulin sensitivity using mice fed on a high-fat diet (HFD) as well as to explore the involved mechanisms. Purposely, male C57BL/6 mice continuously received an intervention of B2 (~109 CFU/day) for 16 weeks. The results showed that B2 treatment remarkably ameliorated insulin resistance and hyperglycemia in HFD-fed mice. The B2 intervention significantly decreased the hepatic lipid accumulation, serum low-density lipoproteins cholesterol, and lipopolysaccharides, and regulated the bile acids levels as well as liver mRNA expression involved in lipid metabolism. Moreover, the B2 intervention significantly changed the gut microbiota, specifically, showed a lower abundance of obesity-related and inflammation-associated microbes, e.g., Ruminococcus and Mogibacteriaceae. Furthermore, it exhibited a higher abundance of short-chain fatty acids and bile salt hydrolas-producing bacteria, such as Bifidobacterium and F16 compared with the HFD group. The findings of this study suggested that B2 is a novel probiotic, effective in preventing insulin resistance by improving the gut microbiota and bile acids.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Muhammad Adnan Hafeez
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
GuanXinNing Tablet Attenuates Alzheimer's Disease via Improving Gut Microbiota, Host Metabolites, and Neuronal Apoptosis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9253281. [PMID: 34745305 PMCID: PMC8568547 DOI: 10.1155/2021/9253281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Based on accumulating evidence, Alzheimer's disease (AD) is related to hypercholesterolemia, gut microbiota, and host metabolites. GuanXinNing Tablet (GXN) is an oral compound preparation composed of two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., both of which exert neuroprotective effects. Nevertheless, the effect of GXN on AD is unknown. In the present study, we investigated whether GXN alters cholesterol, amyloid-beta (Aβ), gut microbiota, serum metabolites, oxidative stress, neuronal metabolism activities, and apoptosis in an AD model rabbit fed a 2% cholesterol diet. Our results suggested that the GXN treatment significantly reduced cholesterol levels and Aβ deposition and improved memory and behaviors in AD rabbits. The 16S rRNA analysis showed that GXN ameliorated the changes in the gut microbiota, decreased the Firmicutes/Bacteroidetes ratio, and improved the abundances of Akkermansia and dgA-11_gut_group. 1H-NMR metabolomics found that GXN regulated 12 different serum metabolites, such as low-density lipoprotein (LDL), trimethylamine N-oxide (TMAO), and glutamate (Glu). In addition, the 1H-MRS examination showed that GXN remarkably increased N-acetyl aspartate (NAA) and Glu levels while reducing myo-inositol (mI) and choline (Cho) levels in AD rabbits, consequently enhancing neuronal metabolism activities. Furthermore, GXN significantly inhibited oxidative stress and neuronal apoptosis. Taken together, these results indicate that GXN attenuates AD via improving gut microbiota, host metabolites, and neuronal apoptosis.
Collapse
|
28
|
Cheng TY, Li JX, Chen JY, Chen PY, Ma LR, Zhang GL, Yan PY. Gut microbiota: a potential target for traditional Chinese medicine intervention in coronary heart disease. Chin Med 2021; 16:108. [PMID: 34686199 PMCID: PMC8540100 DOI: 10.1186/s13020-021-00516-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) is a common ischaemic heart disease whose pathological mechanism has not been fully elucidated. Single target drugs, such as antiplatelet aggregation, coronary artery dilation and lipid-lowering medicines, can relieve some symptoms clinically but cannot effectively prevent and treat CHD. Accumulating evidence has revealed that alterations in GM composition, diversity, and richness are associated with the risk of CHD. The metabolites of the gut microbiota (GM), including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs), affect human physiology by activating numerous signalling pathways. Due to the advantage of multiple components and multiple targets, traditional Chinese medicine (TCM) can intervene in CHD by regulating the composition of the GM, reducing TMAO, increasing SCFAs and other CHD interventions. We have searched PubMed, Web of science, Google Scholar Science Direct, and China National Knowledge Infrastructure (CNKI), with the use of the keywords "gut microbiota, gut flora, traditional Chinese medicine, herbal medicine, coronary heart disease". This review investigated the relationship between GM and CHD, as well as the intervention of TCM in CHD and GM, and aims to provide valuable insights for the treatments of CHD by TCM.
Collapse
Affiliation(s)
- Tian-Yi Cheng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jing-Yi Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Pei-Ying Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Lin-Rui Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Gui-Lin Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
29
|
Zhao Q, Hou D, Fu Y, Xue Y, Guan X, Shen Q. Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice. Nutrients 2021; 13:nu13093240. [PMID: 34579118 PMCID: PMC8466346 DOI: 10.3390/nu13093240] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Adzuki bean consumption has many health benefits, but its effects on obesity and regulating gut microbiota imbalances induced by a high-fat diet (HFD) have not been thoroughly studied. Mice were fed a low-fat diet, a HFD, and a HFD supplemented with 15% adzuki bean (HFD-AB) for 12 weeks. Adzuki bean supplementation significantly reduced obesity, lipid accumulation, and serum lipid and lipopolysaccharide (LPS) levels induced by HFD. It also mitigated liver function damage and hepatic steatosis. In particular, adzuki bean supplementation improved glucose homeostasis by increasing insulin sensitivity. In addition, it significantly reversed HFD-induced gut microbiota imbalances. Adzuki bean significantly reduced the ratio of Firmicutes/Bacteroidetes (F/B); enriched the occurrence of Bifidobacterium, Prevotellaceae, Ruminococcus_1, norank_f_Muribaculaceae, Alloprevotella, Muribaculum, Turicibacter, Lachnospiraceae_NK4A136_group, and Lachnoclostridium; and returned HFD-dependent taxa (Desulfovibrionaceae, Bilophila, Ruminiclostridium_9, Blautia, and Ruminiclostridium) back to normal status. PICRUSt2 analysis showed that the changes in gut microbiota induced by adzuki bean supplementation may be associated with the metabolism of carbohydrates, lipids, sulfur, and cysteine and methionine; and LPS biosynthesis; and valine, leucine, and isoleucine degradation.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6273-7524
| |
Collapse
|
30
|
Su Z, Guo Y, Huang X, Feng B, Tang L, Zheng G, Zhu Y. Phytochemicals: Targeting Mitophagy to Treat Metabolic Disorders. Front Cell Dev Biol 2021; 9:686820. [PMID: 34414181 PMCID: PMC8369426 DOI: 10.3389/fcell.2021.686820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic disorders include metabolic syndrome, obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular diseases. Due to unhealthy lifestyles such as high-calorie diet, sedentary and physical inactivity, the prevalence of metabolic disorders poses a huge challenge to global human health, which is the leading cause of global human death. Mitochondrion is the major site of adenosine triphosphate synthesis, fatty acid β-oxidation and ROS production. Accumulating evidence suggests that mitochondrial dysfunction-related oxidative stress and inflammation is involved in the development of metabolic disorders. Mitophagy, a catabolic process, selectively degrades damaged or superfluous mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial function. It is considered to be one of the major mechanisms responsible for mitochondrial quality control. Growing evidence shows that mitophagy can prevent and treat metabolic disorders through suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. In the past decade, in order to expand the range of pharmaceutical options, more and more phytochemicals have been proven to have therapeutic effects on metabolic disorders. Many of these phytochemicals have been proved to activate mitophagy to ameliorate metabolic disorders. Given the ongoing epidemic of metabolic disorders, it is of great significance to explore the contribution and underlying mechanisms of mitophagy in metabolic disorders, and to understand the effects and molecular mechanisms of phytochemicals on the treatment of metabolic disorders. Here, we investigate the mechanism of mitochondrial dysfunction in metabolic disorders and discuss the potential of targeting mitophagy with phytochemicals for the treatment of metabolic disorders, with a view to providing a direction for finding phytochemicals that target mitophagy to prevent or treat metabolic disorders.
Collapse
Affiliation(s)
- Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanru Guo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiufang Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Wang J, Luo Y, Li P, Zhang F, Liu N. Effect of Salvia miltiorrhiza aerial parts on growth performance, nutrient digestibility, and digestive enzymes in rabbits. Anim Biosci 2021; 34:1981-1986. [PMID: 34237927 PMCID: PMC8563232 DOI: 10.5713/ab.21.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 12/03/2022] Open
Abstract
Objective This study aimed to investigate the effect of Salvia miltiorrhiza (S.m.) aerial parts as an alternative ingredient on growth performance, nutrient digestibility, and digestive enzymes in growing rabbits. Methods Treatments included five tested diets: a control (basal diet), antibiotic (basal diet +enramycin at 5 mg/kg), and S.m. aerial parts powder added at 3.0%, 6.0%, and 9.0% of feed using 300 growing rabbits. Results The diets with S.m. aerial parts addition at 9.0% decreased (p<0.05) feed/gain compared to the control, but there were no differences in feed intake and body weight gain. In contrast with the control, the addition of antibiotic increased (p<0.05) digestibility of dry matter, crude protein, energy, fiber, and ash. The herb addition did not cause differences in the digestibility of most nutrients compared to the antibiotic, but fiber digestibility of the herb at 6.0% and 9.0% was lower (p<0.05) than that of the antibiotic. Moreover, the antibiotic and the herb also similarly increased (p<0.05) the activities of duodenal α-amylase, maltase, lipase, and trypsin, compared to the control, and the herb at 6.0% and 9.0% showed a greater (p<0.05) activity of elastase than the dose 3.0%. Conclusion The obtained data indicate that S.m. aerial parts can be a potential forage in rabbit’s diet at 9.0% with a beneficial regulation on nutrition and digestion.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Animal Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Yiran Luo
- Department of Animal Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Pei Li
- Department of Animal Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Feike Zhang
- Luoyang Xintai Agro-pastoral Technology Co., Ltd, Luoyang 471400, China
| | - Ning Liu
- Department of Animal Science, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
32
|
Lv B, An T, Wang T, Bao X, Lian J, Wu Y, Hu Y, Zhu J, Zheng C, Hu X, Gao S, Jiang G. Effects of salvianolic acid B on glycometabolism and lipid metabolism in rodents: Meta-analysis. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Danshen (Salvia miltiorrhiza) is a herb which has been widely used in China. Salvianolic acid B (SalB) is an aqueous bioactive component derived from Danshen. Here, we aimed to estimate the effect of SalB on glycometabolism and lipid metabolism in rats and mice. We searched four databases until November 2020. The outcome measures were fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDLc), and low-density lipoprotein cholesterol (LDLc). Twenty-four studies involving 547 animals were included. The meta-analysis showed effects of SalB on decreasing the level of FBG, TC, TG, LDLc, and increasing the level of HDLc compared with the control group. In conclusion, the result showed that SalB may regulate the glycometabolism and lipid metabolism in rats or mice, and may be a potential agent for treating metabolic diseases such as diabetes and hyperlipidemia.
Collapse
Affiliation(s)
- Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Tingye Wang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xueli Bao
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Juan Lian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yanxiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yuanyuan Hu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jiajian Zhu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Chunyan Zheng
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xuehong Hu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
33
|
Salvianolic acid B induces browning in 3T3-L1 white adipocytes via activation of β3-AR and ERK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
34
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
35
|
Cloudy Apple Juice Fermented by Lactobacillus Prevents Obesity via Modulating Gut Microbiota and Protecting Intestinal Tract Health. Nutrients 2021; 13:nu13030971. [PMID: 33802755 PMCID: PMC8002442 DOI: 10.3390/nu13030971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity and hyperglycemia are two serious chronic diseases that are increasing in incidence worldwide. This research aimed to develop a fermented cloudy apple juice with good hyperglycemia intervention activities. Here, cloudy apple juice (CAJ), cloudy apple juice rich in polyphenols (CAJP) and fermented cloudy apple juice rich in polyphenols (FCAJP) were prepared sequentially, and then the effects of the three apple juices on weight, lipid level, gut microbiota composition and intestinal tract health were evaluated for obese mice induced by a high-fat diet. The research findings revealed that the FCAJP showed potential to inhibit the weight gain of mice, reduce fat accumulation, and regulate the blood lipid levels of obese mice by decreasing the ratio of the Firmicutes/Bacteroidotas, improving the Sobs, Ace, and Chao indexes of the gut microbiota and protecting intestinal tract health. In addition, the FCAJP augmented the abundance of Akkermansia and Bacteroides, which were positively related to SCFAs in cecal contents. This study inferred that FCAJP could be developed as a healthy food for preventing obesity and hyperglycemia.
Collapse
|
36
|
Bai Y, Bao X, Mu Q, Fang X, Zhu R, Liu C, Mo F, Zhang D, Jiang G, Li P, Gao S, Zhao D. Ginsenoside Rb1, salvianolic acid B and their combination modulate gut microbiota and improve glucolipid metabolism in high-fat diet induced obese mice. PeerJ 2021; 9:e10598. [PMID: 33604164 PMCID: PMC7866888 DOI: 10.7717/peerj.10598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background To observe the effect of ginsenoside Rb1, salvianolic acid B and their combination on glucolipid metabolism and structural changes of gut microbiota. Methods Eight-week-old C57BL/6J mice were fed 45% high-fat diet to induce obesity. The obese mice were randomly divided into four groups, Con group as model control, ginsenoside Rb1 (Rb1) group, salvianolic acid B (SalB) group and ginsenoside Rb1+ salvianolic acid B (Rb1SalB) group. Mice in Rb1, SalB and Rb1SalB group were treated by gavage with ginsenoside Rb1, salvianolic acid B and the combination of the two ingredients, respectively. While mice in Con group were given the same amount of sterile water. The intervention lasted 8 weeks. Body weight and fasting blood glucose were measured every 2 weeks. Oral glucose tolerance test was conducted on the 4th and 8th week of drug intervention. At the end of the experiment, total cholesterol, triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol and non-esterified fatty acid content as well as glycated hemoglobin were measured and feces were collected for 16S rDNA sequencing. Results Both ginsenoside Rb1 and Rb1SalB combination decreased body weight significantly (P < 0.05). Ginsenoside Rb1, salvianolic acid B and their combination alleviated fasting blood glucose, glycated hemoglobin and blood lipid profiles effectively (P < 0.05, compared with the corresponding indicators in Con group). Oral glucose tolerance test results at the 8th week showed that glucose tolerance was significantly improved in all three treatment groups. Ginsenoside Rb1, salvianolic acid B and their combination reduced the overall diversity of gut microbiota in feces and changed the microbial composition of the obese mice. LDA effect size (LefSe) analysis revealed the key indicator taxa corresponding to the treatment. Conclusion Ginsenoside Rb1, salvianolic acid B and their combination could lower blood glucose and lipid level, and improve glucose tolerance of obese mice. The above effect may be at least partially through modulation of gut microbial composition.
Collapse
Affiliation(s)
- Ying Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Mu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Fang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruyuan Zhu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyue Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fangfang Mo
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sihua Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Zhang YY, Ni ZJ, Elam E, Zhang F, Thakur K, Wang S, Zhang JG, Wei ZJ. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food Funct 2021; 12:4947-4959. [PMID: 34100505 DOI: 10.1039/d1fo00790d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ferroptosis is a novel iron-dependent cell death pathway mainly caused by an abnormal redox state and associated with various diseases including cancer. Recently, much attention has been paid to natural compounds that are involved in its activation and inhibition. This is the first ever study to demonstrate the role of juglone isolated from Carya cathayensis green peel in inducing autophagy and inhibiting endometrial cancer (EC) cell migration. Subsequently, Fe2+ accumulation, lipid peroxidation, GSH depletion, the upregulation of HMOX1, and heme degradation to Fe2+ were reported. Juglone was involved in inducing autophagy and inhibiting cell migration and endoplasmic reticulum stress, which are the new hallmarks of cancer treatment. Collectively, our data indicate that juglone as a functional food ingredient induces the programmed cell death of EC cells by activating oxidative stress and suggest a novel therapeutic approach for the treatment and prevention of EC.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|