1
|
Abdullah, Ahmad N, Xiao J, Tian W, Khan NU, Hussain M, Ahsan HM, Hamed YS, Zhong H, Guan R. Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156352. [PMID: 39740381 DOI: 10.1016/j.phymed.2024.156352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects. PURPOSE This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved. METHOD Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms. RESULTS Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption. CONCLUSION Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.
Collapse
Affiliation(s)
- Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naveed Ahmad
- Multan College of Food & Nutrition Sciences, Multan Medical & Dental College, Multan, Pakistan
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahya Saud Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Abulizi X, Shi MH, Jia YM, Xu L, Shi LL, Pan L. Elaeagnus angustifolia L. fruit alleviates diarrhea via regulating intestinal microbiota and short chain fatty acids. Heliyon 2024; 10:e38646. [PMID: 39435058 PMCID: PMC11492456 DOI: 10.1016/j.heliyon.2024.e38646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Fruits of Elaeagnus angustifolia L. have been used as Uyghur medicine due to the properties of treating spleen and stomach weakness, indigestion, enteritis, diarrhea, lung heat, and cough. However, the anti-diarrhea mechanism was still not clear. This study explored the mechanism of E. angustifolia fruit alleviated diarrhea from the perspective of gut microbiota. Diarrhea model was established with Folium sennae in mice. Then, the levels of diarrhea rate and diarrhea index of mice were evaluated. Hematoxylin eosin (HE) staining was employed to detect pathological sections of colon tissue. 16S rRNA sequencing analysis was researched to confirm the gut microbiota in mice. Diversity and differential analysis were adopted to analyze the intestinal microflora. Furthermore, Gas chromatography-quadrupole time-of-flight tandem mass spectrometry (GC-Q-TOF-MS) was used to detect the concentrations of short chain fatty acids (SCFAs) in intestine. The high-dose group (3.2 g/kg) of E. angustifolia fruit could significantly reduce the diarrhea rate and diarrhea index of mice caused by Folium sennae (p < 0.01). We also found that E. angustifolia fruit enhanced the diversity of gut microbiota while ameliorating diarrhea. Alpha diversity revealed that the microbial composition of E. angustifolia fruit group tended to be more similar to that of the CON group (no significant difference at p < 0.05). E. angustifolia fruit also induced structural changes of gut microbiota in mice. In addition, the concentrations of SCFAs increased after administration of E. angustifolia fruit. This study demonstrated that E. angustifolia fruit could ameliorate diarrhea by regulating the composition and abundance of intestinal microbiota, together with the levels of SCFAs.
Collapse
Affiliation(s)
- Xiatiguli Abulizi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830011, China
| | - Ming-hui Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830011, China
| | - Yue-mei Jia
- The Center of Market Supervision and Evaluation of Xinjiang, Urumqi, 830000, China
| | - Lei Xu
- Xinjiang Medicine Research Institute, Urumqi, 830011, China
| | - Lei-ling Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830011, China
| | - Lan Pan
- College of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, 830017, China
| |
Collapse
|
3
|
Zhong B, Liang W, Zhao Y, Li F, Zhao Z, Gao Y, Yang G, Li S. Combination of Lactiplantibacillus Plantarum ELF051 and Astragalus Polysaccharides Improves Intestinal Barrier Function and Gut Microbiota Profiles in Mice with Antibiotic-Associated Diarrhea. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10368-3. [PMID: 39354215 DOI: 10.1007/s12602-024-10368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
The purpose of this study was to investigate the improvement of the intestinal barrier and gut microbiota in mice with antibiotic-associated diarrhea (AAD) using Lactiplantibacillus plantarum ELF051 combined with Astragalus polysaccharides. The amoxicillin, clindamycin, and streptomycin triple-mixed antibiotic-induced AAD models were administered with L. plantarum ELF051 or Astragalus polysaccharides or L. plantarum ELF051 + Astragalus polysaccharides for 14 days. Our findings revealed that the combination of L. plantarum ELF051 and Astragalus polysaccharides elevated the number of goblet cells and enhanced the proportion of mucous within the colon tissue. Furthermore, the expression of sIgA and IgG were upregulated, while the levels of IL-17A, IL-4, DAO, D-LA, LPS, and TGF-β1 were downregulated. L. plantarum ELF051 combined with Astragalus polysaccharides elevated the expression of tight junction (TJ) proteins, facilitating intestinal mucosal repair via Smad signaling nodes. Furthermore, their combination effectively increased the relative abundance of lactic acid bacteria (LAB) and Allobaculum, and decreased the relative abundance of Bacteroides and Blautia. Spearman rank correlation analysis demonstrated that LAB were closely related to permeability factors, immune factors, and indicators of intestinal barrier function. In summary, the effect of combining L. plantarum ELF051 and Astragalus polysaccharides on AAD mice was achieved by enhancing intestinal barrier function and regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Bao Zhong
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
- College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
- Brewing Technology Innovation Center of Jilin Province, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
| | - Wei Liang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
- Anshan Hospital of Traditional Chinese Medicine, Anshan, 114004, P.R. China
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Fenglin Li
- College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
- Brewing Technology Innovation Center of Jilin Province, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Ge Yang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China.
| |
Collapse
|
4
|
Xiong L, Xuan J, Zhao H, Zhang Z, Wang H, Yan P, Zhang Y, Liu Y, Zhang L. Revealing the material basis and mechanism for the inhibition of intestinal peristalsis by Zingiber officinale Roscoe through integrated metabolomics, serum pharmacochemistry, and network pharmacology. Biomed Chromatogr 2024; 38:e5932. [PMID: 38922712 DOI: 10.1002/bmc.5932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Abnormal relaxation and contraction of intestinal smooth muscle can cause various intestinal diseases. Diarrhea is a common and important public health problem worldwide in epidemiology. Zingiber officinale Roscoe (fresh ginger) has been found to treat diarrhea, but the material basis and mechanism of action that inhibits intestinal peristalsis remain unclear. Metabolomics and serum pharmacology were used to identify differential metabolites, metabolic pathways, and pharmacodynamic substances, and were then combined with network pharmacology to explore the potential targets of ginger that inhibit intestinal peristalsis during diarrhea treatment, and the targets identified were verified using molecular docking and molecular dynamic simulation. We found that 25 active components of ginger (the six most relevant components), 35 potential key targets (three core targets), 40 differential metabolites (four key metabolites), and four major metabolic pathways were involved in the process by which ginger inhibits intestinal peristalsis during diarrhea treatment. This study reveals the complex mechanism of action and pharmacodynamic material basis of ginger in the inhibition of intestinal peristalsis, and this information helps in the development of new Chinese medicine to treat diarrhea and lays the foundation for the clinical application of ginger.
Collapse
Affiliation(s)
- Lewen Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Xuan
- Shandong Agriculture and Engineering University, Jinan, China
| | - Hongwei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoyu Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longfei Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Liu S, Zhao S, Cheng Z, Ren Y, Shi X, Mu J, Ge X, Dai Y, Li L, Zhang Z. Akkermansia muciniphila Protects Against Antibiotic-Associated Diarrhea in Mice. Probiotics Antimicrob Proteins 2024; 16:1190-1204. [PMID: 37314693 DOI: 10.1007/s12602-023-10101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Probiotics are used to prevent antibiotic-associated diarrhea (AAD) via the restoration of the gut microbiota. However, the precise effects of Akkermansia muciniphila (Akk), which is a promising probiotics, on AAD are unknown. Here, AAD models were established via the administration of lincomycin and ampicillin with or without pasteurized Akk or Amuc_1100 treatment. A diffusion test revealed that Akk was susceptible to the majority of the antibiotics, such as ampicillin. These effects were confirmed by the reduced Akk abundance in AAD model mice. Pasteurized Akk or Amuc_1100 significantly decreased the diarrhea status score and colon injury of AAD model mice. Additionally, these treatments significantly decreased the relative abundance of Citrobacter at genus level and reshaped the metabolic function of gut microbiota. Notably, pasteurized Akk or Amuc_1100 significantly changed the serum metabolome of AAD model mice. In addition, pasteurized Akk or Amuc_1100 suppressed intestinal inflammation by upregulating the expression of GPR109A and SLC5A8 and downregulating the expression of TNFα, IFNγ, IL1β, and IL6. Furthermore, they enhanced water and electrolyte absorption by upregulating AQP4, SLC26A3, and NHE3. Pasteurized Akk or Amuc_1100 also restored intestinal barrier function by ameliorating the downregulation of ZO-1, OCLN, CLDN4, and Muc2 in AAD model mice. In summary, optimizing intestinal health with pasteurized Akk or Amuc_1100 may serve as an approach for preventing AAD.
Collapse
Affiliation(s)
- Shenyin Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Suying Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210009, People's Republic of China
| | - Zhiwei Cheng
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Yilin Ren
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Xinyi Shi
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Jing Mu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Xiangyang Ge
- Technical Department of Sujiu Group, Suqian, 223800, People's Republic of China
| | - Yuan Dai
- Technical Department of Sujiu Group, Suqian, 223800, People's Republic of China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
6
|
Behairi N, Samer A, Sahraoui L, Mataam DH, Trari R, Flissi B, Belguendouz H, Amir ZC, Touil-Boukoffa C. Neuroinflammation, neurodegeneration and alteration of spatial memory in BALB/c mice through ampicillin-induced gut dysbiosis; NOS2 and NFL involvement in a microbiota-gut-brain axis model. J Neuroimmunol 2024; 392:578374. [PMID: 38797060 DOI: 10.1016/j.jneuroim.2024.578374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
We aimed to investigate ampicillin (AMP) mechanisms in microbiota-gut-brain axis. We evaluated its effect on two gut and brain regions and behavioral performances. We administred AMP (1 g/l) to BALB/c mice for 21 days. Then, we analyzed body weigth change, stool consistency scoring, gut length, intestinal microbiota composition, nitric oxide synthase 2 (NOS2) expression and tissue integrity. We subsequently evaluated NOS2, GFAP, CD68 and NFL cerebral expression and spatial memory.Interestingly, our data showed gut microbiota disruption, NOS2 upregulation and tissue damage, associated to cerebral NOS2, GFAP, CD68 and NFL over-expression and behavioral alteration. Antiobiotic therapy should be prescribed with great caution.
Collapse
Affiliation(s)
- Nassima Behairi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Arezki Samer
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Lynda Sahraoui
- Laboratory of Animal Health and Production, Higher National Veterinary School of Issad-Abbes Oued-Smar, Algiers, Algeria
| | - Djehane Houria Mataam
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Ryad Trari
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Billel Flissi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Houda Belguendouz
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Zine-Charaf Amir
- Department of Anatomy and Pathological Cytology, University Hospital Center Mustapha Pacha, 1945 Pl. May 1st, Sidi M'Hamed, 16000 Algiers, Algeria
| | - Chafia Touil-Boukoffa
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria.
| |
Collapse
|
7
|
Wang Z, Guo Z, Liu L, Ren D, Zu H, Li B, Liu F. Potential Probiotic Weizmannia coagulans WC10 Improved Antibiotic-Associated Diarrhea in Mice by Regulating the Gut Microbiota and Metabolic Homeostasis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10308-1. [PMID: 38900235 DOI: 10.1007/s12602-024-10308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect of long-term and heavy antibiotic therapy. Weizmannia coagulans (W. coagulans) is an ideal probiotic because of its high viability, stability, and numerous health benefits to the host. In this study, the strains were first screened for W. coagulans WC10 (WC10) with a high combined ability based on their biological properties of gastrointestinal tolerance, adhesion, and short-chain fatty acid production ability. The effect of WC10 on mice with AAD was further evaluated. The results showed that WC10 was effective in improving the symptoms of AAD, effectively restoring antibiotic-induced weight loss, and reducing diarrhea status score and fecal water content. In addition, WC10 decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines, alleviated intestinal tissue damage and inflammation, and improved intestinal epithelial barrier function by decreasing serum levels of enterotoxin, DAO, and D-lactic acid, and by increasing the expression of the intestinal mucosal immune factors sIgA and occludin. Importantly, the composition and function of the gut microbiota gradually recovered after WC10 treatment, increasing the number of SCFAs-producing Bifidobacterium and Roseburia. Subsequently, the short-chain fatty acid (SCFA) content was examined and WC10 significantly increased acetate, propionate, and butyrate production. Additionally, metabolomic analysis also showed that WC10 reversed the antibiotic interference with major metabolic pathways. These findings provide a solid scientific basis for the future application of W. coagulans WC10 in the treatment of AAD.
Collapse
Affiliation(s)
- Zengbo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Zengtao Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang Zu
- Heilongjiang Ubert Dairy Co., Heilongjiang, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
- Food College, Northeast Agricultural University, Harbin, 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
- Food College, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Wang PP, Cheng XQ, Dou ZJ, Fan YQ, Chen J, Zhao L, Han JX, Lin XW, Wang B. Inhibiting the CB1 receptor in CIH-induced animal model alleviates colon injury. Appl Microbiol Biotechnol 2024; 108:380. [PMID: 38888634 PMCID: PMC11189354 DOI: 10.1007/s00253-024-13216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Obstructive sleep apnea (OSA) can lead to intestinal injury, endotoxemia, and disturbance of intestinal flora. Additionally, as a crucial component of the endocannabinoid system, some studies have demonstrated that cannabinoid 1 (CB1) receptors are closely linked to the multiple organ dysfunction triggered by OSA. However, the role of the CB1 receptor in alleviating OSA-induced colon injury remains unclear. Here, through the construction of the OSA classic model, we found that the colon tissue of chronic intermittent hypoxia (CIH)-induced mice exhibited an overexpression of the CB1 receptor. The results of hematoxylin-eosin staining and transmission electron microscopy revealed that inhibition of the CB1 receptor could decrease the gap between the mucosa and muscularis mucosae, alleviate mitochondrial swelling, reduce microvilli shedding, and promote the recovery of tight junctions of CIH-induced mice. Furthermore, CB1 receptor inhibition reduced the levels of metabolic endotoxemia and inflammatory responses, exhibiting significant protective effects on the colon injury caused by CIH. At the molecular level, through western blotting and real-time polymerase chain reaction techniques, we found that inhibiting the CB1 receptor can significantly increase the expression of ZO-1 and Occludin proteins, which are closely related to the maintenance of intestinal mucosal barrier function. Through 16S rRNA high-throughput sequencing and short-chain fatty acid (SCFA) determination, we found that inhibition of the CB1 receptor increased the diversity of the microbial flora and controlled the makeup of intestinal flora. Moreover, butyric acid concentration and the amount of SCFA-producing bacteria, such as Ruminococcaceae and Lachnospiraceae, were both markedly elevated by CB1 receptor inhibition. The results of the spearman correlation study indicated that Lachnospiraceae showed a positive association with both ZO-1 and Occludin but was negatively correlated with the colon CB1 receptor, IL-1β, and TNF-α. According to this study, we found that inhibiting CB1 receptor can improve CIH-induced colon injury by regulating gut microbiota, reducing mucosal damage and promoting tight junction recovery. KEY POINTS: •CIH leads to overexpression of CB1 receptor in colon tissue. •CIH causes intestinal flora disorder, intestinal mucosal damage, and disruption of tight junctions. •Inhibition of CB1 receptor can alleviate the colon injury caused by CIH through regulating the gut microbiota, reducing mucosal injury, and promoting tight junction recovery.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Qian Cheng
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhan-Jun Dou
- Department of Respiratory, Shanxi Cancer Hospital, Taiyuan, China
| | - Yong-Qiang Fan
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Chen
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Zhao
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Xing Han
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xian-Wang Lin
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bei Wang
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Guo H, He X, Yu L, Tian F, Chen W, Zhai Q. Bifidobacterium adolescentis CCFM1285 combined with yeast β-glucan alleviates the gut microbiota and metabolic disturbances in mice with antibiotic-associated diarrhea. Food Funct 2024; 15:3709-3721. [PMID: 38488198 DOI: 10.1039/d3fo05421g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a self-limiting condition that can occur during antibiotic therapy. Our previous studies have found that a combination of Bacteroides uniformis and Bifidobacterium adolescentis can effectively alleviate AAD. However, the use of B. uniformis is still strictly limited. Therefore, this study attempted to use yeast β-glucan to enrich the abundance of B. uniformis in the intestine and supplement Bifidobacterium adolescentis to exert a synergistic effect. The lincomycin hydrochloride-induced AAD model was administered yeast β-glucan or a mixture of B. adolescentis CCFM1285 by gavage for one week. Subsequently, changes in the colonic histopathological structure, inflammatory factors, intestinal epithelial permeability and integrity, metabolites, and gut microbiota diversity were assessed. We found that yeast β-glucan, alone or in combination with B. adolescentis CCFM1285, can help attenuate systemic inflammation, increase the rate of tissue structural recovery, regulate metabolism, and restore the gut microbiota. Specifically, the combination of yeast β-glucan and B. adolescentis CCFM1285 was more effective in decreasing interleukin-6 levels, improving pathological changes in the colon, and upregulating occludin expression. Therefore, our study showed that the combination of yeast β-glucan and B. adolescentis CCFM1285 is an efficacious treatment for AAD.
Collapse
Affiliation(s)
- Hang Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingfei He
- Rehabilitation Hospital of Huishan District, Wuxi, Jiangsu 214181, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, Yang F, Li W, Chen C, Men L, Tian Q, Xie T. The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev 2024; 44:539-567. [PMID: 37661373 DOI: 10.1002/med.21989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.
Collapse
Affiliation(s)
- Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuxin Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huijuan Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Li Z, Wu J, Song J, Wen Y. Ginger for treating nausea and vomiting: an overview of systematic reviews and meta-analyses. Int J Food Sci Nutr 2024; 75:122-133. [PMID: 38072785 DOI: 10.1080/09637486.2023.2284647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/13/2023] [Indexed: 03/28/2024]
Abstract
Ginger may be a potential remedy for nausea and vomiting. This review aimed to assess the reporting and methodological quality, and integrate the evidence in this field. A total of fifteen meta-analyses were analysed and met the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2009 guidelines, providing a relatively complete statement. However, methodological quality, assessed using the Assessment of Multiple Systematic Reviews-2 checklist, was deemed critically low to low. Our review's findings support ginger's effectiveness in managing chemotherapy-induced nausea and vomiting in cancer patients. It also reduces postoperative nausea and vomiting severity, decreasing the need for rescue antiemetics. Furthermore, ginger shows promise in alleviating pregnancy-related nausea and vomiting symptoms. The pooled evidence suggests ginger as a safe botanical option for managing nausea and vomiting, but it is important to improve the scientific quality of published meta-analyses in the future.
Collapse
Affiliation(s)
- Zhongyu Li
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiao Wu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinjie Song
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Wang D, Zeng J, Wujin C, Ullah Q, Su Z. Lactobacillus reuteri derived from horse alleviates Escherichia coli-induced diarrhea by modulating gut microbiota. Microb Pathog 2024; 188:106541. [PMID: 38224920 DOI: 10.1016/j.micpath.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Diarrhea is a prevalent health issue in farm animals and poses a significant challenge to the progress of animal husbandry. Recent evidence suggested that probiotics can alleviate diarrhea by maintaining gut microbial balance and enhancing the integrity of the intestinal barrier. However, there is a scarcity of studies investigating the efficacy of equine Lactobacillus reuteri in relieving E. coli-induced diarrhea. Hence, this study aimed to examine the potential of equine-derived Lactobacillus reuteri in alleviating E. coli diarrhea from the perspective of gut microbiota. Results demonstrated that supplementation of Lactobacillus reuteri had the potential to alleviate diarrhea induced by E. coli infection and restore the decline of tight junction genes, such as Claudin-1 and ZO-1. Additionally, Lactobacillus reuteri supplementation can restore the expression of inflammatory factors (IL-6, IL-10, TNF-α, and IFN-γ) and reduce colon inflammatory damage. Diversity analysis, based on amplicon sequencing, revealed a significant reduction in the diversity of gut microbiota during E. coli-induced diarrhea. Moreover, there were notable statistical differences in the composition and structure of gut microbiota among the different treatment groups. E. coli could induce gut microbial dysbiosis by decreasing the abundance of beneficial bacteria, including Lactobacillus, Bifidobacterium, Ligilactobacillus, Enterorhabdus, and Lachnospiraceae_UCG_001, in comparison to the control group. Conversely, supplementation with Lactobacillus reuteri could restore the abundance of beneficial bacteria and increase the diversity of the gut microbiota, thereby reshaping gut microbiota. Additionally, we also observed that supplementation with Lactobacillus reuteri alone improved the gut microbial composition and structure. In summary, the findings suggest that Lactobacillus reuteri can alleviate E. coli-induced diarrhea by preserving the integrity of the intestinal barrier and modulating the composition of the gut microbiota. These results not only contribute to understanding of the mechanism underlying the beneficial effects of Lactobacillus reuteri in relieving diarrhea, but also provide valuable insights for the development of probiotic products aimed at alleviating diarrheal diseases.
Collapse
Affiliation(s)
- Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Cuomu Wujin
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, 29111, Pakistan
| | - Zhonghua Su
- Tibet Autonomous Region Animal Disease Prevention and Control Center, Lhasa, Tibet, 850009, China.
| |
Collapse
|
13
|
Yu XH, Lv Z, Zhang CE, Gao Y, Li H, Ma XJ, Ma ZJ, Su JR, Huang LQ. Shengjiang Xiexin decoction mitigates murine Clostridium difficile infection through modulation of the gut microbiota and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117384. [PMID: 37925000 DOI: 10.1016/j.jep.2023.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The overuse of antibiotics has resulted in Clostridium difficile infection (CDI) as a significant global public health concern. Studies have shown that imbalances in gut microbiota and metabolism play a vital role in the onset of CDI. Shengjiang Xiexin decoction (SJT), a traditional Chinese medicinal formula widely employed in the treatment of gastrointestinal ailments, demonstrates effectiveness in addressing murine CDI. However, the precise mechanistic role of SJT in CDI treatment remains uncertain, particularly regarding its impact on gut microbiota and intestinal metabolism. Thus, further investigation is imperative to shed light on these mechanisms. AIM OF THE STUDY This study aims to thoroughly investigate the therapeutic potential of SJT in the treatment of CDI, while also examining its impact on the intricate interplay between gut microbiota and bile acid metabolism. By employing a mouse model, we aspire to uncover novel insights that could pave the way for the development of more effective strategies in combating CDI. MATERIALS AND METHODS We developed a mouse model for CDI and assessed SJT's potential as a therapeutic agent through pharmacological analyses. Our study employed high-throughput sequencing of 16S rRNA to identify changes in gut microbiota composition and untargeted metabolomics analysis to evaluate SJT's intervention on intestinal metabolism. We also conducted targeted analysis of bile acid metabolism to examine the specific effects of SJT. Finally, the growth-inhibitory effect of SJT on C. difficile was confirmed through ex vivo cultivation of the pathogen using cecal contents, supporting its potential role in treating CDI by modulating gut microbiota and bile acid metabolism. RESULTS In pharmacological studies, SJT was found to effectively reduce the levels of A&B toxins and alleviate colonic inflammation in CDI mice. Mechanistically, SJT demonstrated a mild increase in the abundance and diversity of the gut microbiota. However, its most significant impact was observed in the substantial improvement of the structural composition of the gut microbiota. Specifically, SJT decreased the abundance of gut Polymorphs and Firmicutes while restoring the proportions of family Trichophyton and Bacteroides_S24-7 spp (P < 0.001). Moreover, SJT not only decreased the levels of primary bile acids but also elevated the levels of secondary bile acids. Notably, it enhanced the conversion of taurocholic acid (TCA) to deoxycholic acid (DCA), leading to a balanced bile acid metabolism. Finally, cecal contents of SJT-treated mice showed a significant reduction in the growth of C. difficile, underscoring the therapeutic potential of SJT via modulation of gut microbiota and bile acid metabolism. CONCLUSION SJT demonstrates remarkable efficacy in treating CDI in mice by not only effectively combating the infection but also restoring the intricate balance of gut microbiota and bile acid metabolism. Furthermore, promising indications suggest that SJT may have the potential to prevent CDI recurrence. These findings underscore the comprehensive therapeutic value of SJT in managing CDI. Moving forward, we plan to transition from the laboratory to clinical settings to conduct further studies, validating our conclusions on SJT's efficacy.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhi Lv
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Cong-En Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Yan Gao
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao-Jing Ma
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Jian-Rong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Lu-Qi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
14
|
Kim SJ, Shin MS, Choi YK. Ameliorative Effects of Zingiber officinale Rosc on Antibiotic-Associated Diarrhea and Improvement in Intestinal Function. Molecules 2024; 29:732. [PMID: 38338475 PMCID: PMC10856109 DOI: 10.3390/molecules29030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The global increase in antibiotic consumption is related to increased adverse effects, such as antibiotic-associated diarrhea (AAD). This study investigated the chemical properties of Zingiber officinale Rosc (ZO) extract and its ameliorative effects using a lincomycin-induced AAD mouse model. Intestinal tissues were evaluated for the expression of lysozyme, claudin-1, and α-defensin-1, which are associated with intestinal homeostasis. The cecum was analyzed to assess the concentration of short-chain fatty acids (SCFAs). The chemical properties analysis of ZO extracts revealed the levels of total neutral sugars, acidic sugars, proteins, and polyphenols to be 86.4%, 8.8%, 4.0%, and 0.8%, respectively. Furthermore, the monosaccharide composition of ZO was determined to include glucose (97.3%) and galactose (2.7%). ZO extract administration ameliorated the impact of AAD and associated weight loss, and water intake also returned to normal. Moreover, treatment with ZO extract restored the expression levels of lysozyme, α-defensin-1, and claudin-1 to normal levels. The decreased SCFA levels due to induced AAD showed a return to normal levels. The results indicate that ZO extract improved AAD, strengthened the intestinal barrier, and normalized SCFA levels, showing that ZO extract possesses intestinal-function strengthening effects.
Collapse
Affiliation(s)
| | | | - You-Kyung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.)
| |
Collapse
|
15
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
16
|
Chen B, Yang X, Zhan M, Chen Y, Xu J, Xiao J, Xiao H, Song M. Dietary tangeretin improved antibiotic-associated diarrhea in mice by enhancing the intestinal barrier function, regulating the gut microbiota, and metabolic homeostasis. Food Funct 2023; 14:10731-10746. [PMID: 37933488 DOI: 10.1039/d3fo02998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Antibiotic-associated diarrhea is mediated by antibiotic treatment and is usually caused by the disruption of the intestinal barrier, gut microbiota, and metabolic balance. To identify a dietary strategy that can mitigate the side effects of antibiotics, this study investigated the effect of tangeretin on antibiotic-associated diarrhea in C57BL/6 mice. The results revealed that dietary tangeretin significantly ameliorated symptoms of antibiotic-associated diarrhea, as evidenced by the decreased diarrhea status scores, the reduced fecal water content, the decreased caecum/body weight ratio, and the alleviated colonic tissue damage. Dietary tangeretin also exhibited a protective effect on the intestinal barrier function by upregulating the mRNA and protein expression of claudin-1 and ZO-1. Furthermore, analysis of the gut microbiota using 16S rRNA gene sequencing indicated that dietary tangeretin modulated the gut microbiota of mice with antibiotic-associated diarrhea via increasing the gut microbiota diversity and the abundance of beneficial bacteria, e.g., Lactobacillaceae and Ruminococcaceae, and decreasing the abundance of harmful bacteria, e.g., Enterococcus and Terrisporobacter. Additionally, dietary tangeretin restored the levels of short-chain fatty acids and modulated metabolic pathways by enriching purine metabolism, bile acid metabolism, ABC transporters, and choline metabolism in cancer. Collectively, these findings provide a solid scientific basis for the rational use of tangeretin as a preventive and therapeutic agent for antibiotic-associated diarrhea.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Xun Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jingyi Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
17
|
Wang X, Mi J, Yang K, Wang L. Environmental Cadmium Exposure Perturbs Gut Microbial Dysbiosis in Ducks. Vet Sci 2023; 10:649. [PMID: 37999472 PMCID: PMC10674682 DOI: 10.3390/vetsci10110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Ore extraction, chemical production, and agricultural fertilizers may release significant amounts of heavy metals, which may eventually accumulate widely in the environment and organisms over time, causing global ecological and health problems. As a recognized environmental contaminant, cadmium has been demonstrated to cause osteoporosis and renal injury, but research regarding the effects of cadmium on gut microbiota in ducks remains scarce. Herein, we aimed to characterize the adverse effects of cadmium on gut microbiota in ducks. Results indicated that cadmium exposure dramatically decreased gut microbial alpha diversity and caused significant changes in the main component of gut microbiota. Moreover, we also observed significant changes in the gut microbial composition in ducks exposed to cadmium. A microbial taxonomic investigation showed that Firmicutes, Bacteroidota, and Proteobacteria were the most preponderant phyla in ducks regardless of treatment, but the compositions and abundances of dominant genera were different. Meanwhile, a Metastats analysis indicated that cadmium exposure also caused a distinct increase in the levels of 1 phylum and 22 genera, as well as a significant reduction in the levels of 1 phylum and 36 genera. In summary, this investigation demonstrated that cadmium exposure could disturb gut microbial homeostasis by decreasing microbial diversity and altering microbial composition. Additionally, under the background of the rising environmental pollution caused by heavy metals, this investigation provides a crucial message for the assessment of environmental risks associated with cadmium exposure.
Collapse
Affiliation(s)
| | | | | | - Lian Wang
- Department of Medical Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (X.W.); (J.M.); (K.Y.)
| |
Collapse
|
18
|
Xue H, Mei C, Wang F, Tang X. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr 2023; 11:5837-5855. [PMID: 37823142 PMCID: PMC10563694 DOI: 10.1002/fsn3.3596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D), osmotic diarrhea, bile acid diarrhea, and antibiotic-associated diarrhea, is a common problem which is highly associated with disorders of the gut microbiota composition such as small intestinal bacterial overgrowth (SIBO) and so on. A growing number of studies have supported the view that Chinese herbal formula alleviates the symptoms of diarrhea by modulating the fecal microbiota. Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides that are widely found in Chinese herbs and function as important active ingredients. Commensal gut microbiota has an extensive capacity to utilize CHPs and play a vital role in degrading polysaccharides into short-chain fatty acids (SCFAs). Many CHPs, as prebiotics, have an antidiarrheal role to promote the growth of beneficial bacteria and inhibit the colonization of pathogenic bacteria. This review systematically summarizes the relationship among gut microbiota, chronic diarrhea, and CHPs as well as recent progress on the impacts of CHPs on the gut microbiota and recent advances on the possible role of CHPs in chronic diarrhea.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Chun‐Feng Mei
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Feng‐Yun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
19
|
Du Z, Li J, Li W, Fu H, Ding J, Ren G, Zhou L, Pi X, Ye X. Effects of prebiotics on the gut microbiota in vitro associated with functional diarrhea in children. Front Microbiol 2023; 14:1233840. [PMID: 37720150 PMCID: PMC10502507 DOI: 10.3389/fmicb.2023.1233840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Diarrhea is among the top five causes of morbidity and mortality in children. Dysbiosis of the gut microbiota is considered the most important risk factor for diarrhea. Prebiotics have shown efficacy in treating diarrhea by regulating the balance of the gut microbiota in vivo. Methods In this study, we used an in vitro fermentation system to prevent the interference of host-gut microbe interactions during in vivo examination and investigated the effect of fructo-oligosaccharides (FOS) on gut microbiota composition and metabolism in 39 pediatric patients with functional diarrhea. Results 16S rRNA sequencing revealed that FOS significantly improved α- and β-diversity in volunteers with pediatric diarrhea (p < 0.05). This improvement manifested as a significant increase (LDA > 2, p < 0.05) in probiotic bacteria (e.g., Bifidobacterium) and a significant inhibition (LDA > 2, p < 0.05) of harmful bacteria (e.g., Escherichia-Shigella). Notably, the analysis of bacterial metabolites after FOS treatment showed that the decrease in isobutyric acid, isovaleric acid, NH3, and H2S levels was positively correlated with the relative abundance of Lachnoclostridium. This decrease also showed the greatest negative correlation with the abundance of Streptococcus. Random forest analysis and ROC curve validation demonstrated that gut microbiota composition and metabolites were distinct between the FOS treatment and control groups (area under the curve [AUC] > 0.8). Functional prediction using PICRUSt 2 revealed that the FOS-induced alteration of gut microbiota was most likely mediated by effects on starch and sucrose metabolism. Conclusion This study is the first to evince that FOS can modulate gut microbial disorders in children with functional diarrhea. Our findings provide a framework for the application of FOS to alleviate functional diarrhea in children and reduce the use of antibiotics for managing functional diarrhea-induced disturbances in the gut microbiota.
Collapse
Affiliation(s)
- Zhi Du
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiabin Li
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jieying Ding
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guofei Ren
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China
| | - Linying Zhou
- People's Hospital of Longquan City, Longquan, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaoli Ye
- Department of Medical Administration, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Charneca S, Hernando A, Costa-Reis P, Guerreiro CS. Beyond Seasoning-The Role of Herbs and Spices in Rheumatic Diseases. Nutrients 2023; 15:2812. [PMID: 37375716 PMCID: PMC10300823 DOI: 10.3390/nu15122812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Although we have witnessed remarkable progress in understanding the biological mechanisms that lead to the development of rheumatic diseases (RDs), remission is still not achieved in a substantial proportion of patients with the available pharmacological treatment. As a consequence, patients are increasingly looking for complementary adjuvant therapies, including dietary interventions. Herbs and spices have a long historical use, across various cultures worldwide, for both culinary and medicinal purposes. The interest in herbs and spices, beyond their seasoning properties, has dramatically grown in many immune-mediated diseases, including in RDs. Increasing evidence highlights their richness in bioactive molecules, such as sulfur-containing compounds, tannins, alkaloids, phenolic diterpenes, and vitamins, as well as their antioxidant, anti-inflammatory, antitumorigenic, and anticarcinogenic properties. Cinnamon, garlic, ginger, turmeric, and saffron are the most popular spices used in RDs and will be explored throughout this manuscript. With this paper, we intend to provide an updated review of the mechanisms whereby herbs and spices may be of interest in RDs, including through gut microbiota modulation, as well as summarize human studies investigating their effects in Rheumatoid Arthritis, Osteoarthritis, and Fibromyalgia.
Collapse
Affiliation(s)
- Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; (S.C.); (A.H.); (C.S.G.)
| | - Ana Hernando
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; (S.C.); (A.H.); (C.S.G.)
| | - Patrícia Costa-Reis
- Unidade de Reumatologia Pediátrica do Centro Hospitalar Universitário Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; (S.C.); (A.H.); (C.S.G.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
21
|
Zhang CE, Yu XH, Cui YT, Wang HJ, Chen X, Ma XJ, Li H, Su JR, Ma ZJ, Huang LQ. Shengjiang Xiexin Decoction ameliorates antibiotic-associated diarrhea by altering the gut microbiota and intestinal metabolic homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154737. [PMID: 36905867 DOI: 10.1016/j.phymed.2023.154737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Antibiotic-associated diarrhea (AAD) has had a significant increase in the last years, with limited available effective therapies. Shengjiang Xiexin Decoction (SXD), a classic traditional Chinese medicine formula for treating diarrhea, is a promising alternative for reducing the incidence of AAD. PURPOSE This study aimed to explore the therapeutic effect of SXD on AAD and to investigate its potential therapeutic mechanism by integrated analysis of the gut microbiome and intestinal metabolic profile. METHODS 16S rRNA sequencing analysis of the gut microbiota and untargeted-metabolomics analysis of feces were performed. The mechanism was further explored by fecal microbiota transplantation (FMT). RESULTS SXD could effectively ameliorate AAD symptoms and restore intestinal barrier function. In addition, SXD could significantly improve the diversity of the gut microbiota and accelerate the recovery of the gut microbiota. At the genus level, SXD significantly increased the relative abundance of Bacteroides spp (p < 0.01) and decreased the relative abundance of Escherichia_Shigela spp (p < 0.001). Untargeted metabolomics showed that SXD significantly improved gut microbiota and host metabolic function, particularly bile acid metabolism and amino acid metabolism. CONCLUSION This study demonstrated that SXD could extensively modulate the gut microbiota and intestinal metabolic homeostasis to treat AAD.
Collapse
Affiliation(s)
- Cong-En Zhang
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Xiao-Hong Yu
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Yu-Tao Cui
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Huan-Jun Wang
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Xi Chen
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Xiao-Jing Ma
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian-Rong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhi-Jie Ma
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China.
| | - Lu-Qi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
22
|
Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms 2023; 11:microorganisms11010179. [PMID: 36677471 PMCID: PMC9861108 DOI: 10.3390/microorganisms11010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
A balanced gut microbiota and their metabolites are necessary for the maintenance of the host's health. The antibiotic-induced dysbiosis can cause the disturbance of the microbial community, influence the immune homeostasis and induce susceptibility to metabolic- or immune-mediated disorders and diseases. The Lactobacillus and their metabolites or components affect the function of the host's immune system and result in microbiota-mediated restoration. Recent data have indicated that, by altering the composition and functions of gut microbiota, antibiotic exposure can also lead to a number of specific pathologies, hence, understanding the potential mechanisms of the interactions between gut microbiota dysbiosis and immunological homeostasis is very important. The Lactobacillus strategies for detecting the associations between the restoration of the relatively imbalanced microbiome and gut diseases are provided in this discussion. In this review, we discuss the recently discovered connections between microbial communities and metabolites in the Lactobacillus treatment of β-lactam antibiotic-induced dysbiosis, and establish the relationship between commensal bacteria and host immunity under this imbalanced homeostasis of the gut microbiota.
Collapse
|
23
|
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Elucidating the Beneficial Effects of Ginger ( Zingiber officinale Roscoe) in Parkinson's Disease. ACS Pharmacol Transl Sci 2022; 5:838-848. [PMID: 36268117 PMCID: PMC9578130 DOI: 10.1021/acsptsci.2c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease (AD), and its pathogenesis remains obscure. Current treatment approaches mainly including levodopa and dopamine agonists provide symptomatic relief but fail to halt disease progression, and they are often accompanied by severe side effects. In this context, natural phytochemicals have received increasing attention as promising preventive or therapeutic candidates for PD, given their multitarget pharmaceutical mechanisms of actions and good safety profile. Ginger (Zingiber officinale Roscoe, Zingiberaceae) is a very popular spice used as a medicinal herb throughout the world since the ancient years, for a wide range of conditions, including nausea, diabetes, dyslipidemia, and cancer. Emerging in vivo and in vitro evidence supports the neuroprotective effects of ginger and its main pharmaceutically active compounds (zingerone, 6-shogaol, and 6-gingerol) in PD, mainly via the regulation of neuroinflammation, oxidative stress, intestinal permeability, dopamine synaptic transmission, and possibly mitochondrial dysfunction. The regulation of several transcription factors and signaling pathways, including nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Ak strain transforming (Akt), extracellular signal-regulated kinase (ERK) 1/2, and AMP-activated protein kinase (AMPK)/proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) have been shown to contribute to the protective effects of ginger. Herein, we discuss recent findings on the beneficial role of ginger in PD as a preventive agent or potential supplement to current treatment strategies, focusing on potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department
of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
- First
Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition University
Hospital, 15784Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology
Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500Bandar Sunway, Malaysia
| | - Sokratis G. Papageorgiou
- First
Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition University
Hospital, 15784Athens, Greece
| | - Christina Piperi
- Department
of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| |
Collapse
|
24
|
Ooi SL, Pak SC, Campbell R, Manoharan A. Polyphenol-Rich Ginger ( Zingiber officinale) for Iron Deficiency Anaemia and Other Clinical Entities Associated with Altered Iron Metabolism. Molecules 2022; 27:6417. [PMID: 36234956 PMCID: PMC9573525 DOI: 10.3390/molecules27196417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ginger (Zingiber officinale) is rich in natural polyphenols and may potentially complement oral iron therapy in treating and preventing iron deficiency anaemia (IDA). This narrative review explores the benefits of ginger for IDA and other clinical entities associated with altered iron metabolism. Through in vivo, in vitro, and limited human studies, ginger supplementation was shown to enhance iron absorption and thus increase oral iron therapy's efficacy. It also reduces oxidative stress and inflammation and thus protects against excess free iron. Ginger's bioactive polyphenols are prebiotics to the gut microbiota, promoting gut health and reducing the unwanted side effects of iron tablets. Moreover, ginger polyphenols can enhance the effectiveness of erythropoiesis. In the case of iron overload due to comorbidities from chronic inflammatory disorders, ginger can potentially reverse the adverse impacts and restore iron balance. Ginger can also be used to synthesise nanoparticles sustainably to develop newer and more effective oral iron products and functional ingredients for IDA treatment and prevention. Further research is still needed to explore the applications of ginger polyphenols in iron balance and anaemic conditions. Specifically, long-term, well-designed, controlled trials are required to validate the effectiveness of ginger as an adjuvant treatment for IDA.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Ron Campbell
- The Oaks Medical Practice, The Oaks, NSW 2570, Australia
| | - Arumugam Manoharan
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
25
|
Wu ZL, Wei R, Tan X, Yang D, Liu D, Zhang J, Wang W. Characterization of gut microbiota dysbiosis of diarrheic adult yaks through 16S rRNA gene sequences. Front Vet Sci 2022; 9:946906. [PMID: 36157193 PMCID: PMC9500532 DOI: 10.3389/fvets.2022.946906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022] Open
Abstract
The ruminant gut microbial community has a strong impact on host health and can be altered during diarrhea disease. As an indigenous breed of the Tibetan Plateau, domestic yak displays a high diarrhea rate, but little research has been done to characterize the bacterial microbial structure in diarrheic yaks. In the present study, a total of 30 adult yaks, assigned to diarrhea (case, N = 15) and healthy (control, N = 15) groups, were subjected to gut microbiota profiling using the V3–V4 regions of the 16S rRNA gene. The results showed that the gut microbiome of the case group had a significant decrease in alpha diversity. Additionally, differences in beta diversity were consistently observed for the case and control groups, indicating that the microbial community structure was changed due to diarrhea. Bacterial taxonomic analysis indicated that the Bacteroidetes, Firmicutes, and Proteobacteria were the three most dominant phyla in both groups but different in relative abundance. Especially, the proportion of Proteobacteria in the case group was increased as compared with the control group, whereas Spirochaetota and Firmicutes were significantly decreased. At the genus level, the relative abundance of Escherichia-Shigella and Prevotellaceae_UCG-003 were dramatically increased, whereas that of Treponema, p-2534-18B5_gut_group, and Prevotellaceae_UCG-001 were observably decreased with the effect of diarrhea. Furthermore, based on our linear discriminant analysis (LDA) effect size (LEfSe) results, Alistipes, Solibacillus, Bacteroides, Prevotellaceae_UCG_003, and Bacillus were significantly enriched in the case group, while the other five genera, such as Alloprevotella, RF39, Muribaculaceae, Treponema, and Enterococcus, were the most preponderant in the control group. In conclusion, alterations in gut microbiota community composition were associated with yak diarrhea, differentially represented bacterial species enriched in case animals providing a theoretical basis for establishing a prevention and treatment system for yak diarrhea.
Collapse
Affiliation(s)
- Zhou-Lin Wu
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ranlei Wei
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Tan
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding, China
| | - Dayu Liu
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Wei Wang
| |
Collapse
|
26
|
Fu Q, Song T, Ma X, Cui J. Research progress on the relationship between intestinal microecology and intestinal bowel disease. Animal Model Exp Med 2022; 5:297-310. [PMID: 35962562 PMCID: PMC9434592 DOI: 10.1002/ame2.12262] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microecology is the main component of human microecology. Intestinal microecology consists of intestinal microbiota, intestinal epithelial cells, and intestinal mucosal immune system. These components are interdependent and establish a complex interaction network that restricts each other. According to the impact on the human body, there are three categories of symbiotic bacteria, opportunistic pathogens, and pathogenic bacteria. The intestinal microecology participates in digestion and absorption, and material metabolism, and inhibits the growth of pathogenic microorganisms. It also acts as the body's natural immune barrier, regulates the innate immunity of the intestine, controls the mucosal barrier function, and also participates in the intestinal epithelial cells' physiological activities such as hyperplasia or apoptosis. When the steady‐state balance of the intestinal microecology is disturbed, the existing core intestinal microbiota network changes and leads to obesity, diabetes, and many other diseases, especially irritable bowel syndrome, inflammatory bowel disease (IBD), and colorectal malignancy. Intestinal diseases, including tumors, are particularly closely related to intestinal microecology. This article systematically discusses the research progress on the relationship between IBD and intestinal microecology from the pathogenesis, treatment methods of IBD, and the changes in intestinal microbiota.
Collapse
Affiliation(s)
- Qianhui Fu
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Jian Cui
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| |
Collapse
|
27
|
Cao B, Wang S, Li R, Wang Z, Li T, Zhang Y, Dong B, Li Y, Lin M, Li X, Xiao X, Li C, Li G. Xihuang Pill enhances anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Biomed Pharmacother 2022; 151:113081. [PMID: 35605293 DOI: 10.1016/j.biopha.2022.113081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Lung cancer poses a serious threat to human health. Although targeted therapies have led to breakthroughs in the treatment of lung cancer, drug resistance and side effects limit their clinical applications. Xihuang pill (XHW), a classical anti-cancer traditional Chinese medicine formula, has been clinically proven to be an effective complementary therapy in the treatment of various of cancers. However, the underlying mechanism for its use in combination with anti-cancer drugs remains unclear. Here, we explored the anti-lung cancer effect of XHW combined with anlotinib in mice bearing Lewis lung cancer (LLC). We used gut microbiota and transcriptomics to elucidate the regulatory properties of XHW in improving anti-lung cancer effect of anlotinib. The results showed that combination treatment of XHW with Anlotinib significantly inhibited tumor growth in LLC-bearing mice. We found that XHW played a key role in the regulation of gut microbiota using 16 s rRNA sequencing analysis. Specifically, XHW increased the proportion of the beneficial bacteria Bacteroides and g_norank_f_Muribaculaceae. Based on transcriptomic analysis of tumor tissues, differentially expressed genes in the combination therapy group were related to biological processes concerning angiogenesis, such as regulation of blood vessel diameter, regulation of tube diameter, and regulation of tube size. Our data suggest that XWH enhances the anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Combination therapy with anlotinib and XHW may be a novel therapeutic strategy for lung cancer patients.
Collapse
Affiliation(s)
- Bo Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shiyuan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhihong Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Taifeng Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yuanyuan Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Bin Dong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yingying Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Mengmeng Lin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Xingjie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
28
|
Baptista BG, Ribeiro M, Cardozo LF, Leal VDO, Regis B, Mafra D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin Nutr ESPEN 2022; 49:1-16. [PMID: 35623800 DOI: 10.1016/j.clnesp.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/10/2023]
Abstract
Ginger (Zingiber officinale) is a famous dietary spice rich in bioactive components like gingerols, and it has been used for a long time as food and medicine. Indeed, clinical studies have confirmed the anti-inflammatory and antioxidant properties of ginger. Thus, ginger seems to be an excellent complementary nutritional strategy for non-communicable diseases (NCD) such as obesity, diabetes, cardiovascular disease and chronic kidney disease. This narrative review aims to discuss the possible effects of ginger on the mitigation of common complications such as inflammation, oxidative stress, and gut dysbiosis in NCD.
Collapse
Affiliation(s)
- Beatriz G Baptista
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Viviane de O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State of Rio de Janeiro University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
29
|
Vita AA, McClure R, Farris Y, Danczak R, Gundersen A, Zwickey H, Bradley R. Associations between Frequency of Culinary Herb Use and Gut Microbiota. Nutrients 2022; 14:nu14091981. [PMID: 35565947 PMCID: PMC9099813 DOI: 10.3390/nu14091981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
While evidence suggests that culinary herbs have the potential to modulate gut microbiota, much of the current research investigating the interactions between diet and the human gut microbiome either largely excludes culinary herbs or does not assess use in standard culinary settings. As such, the primary objective of this study was to evaluate how the frequency of culinary herb use is related to microbiome diversity and the abundance of certain taxa, measured at the phylum level. In this secondary data analysis of the INCLD Health cohort, we examined survey responses assessing frequency of culinary herb use and microbiome analysis of collected stool samples. We did not observe any associations between frequency of culinary herb use and Shannon Index, a measure of alpha diversity. Regarding the abundance of certain taxa, the frequency of use of polyphenol-rich herbs and herbs with certain quantities of antibacterial compounds was positively associated with Firmicutes abundance, and negatively associated with Proteobacteria abundance. Additionally, the total number of herbs used with high frequency, defined as over three times per week, was also positively associated with Firmicutes abundance, independent of adjustments, and negatively associated with Proteobacteria abundance, after adjusting for dietary factors. Frequency of culinary herb use was not associated with Bacteroidota or Actinobacteria abundance.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
- Correspondence:
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| |
Collapse
|
30
|
Li P, Li M, Song Y, Huang X, Wu T, Xu ZZ, Lu H. Green Banana Flour Contributes to Gut Microbiota Recovery and Improves Colonic Barrier Integrity in Mice Following Antibiotic Perturbation. Front Nutr 2022; 9:832848. [PMID: 35369097 PMCID: PMC8964434 DOI: 10.3389/fnut.2022.832848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Green banana flour (GBF) is rich in resistant starch that has been used as a prebiotic to exert beneficial effects on gut microbiota. In this study, GBF was evaluated for its capacity to restore gut microbiota and intestinal barrier integrity from antibiotics (Abx) perturbation by comparing it to natural recovery (NR) treatment. C57B/L 6 J mice were exposed to 3 mg ciprofloxacin and 3.5 mg metronidazole once a day for 2 weeks to induce gut microbiota dysbiosis model. Then, GBF intervention at the dose of 400 mg/kg body weight was conducted for 2 weeks. The results showed that mice treated with Abx displayed increased gut permeability and intestinal barrier disruption, which were restored more quickly with GBF than NR treatment by increasing the secretion of mucin. Moreover, GBF treatment enriched beneficial Bacteroidales S24-7, Lachnospiraceae, Bacteroidaceae, and Porphyromonadaceae that accelerated the imbalanced gut microbiota restoration to its original state. This study puts forward novel insights into the application of GBF as a functional food ingredient to repair gut microbiota from Abx perturbation.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ming Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hui Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Huan P, Wang L, He Z, He J. The Role of Gut Microbiota in the Progression of Parkinson's Disease and the Mechanism of Intervention by Traditional Chinese Medicine. Neuropsychiatr Dis Treat 2022; 18:1507-1520. [PMID: 35923300 PMCID: PMC9341349 DOI: 10.2147/ndt.s367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative disease of the nervous system that seriously affects the quality of life of the patients. The pathogenesis of PD is not yet fully clear. Previous studies have confirmed that patients with PD exhibit obvious gut microbiota imbalance, while intervention of PD by regulating the gut microbiota has become an important approach to the prevention and treatment of this disease. Traditional Chinese medicine (TCM) has been shown to be safe and effective in treating PD. It has the advantages of affecting multiple targets. Studies have shown TCM can regulate gut microbiota. However, the specific mechanism of action is still unclear. Therefore, this article will mainly discuss the association of the alteration of the gut microbiota and the incidence of PD, the advantages of TCM in treating PD, and the mechanism of regulating gut microbiota by TCM to treat PD. It will clarify the target and mechanism of TCM treating PD by acting gut microbiota and provided a novel methodology for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuqing He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiancheng He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
32
|
Lai W, Yang S, Lin X, Zhang X, Huang Y, Zhou J, Fu C, Li R, Zhang Z. Zingiber officinale: A Systematic Review of Botany, Phytochemistry and Pharmacology of Gut Microbiota-Related Gastrointestinal Benefits. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1007-1042. [PMID: 35729087 DOI: 10.1142/s0192415x22500410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a traditional edible medicinal herb with a wide range of uses and long cultivation history. Fresh ginger (Zingiberis Recens Rhizoma; Sheng Jiang in Chinese, SJ) and dried ginger (Zingiberis Rhizoma; Gan Jiang in Chinese, GJ) are designated as two famous traditional Chinese herbal medicines, which are different in plant cultivation, appearances and functions, together with traditional applications. Previous researches mainly focused on the differences in chemical composition between them, but there was no systematical comparison on the similarity concerning research achievements of the two herbs. Meanwhile, ginger has traditionally been used for the treatment of gastrointestinal disorders, but so far, the possible interaction with human gut microbiota has hardly been considered. This review comprehensively presents similarities and differences between SJ and GJ retrospectively, particularly proposing them the significant differences in botany, phytochemistry and ethnopharmacology, which can be used as evidence for clinical application of SJ and GJ. Furthermore, the pharmacology of gut microbiota-related gastrointestinal benefits has also been discussed in order to explore better ways to prevent and treat gastrointestinal disorders, which can be used as a reference for further research.
Collapse
Affiliation(s)
- Wenjing Lai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shasha Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xia Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - You Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jingwei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co., Ltd., Pengzhou 610081, P. R. China
| |
Collapse
|
33
|
Ma X, Xu T, Qian M, Zhang Y, Yang Z, Han X. Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model. Microbiol Res 2021; 255:126942. [PMID: 34915267 DOI: 10.1016/j.micres.2021.126942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Faecal microbiota transplantation (FMT) is a promising approach to modulate the gut microbiota. Gut microbiota dysbiosis caused by antibiotic administration is a universal problem. This study aimed to evaluate the effect of FMT on the dysbiosis of gut microbiota and metabolic profiles and injury of the intestinal barrier induced by antibiotics and used a neonatal piglet model. Neonatal piglets were administered ampicillin for 3 days, and antibiotic-induced dysbiosis was evaluated by the occurrence of diarrhoea and alteration of gut microbiota. Then, FMT was conducted for 3 days to rebuild the gut microbiota. High-throughput sequencing and a mass spectrometry platform were used for integrated microbiome-metabolome analysis. The results showed that antibiotics led to a decline in the diversity of gut microbiota. Furthermore, there was an increase in the relative abundance of potential pathogenic bacteria, such as Oscillibacter, Pseudomonas and Eubacterium, and an increase in the relative abundance of tetracycline resistance genes (tet genes). FMT restored the diversity and promoted the relative abundance of beneficial bacteria, such as Parabacteroides, Dorea and Parasutterella, while decreasing the relative abundance of tet genes. Untargeted metabolomics analysis found that alpha linolenic acid and linoleic acid metabolism were the key metabolic pathways utilized in the FMT group, and targeted metabolomics analysis further verified the variation in the associated metabolites arachidonic acid and conjugated linoleic acid. FMT also significantly enhanced the relative expression of tight junction (ZO-1, claudin-1 and occludin) and adherens junction (β-catenin, E-cadherin) proteins and anti-inflammatory cytokines (IL-10, TGF-β1) and reduced the production of proinflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ) in the colon. FMT not only modulated the gut microbiota composition and microbial metabolism but also reduced the relative abundance of tet genes, improving the intestinal barrier function and inflammatory responses in antibiotic-treated piglets.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
34
|
Zeng X, Jia H, Zhang X, Wang X, Wang Z, Gao Z, Yuan Y, Yue T. Supplementation of kefir ameliorates azoxymethane/dextran sulfate sodium induced colorectal cancer by modulating the gut microbiota. Food Funct 2021; 12:11641-11655. [PMID: 34724014 DOI: 10.1039/d1fo01729b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the efficacy of kefir on colorectal cancer (CRC) via regulating the microbiota structure in the colon using the azoxymethane/dextran sulfate sodium (AOM/DSS) induced CRC mouse model. Mice in the treatment group were orally administered with milk or kefir. The gut microbiota composition was assessed by internally transcribed spacer 2 (ITS2) and 16S rRNA high-throughput sequencing. Furthermore, the biomarkers associated with the gut barrier, inflammation, and cell proliferation regulators were evaluated. The results indicated that the size and the amount of tumor were decreased and the immunity regulators (TNF-α, IL-6, and IL-17a) and oncocyte proliferation indicator (Ki67, NF-κB, and β-catenin) were all decreased. Increased short chain fatty acids (SCFAs) lowered the pH in the colon and helped enhance the intestinal barrier. The Firmicutes/Bacteroidetes ratio and Ascomycota/Basidiomycota ratio were decreased at the phylum level; the relative abundance of probiotics was increased and the pathogenic bacterium (Clostridium sensu stricto, Aspergillus and Talaromyces) were decreased after supplementation of kefir. Consequently, kefir could regulate the gut microbiota composition and ameliorate AOM/DSS induced colorectal cancer.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xiao Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
35
|
Zhang Y, Yu F, Hao J, Nsabimana E, Wei Y, Chang X, Liu C, Wang X, Li Y. Study on the Effective Material Basis and Mechanism of Traditional Chinese Medicine Prescription (QJC) Against Stress Diarrhea in Mice. Front Vet Sci 2021; 8:724491. [PMID: 34671661 PMCID: PMC8520981 DOI: 10.3389/fvets.2021.724491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K-Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K-Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingyou Hao
- Harbin Lvda Sheng Animal Medicine Manufacture Co., Ltd., Harbin, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanru Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaohan Chang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaozhen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Harbin Herb and Herd Bio-Technology Co., Ltd., Harbin, China
| |
Collapse
|
36
|
Li A, Liu B, Li F, He Y, Wang L, Fakhar-E-Alam Kulyar M, Li H, Fu Y, Zhu H, Wang Y, Jiang X. Integrated Bacterial and Fungal Diversity Analysis Reveals the Gut Microbial Alterations in Diarrheic Giraffes. Front Microbiol 2021; 12:712092. [PMID: 34475863 PMCID: PMC8406688 DOI: 10.3389/fmicb.2021.712092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been demonstrated to be associated with multiple gastrointestinal diseases, but information regarding the gut microbial alternations in diarrheic giraffe remains scarce. Here, 16S rDNA and ITS gene amplicon sequencing were conducted to investigate the gut microbial composition and variability in diarrheic giraffes. Results demonstrated that Firmicutes and Proteobacteria were the most dominant phyla in the gut bacterial community, whereas Ascomycota and Basidiomycota were observed to be predominant in the gut fungal community regardless of health status. However, the species and relative abundance of preponderant bacterial and fungal genera in healthy and diarrheic giraffes were different. In contrast to the relatively stabilized gut fungal community, gut bacterial community displayed a significant decrease in the alpha diversity, accompanied by distinct changes in taxonomic compositions. Bacterial taxonomic analysis revealed that the relative abundances of eight phyla and 12 genera obviously increased, whereas the relative abundances of two phyla and eight genera dramatically decreased during diarrhea. Moreover, the relative richness of five fungal genera significantly increased, whereas the relative richness of seven fungal genera significantly declined in diarrheic giraffes. Taken together, this study demonstrated that diarrhea could cause significant alternations in the gut microbial composition of giraffes, and the changes in the gut bacterial community were more significant than those in the gut fungal community. Additionally, investigating the gut microbial characteristics of giraffes in different health states is beneficial to provide a theoretical basis for establishing a prevention and treatment system for diarrhea from the gut microbial perspective.
Collapse
Affiliation(s)
- Aoyun Li
- Hubei Three Gorges Polytechnic, Yichang, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- Animal Husbandry Station of Bijie City, Bijie, China
| | | | - Huade Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Yuhang Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiong Jiang
- Hubei Three Gorges Polytechnic, Yichang, China
| |
Collapse
|