1
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2025; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
2
|
Wu X, Ding C, Liu X, Ding Q, Zhang S, Wang Y, Xin C, Wei H, Mao R, Zhang G, Zhao T, Liu W. The role of phlorizin liposome-embedded oxidized sodium alginate/carboxymethyl chitosan in diabetic wound healing. Int J Biol Macromol 2024; 279:135324. [PMID: 39241996 DOI: 10.1016/j.ijbiomac.2024.135324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Wound healing in diabetic patients is often complicated by issues like inflammation, infection, bleeding, and fluid retention. To tackle these challenges, it is essential to create hydrogel dressings with anti-inflammatory, antibacterial, and antioxidative properties. This study aimed to synthesize Phlorizin-Liposomes (PL) through the thin-film dispersion method and integrate them into an oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) hydrogel scaffold, resulting in an OSA/CMCS/PL (PLOCS) composite hydrogel via a Schiff base reaction. Characterization of the composite was performed using FTIR, TEM, and SEM techniques. The research assessed the swelling behavior, antibacterial effectiveness, and biocompatibility of the PLOCS composite hydrogel, while also investigating how PLOCS facilitates diabetic wound healing. The results demonstrated that PLOCS effectively controls drug release, possesses favorable swelling and degradation characteristics, and shows significant antioxidative properties along with in vitro biocompatibility. Histological analysis confirmed that PLOCS supports the proliferation of healthy epithelial tissue and collagen production. Western blotting indicated that PLOCS diminishes inflammation by inhibiting the TLR4/NF-κB/MyD88 pathway and activates Nrf2 to boost wound healing, increasing the levels of antioxidative enzymes such as HO-1, NQO1, and GCLC. In summary, PLOCS presents a promising new option for advanced wound dressings aimed at treating diabetic ulcers.
Collapse
Affiliation(s)
- Xiaoyu Wu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chenran Xin
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Rui Mao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guiping Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
3
|
Ji Z, Ma W, Liang P, Wang X, Zhang S, Han Y, Guo Y. Anti-inflammatory potential of mycoprotein peptides obtained from fermentation of Schizophyllum commune DS1 with young apples. Int J Biol Macromol 2024; 281:136638. [PMID: 39419141 DOI: 10.1016/j.ijbiomac.2024.136638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Fermenting edible filamentous fungi with food industry by-products, such as young apples, shows promise for producing mycoproteins and functional peptides. This study aimed to evaluate the production of mycoprotein by fermenting different edible-grade filamentous fungi using young apples as a substrate. Schizophyllum commune DS1 (DS1) demonstrated significant potential for generating mycoprotein, yielding 33.56 ± 0.82 %. From the hydrolysis of DS1 mycoprotein, three polypeptides were identified with the capacity of inhibiting nitric oxide synthase (iNOS): DNIQGITKPAIR (DR12), SDNAFGGR (SR8), and ASDPSGF (AF7). Computational analysis, including bioinformatics and molecular docking, indicated their high affinity for inhibiting iNOS, with binding energies of -452.8157 kcal/mol, -388.0222 kcal/mol, and -323.8843 kcal/mol, respectively. This binding was facilitated through various interactions such as electrostatic forces, π-π interactions, hydrogen bonds, and non-covalent interactions, resulting in potential anti-inflammatory properties. Furthermore, cell experiments using RAW264.7 macrophages demonstrated that these peptides effectively suppressed nitric oxide production in a dose-dependent manner. Additionally, they reduced the production of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), inducible iNOS, and cell apoptosis. In conclusion, this study presents a novel approach for developing plant-based mycoproteins and a new source for discovering food-derived bioactive peptides.
Collapse
Affiliation(s)
- Zhengmei Ji
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Wenjun Ma
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Pengfei Liang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Yanhui Han
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| |
Collapse
|
4
|
Xie G, Xu Z, Li F, Kong M, Wang P, Shao Y. Aerobic Exercise Ameliorates Cognitive Disorder and Declined Oxidative Stress via Modulating the Nrf2 Signaling Pathway in D-galactose Induced Aging Mouse Model. Neurochem Res 2024; 49:2408-2422. [PMID: 38839706 DOI: 10.1007/s11064-024-04164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The aim of this research was to explore the potential of treadmill exercise in preventing brain aging and neurodegenerative diseases caused by oxidative stress, by studying its effects on D-galactose-induced mice and the mechanisms involved. The results showed that C57BL/6 mice induced with D-gal exhibited cognitive impairment and oxidative stress damage, which was ameliorated by treadmill exercise. The Morris water maze also showed that exercise improved cognitive performance in aging mice and alleviated hippocampal and mitochondrial damage. The study also found that treadmill exercise increased the expression of nuclear factor Nrf2, p-GSK3β, HO-1, NQO1, BDNF, and Bcl-2 proteins while decreasing the expression of Bax. Furthermore, there was a substantial increase in the levels of CAT, GSH-PX and SOD in the serum, along with a decrease in MDA levels. The outcomes propose that aerobic exercise has the potential to hinder oxidative stress and cell death in mitochondria through the modulation of the Nrf2/GSK3β signaling pathway, thus improving cognitive impairment observed in the aging model induced by D-galactose. It appears that treadmill exercise could potentially serve as an effective therapeutic approach to mitigating brain aging and neurodegenerative diseases triggered by oxidative stress.
Collapse
Affiliation(s)
- Guangjing Xie
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Labortary, Wuhan, Hubei, China
| | - Zixuan Xu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Feizhou Li
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Meng Kong
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Labortary, Wuhan, Hubei, China.
| | - Yuping Shao
- College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Labortary, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Yang Y, Ma S, Li A, Xia G, Li M, Ding C, Sun X, Yan L, Yang M, Zhao T. Antibacterial and antioxidant phlorizin-loaded nanofiber film effectively promotes the healing of burn wounds. Front Bioeng Biotechnol 2024; 12:1428988. [PMID: 39161349 PMCID: PMC11330827 DOI: 10.3389/fbioe.2024.1428988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Burns usually result in damage and loss of skin forming irregular wound wounds. The lack of skin tissue protection makes the wound site highly vulnerable to bacterial infections, hindering the healing process. However, commonly used wound dressings do not readily provide complete coverage of irregular wounds compared to regular wounds. Therefore, there is an urgent need to prepare a wound dressing with high antimicrobial efficacy for the administration of drugs to irregular wounds. In this study, a chitosan (CS)/polyvinylpyrrolidone (PVP) composite nanofiber membrane (CS/PVP/Phlorizin) loaded with root bark glycosides (Phlorizin) was developed using an electrostatic spinning technique. The incorporation of phlorizin, a natural antioxidant, into the fiber membranes notably boosted their antimicrobial and antioxidant capabilities, along with demonstrating excellent hydrophilic characteristics. In vitro cellular experiments showed that CS/PVP/Phlorizin increased Hacat cell viability with the presence of better cytocompatibility. In scald wound healing experiments, Phlorizin-loaded nanofibrous membranes significantly promoted re-epithelialization and angiogenesis at the wound site, and reduced the inflammatory response at the wound site. Therefore, the above results indicate that this nanofiber membrane is expected to be an ideal dressing for burn wounds.
Collapse
Affiliation(s)
- Ying Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co, Ltd., Dunhua, China
| | - Guofeng Xia
- Jilin Aodong Yanbian Pharmaceutical Co, Ltd., Dunhua, China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
- Jilin Aodong Yanbian Pharmaceutical Co, Ltd., Dunhua, China
| | - Xiaofei Sun
- Jilin Aodong Yanbian Pharmaceutical Co, Ltd., Dunhua, China
| | - Li Yan
- Jilin Aodong Yanbian Pharmaceutical Co, Ltd., Dunhua, China
| | - Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
- Jilin Aodong Yanbian Pharmaceutical Co, Ltd., Dunhua, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
6
|
Wu DP, Yi W, Zhao YD, Wei YS, Liu LL, Yan QQ, Yu C, Liu JY, Zhu XX, Zhong ZG, Huang JL. Gliclazide Ameliorates Neuronal Injury by Attenuating Oxidative Stress in D-gal-Induced Senescent Cells and Aging Mice. Mol Neurobiol 2024; 61:4391-4401. [PMID: 38087171 DOI: 10.1007/s12035-023-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/17/2023] [Indexed: 07/11/2024]
Abstract
Enhancement of oxidative stress and resultant neuronal injury play important roles in initiating cognitive impairment during the aging process. Thus, attenuating oxidative injury is regarded as a profitable therapeutic strategy for age-associated cognitive impairment. Previous studies showed that gliclazide (Gli) had a protective role in neuronal injury from cerebral ischemia/reperfusion (I/R) injury. However, whether Gli has a profitable effect on age-associated cognitive impairment remains largely unclear. The present study showed that Gli held the potential to attenuate neuronal apoptosis in D-gal-induced senescent cells and aging mice. Additionally, Gli could alleviate synaptic injury and cognitive function in D-gal-induced aging mice. Further study showed that Gli could attenuate oxidative stress in D-gal-induced senescent cells and aging mice. The p38 MAPK pathway was predicted as the downstream target of Gli retarding oxidative stress using in silico analysis. Further studies revealed that Gli attenuated D-gal-induced phosphorylation of p38 and facilitated Nrf2 nuclear expression, indicating that the anti-oxidative property of Gli may be associated with the p38 MAPK pathway. The study demonstrates that Gli has a beneficial effect on ameliorating D-gal-induced neuronal injury and cognitive impairment, making this compound a promising agent for the prevention and treatment of age-associated cognitive impairment.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jin-Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Xiao Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
7
|
Zhao W, Zhao B, Meng X, Li B, Wang Y, Yu F, Fu C, Yu X, Li X, Dai C, Wang J, Gao H, Cheng M. The regulation of MFG-E8 on the mitophagy in diabetic sarcopenia via the HSPA1L-Parkin pathway and the effect of D-pinitol. J Cachexia Sarcopenia Muscle 2024; 15:934-948. [PMID: 38553831 PMCID: PMC11154748 DOI: 10.1002/jcsm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diabetic sarcopenia is a disease-related skeletal muscle disorder that causes progressive symptoms. The complete understanding of its pathogenesis is yet to be unravelled, which makes it difficult to develop effective therapeutic strategies. This study investigates how MFG-E8 affects mitophagy and the protective role of D-pinitol (DP) in diabetic sarcopenia. METHODS In vivo, streptozotocin-induced diabetic SAM-R1 (STZ-R1) and SAM-P8 (STZ-P8) mice (16-week-old) were used, and STZ-P8 mice were administrated of DP (150 mg/kg per day) for 6 weeks. Gastrocnemius muscles were harvested for histological analysis including transmission electron microscopy. Proteins were evaluated via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) assay. In vitro, advanced glycation end products (AGEs) induced diabetic and D-galactose (DG) induced senescent C2C12 models were established and received DP, MFG-E8 plasmid (Mover)/siRNA (MsiRNA), or 3-MA/Torin-1 intervention. Proteins were evaluated by IF and WB assay. Immunoprecipitation (IP) and co-immunoprecipitation (CO-IP) were used for hunting the interacted proteins of MFG-E8. RESULTS In vivo, sarcopenia, mitophagy deficiency, and up-regulated MFG-E8 were confirmed in the STZ-P8 group. DP exerted protective effects on sarcopenia and mitophagy (DP + STZ-P8 vs. STZ-P8; all P < 0.01), such as increased lean mass (8.47 ± 0.81 g vs. 7.08 ± 1.64 g), grip strength (208.62 ± 39.45 g vs. 160.87 ± 26.95 g), rotarod tests (109.7 ± 11.81 s vs. 59.3 ± 20.97 s), muscle cross-sectional area (CSA) (1912.17 ± 535.61 μm2 vs. 1557.19 ± 588.38 μm2), autophagosomes (0.07 ± 0.02 per μm2 vs. 0.02 ± 0.01 per μm2), and cytolysosome (0.07 ± 0.03 per μm2 vs. 0.03 ± 0.01 per μm2). DP down-regulated MFG-E8 in both serum (DP + STZ-P8: 253.19 ± 34.75 pg/mL vs. STZ-P8: 404.69 ± 78.97 pg/mL; P < 0.001) and gastrocnemius muscle (WB assay. DP + STZ-P8: 0.39 ± 0.04 vs. STZ-P8: 0.55 ± 0.08; P < 0.01). DP also up-regulated PINK1, Parkin and LC3B-II/I ratio, and down-regulated P62 in gastrocnemius muscles (all P < 0.01). In vitro, mitophagy deficiency and MFG-E8 up-regulation were confirmed in diabetic and senescent models (all P < 0.05). DP and MsiRNA down-regulated MFG-E8 and P62, and up-regulated PINK1, Parkin and LC3B-II/I ratio to promote mitophagy as Torin-1 does (all P < 0.05). HSPA1L was confirmed as an interacted protein of MFG-E8 in IP and CO-IP assay. Mover down-regulated the expression of Parkin via the HSPA1L-Parkin pathway, leading to mitophagy inhibition. MsiRNA up-regulated the expression of PINK1 via SGK1, FOXO1, and STAT3 phosphorylation pathways, leading to mitophagy stimulation. CONCLUSIONS MFG-E8 is a crucial target protein of DP and plays a distinct role in mitophagy regulation. DP down-regulates the expression of MFG-E8, reduces mitophagy deficiency, and alleviates the symptoms of diabetic sarcopenia, which could be considered a novel therapeutic strategy for diabetic sarcopenia.
Collapse
Affiliation(s)
- Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Bin Zhao
- Postdoctoral Research StationShandong University of Traditional Chinese MedicineJinanChina
| | - Xinyue Meng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Health Management Center (East Area)Qilu Hospital of Shandong UniversityJinanChina
| | - Yajuan Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xiaoli Li
- Department of PharmacyQilu Hospital of Shandong UniversityJinanChina
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| |
Collapse
|
8
|
Feng W, Lv C, Cheng L, Song X, Li X, Xie H, Chen S, Wang X, Xue L, Zhang C, Kou J, Wang L, Zhao H. Targeting ERS-mitophagy in hippocampal neurons to explore the improvement of memory by tea polyphenols in aged type 2 diabetic rats. Free Radic Biol Med 2024; 213:293-308. [PMID: 38286317 DOI: 10.1016/j.freeradbiomed.2024.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Increasing evidence demonstrated that mitophagy and endoplasmic reticulum stress (ERS) was closely associated with memory decline in elderly type 2 diabetes mellitus (T2DM). Tea polyphenols (TP), an excellent natural antioxidant, has been reported to have neuroprotective properties in aging and diabetes, but the underlying mechanisms are still not fully understood. This study targets ERS-mitophagy in hippocampal neurons to investigate the improvement effect of memory in aged T2DM rats by TP. Rats were randomly divided into the control group, the aged group, the aged T2DM model group, the TP 75, 150, 300 mg/kg groups. TP 300 mg/kg ameliorated mitophagy by decreasing the levels of p-mTOR (S2448), P62 and HSP60 and increasing the levels of PINK1 and Parkin, the ratio of LC3Ⅱ/LC3Ⅰ, co-localization of LC3 and HSP60 and the number of autophagosomes and autolysosomes. TP 300 mg/kg attenuated ERS by downregulating the levels of p-PERK, p-eIF2α, ATF4, GRP78 and restoring the ER structure. To further verify epigallocatechin gallate (EGCG), which is the main active component of TP, enhanced mitophagy by inhibiting ERS, PC12 cells were pretreated with ERS activator tunicamycin (TM) or ERS inhibitor 4-phenylbutyric acid (4-PBA). The results showed that the improvement of mitophagy by EGCG was inhibited by TM and promoted by 4-PBA. Collectively, ERS-mitophagy in hippocampal neurons plays a key role in the improvement of memory by TP in aged T2DM rats. This study will provide a new perspective and strategy for the prevention of memory decline in elderly with T2DM.
Collapse
Affiliation(s)
- Wenjuan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Chenhui Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xin Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, Shanxi, 030012, PR China
| | - Haoran Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Shuangzhi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Lushan Xue
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Cheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Jie Kou
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, PR China.
| |
Collapse
|
9
|
Ni T, Zhang S, Rao J, Zhao J, Huang H, Liu Y, Ding Y, Liu Y, Ma Y, Zhang S, Gao Y, Shen L, Ding C, Sun Y. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules 2024; 29:741. [PMID: 38338482 PMCID: PMC10856272 DOI: 10.3390/molecules29030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1β/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.
Collapse
Affiliation(s)
- Tongjia Ni
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Jia Rao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Jiaqi Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Haiqi Huang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Ying Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yue Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yaqian Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yuchi Ma
- Jilin Aodong Health Technology Co., Ltd., Yanbian 133700, China;
| | - Shoujun Zhang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China;
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.G.); (L.S.)
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.G.); (L.S.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
- Jilin Aodong Health Technology Co., Ltd., Yanbian 133700, China;
| | - Yunpeng Sun
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| |
Collapse
|
10
|
Liu Y, Gong Y, Li M, Li J. Quercetin protects against hyperglycemia-induced retinopathy in Sprague Dawley rats by regulating the gut-retina axis and nuclear factor erythroid-2-related factor 2 pathway. Nutr Res 2024; 122:55-67. [PMID: 38185061 DOI: 10.1016/j.nutres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Hyperglycemia-related retinopathy is a disease with a high blindness rate. Recent reports indicate that many flavonol compounds have the potential to prevent the occurrence of disease in the retina by regulating the gut-retina axis. Here, we hypothesized that quercetin could alleviate the symptoms of retinopathy. To clarify the mechanism, Sprague Dawley rats were fed a high-fat diet containing quercetin for 12 weeks and injected with streptozotocin in the ninth week. Additionally, neomycin and ampicillin were used to establish a pseudo-sterile rat model. Afterward, changes in the retina were investigated by using electroretinogram and optical coherence tomography. Blood and tissue samples were collected and biochemical components were analyzed. The extent of intestinal injury was determined via hematoxylin-eosin staining. Microbial community structure was analyzed by using 16S ribosomal RNA sequencing. Finally, the expression of genes was analyzed using real-time polymerase chain reaction. The results showed that quercetin reduced the decline in electroretinography amplitude and outer nuclear layer thickness, increased the activities of antioxidant enzymes, decreased the contents of proinflammatory factors and blood glucose, enhanced the concentration of insulin, and inhibited intestinal dysbiosis and improved gut morphology. Importantly, the underexpression of nuclear factor erythroid-2 related factor 2 in the retina was reversed by quercetin. However, trend changes were no longer significant in most of the indicators after antibiotic treatment. In summary, quercetin has therapeutic effects on retinopathy by regulating the gut-retina axis and nuclear factor erythroid-2 related factor 2 pathway, and the presence of gut microbiota helps quercetin exert its effects on the retina.
Collapse
Affiliation(s)
- Yaojie Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yibo Gong
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Mengting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Zhang Y, Gao C, Zhu M, Chen F, Sun Y, Jiang Y, Zhou Q, Gao X. Astaxanthin, Haematococcus pluvialis and Haematococcus pluvialis Residue Alleviate Liver Injury in D-Galactose-induced Aging Mice through Gut-liver Axis. J Oleo Sci 2024; 73:729-742. [PMID: 38692895 DOI: 10.5650/jos.ess24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.
Collapse
Affiliation(s)
| | - Chunhao Gao
- College of Life Sciences, Qingdao University
| | - Mengjia Zhu
- College of Life Sciences, Qingdao University
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Yongye Sun
- Institute of Nutrition and Health, College of Public Health, Qingdao University
| | - Yu Jiang
- Experimental Animal Platform, Biomedical Center of Qingdao University, Qingdao University
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Xiang Gao
- College of Life Sciences, Qingdao University
- Shandong Hongzai Biotechnology Co., LTD
| |
Collapse
|
12
|
Zhang X, Li L, Chen J, Hu M, Zhang Y, Zhang X, Lu Y. Investigation of anti-depression effects and potential mechanisms of the ethyl acetate extract of Cynomorium songaricum Rupr. through the integration of in vivo experiments, LC-MS/MS chemical analysis, and a systems biology approach. Front Pharmacol 2023; 14:1239197. [PMID: 37954847 PMCID: PMC10634308 DOI: 10.3389/fphar.2023.1239197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Cynomorium songaricum Rupr. has long been used as an anti-inflammatory, antidepressant, and anti-aging agent in traditional Chinese medicine in Asia. Its ethyl acetate extract (ECS) has been identified as the main antioxidant component with neuroprotective and estrogen-like effects. However, the potential of ECS in treating depression has not been explored yet. Methods: We identified the primary metabolites in ECS in this study using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). Network analysis was used to find the potential targets and pathways associated with the anti-neuroinflammatory depression action of the ECS. In addition, we established a corticosterone (CORT)-induced depression mouse model to assess ECS's antidepressant effects by monitoring various behavioral changes (e.g., sucrose preference, forced swimming, tail suspension, and open field tests) and biochemical indices of the hippocampus, and validating the network analysis results. Significant pathways underwent verification through western blotting based on network analysis prediction. Results: Our study demonstrates that ECS possesses significant antidepressant activity. The LC-MS/MS analysis of ECS identified 30 main metabolites, including phloridzin, phlorizin, ursolic acid, and naringenin, as well as other flavonoids, terpenoids, and phenolic acids. These metabolites were found to be associated with 64 candidate target proteins related to neuroinflammatory depression from the database, and ten hub proteins were identified through filtration: CXCL8, ICAM1, NOS2, SELP, TNF, IL6, APP, ACHE, MAOA and ADA. Functional enrichment analyses of the candidate targets revealed their primary roles in regulating cytokine production, inflammatory response, cytokine activity, and tumor necrosis factor receptor binding. In vivo, ECS improved hippocampal neuroinflammation in the mouse model. Specifically, ECS reduced the expression of inflammatory factors in the hippocampus, inhibited M1 microglial cell polarization, and alleviated depression through the regulation of the NF-κB-NLRP3 inflammation pathway. Conclusion: Based on experimental and network analysis, this study revealed for the first time that ECS exerted antidepression effect via anti-neuroinflammation. Our research provides valuable information on the use of ECS as an alternative therapeutic approach for depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Gavia-García G, Hernández-Álvarez D, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM, Rosado-Pérez J. The Supplementation of Sechium edule var. nigrum spinosum (Chayote) Promotes Nrf2-Mediated Antioxidant Protection in Older Adults with Metabolic Syndrome. Nutrients 2023; 15:4106. [PMID: 37836390 PMCID: PMC10574595 DOI: 10.3390/nu15194106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The aim was to determine the effect of Sechium edule var. nigrum spinosum (chayote) on gene expression related to antioxidant protection mechanisms and the inflammatory process in older adults with metabolic syndrome (MetS). A quasi-experimental study was carried out in a convenience sample of 46 older adults diagnosed with MetS: (i) placebo group (PG; n = 20); (ii) experimental group (EG; n = 26). The clinical, biochemical, anthropometric parameters and SOD, GPx, and CAT enzyme activity, alongside total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), cytokines (IL-6, IL-8 and TNF-α), and mRNA expression of SOD, GPx, CAT, IL-6, IL-8, TNF-α, Nrf2, NFkB p50, and NFkB p65, were measured at baseline and 6 months post-intervention. A statistically significant decrease was observed in TOS (baseline, 28.9 ± 3.6 vs. post, 23.7 ± 3.4, p < 0.01) and OSI (baseline, 24.1 ± 3.8 vs. post, 17.7 ± 4), as well as an increase in IL-6 (baseline, 10.7 ± 1.1 vs. post, 12.3 ± 2, p = 0.03), SOD activity (baseline, 167.1 ± 11.9 vs. post, 180.6 ± 7.6, p < 0.05), CAT activity (baseline, 1.0 ± 0.2 vs. post, 1.3 ± 0.2, p < 0.01), and TAS (baseline, 1.1 ± 0.1 vs. post, 1.4 ± 0.1, p < 0.01) in the EG compared to the PG. Regarding the expression of Nrf2, SOD, and IL-6, the EG showed a significant increase vs. basal levels (47%, 44%, and 43%, respectively). Our findings suggest that Sechium edule supplementation promotes the antioxidant response and decreases oxidative stress via Nrf2.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| |
Collapse
|
14
|
Dong L, Chen Y, Gu L, Gan M, Carrier A, Oakes K, Zhang X, Dong Z. Oral delivery of a highly stable superoxide dismutase as a skin aging inhibitor. Biomed Pharmacother 2023; 164:114878. [PMID: 37209626 DOI: 10.1016/j.biopha.2023.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
As an effective antioxidant enzyme, superoxide dismutase (SOD) has been widely used as a food supplement, cosmetic additive, and therapeutic agent. However, oral delivery of SOD is challenging due to its relative instability, limited bioavailability, and low absorption efficiency in the gastrointestinal (GI) tract. We addressed these issues using a highly stable superoxide dismutase (hsSOD) generated from a hot spring microbial sample. This SOD exhibited a specific activity of 5000 IU/mg while retaining its enzymatic activity under low pH environments of an artificial GI system and in the presence of surfactants and various proteolytic enzymes. The inhibitory effects of hsSOD against skin-aging was evaluated under both in vitro and in vivo experiments using fibroblast cell and D-galactose induced aging-mouse models, respectively. Effective oral delivery of hsSOD promises wide applicability in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongli Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Lihong Gu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Miao Gan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China.
| |
Collapse
|
15
|
Targeting Nrf2 and NF-κB Signaling Pathways in Cancer Prevention: The Role of Apple Phytochemicals. Molecules 2023; 28:molecules28031356. [PMID: 36771023 PMCID: PMC9919881 DOI: 10.3390/molecules28031356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.
Collapse
|
16
|
Ye M, Liu J, Deng G, Cai X, Zhang X, Yao L, Wu J, He X, Peng D, Yu N. Protective effects of Dendrobium huoshanense polysaccharide on D-gal induced PC12 cells and aging mice, in vitro and in vivo studies. J Food Biochem 2022; 46:e14496. [PMID: 36350934 DOI: 10.1111/jfbc.14496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022]
Abstract
Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) is the essential active ingredient of D.huoshanense and has high medicinal value. A high dose of D-galactose (D-gal) is commonly utilized in the aging model establishment. In this study, we explored whether DHP shields PC12 cells and aging mice from D-gal caused damage and the possible mechanism. In vitro experiments, D-gal induced PC12 cells were used to investigate, and then DHP was used for treatment. In vivo experiments, 72 SPF ICR male mice were randomly divided into six groups (control: normal saline; model: D-gal (400 mg/kg); VE group: VE (50 μg/ml); DHP groups: D-gal + DHP (15.6 mg/ml; 31.2 mg/ml; 62.4 mg/ml)). The results showed that DHP could enhance the viability of D-gal injured PC12 cells and prevent cell apoptosis. DHP effectively promoted the transition from phase G0/G1 to phase S and inhibited cell cycle arrest. DHP has a potential neuroprotective effect on D-gal caused cognitive and memory disorders in mice. On the one hand, DHP protects the antioxidant enzymes SOD, GSH-PX, and CAT from excessive ROS buildup. On the other hand, DHP was demonstrated to block the expression of the P53/P21 signaling pathway-related proteins P53, P21, and P16. These results imply that DHP could be a potential neuroprotective agent against aging. PRACTICAL APPLICATIONS: Cognitive and memory decline caused by aging problems has become a problem in recent years. There are many theories about aging, among which oxidative stress is considered to be one of the important pathophysiological parts of various diseases in the aging process. In this study, DHP could not only improve the damage of D-Gal to PC12 cells, but also improve the cognitive and memory impairment caused by D-Gal in mice. In conclusion, this study verified the anti-aging effect of DHP from in vitro and in vivo experiments, and its mechanism may involve the P53/P21 pathway. Therefore, this study indicated that polysaccharides from Dendrobium huoshanense, a traditional Chinese medicine of homologous medicine and food, had potential and industrial value as potential anti-aging drugs.
Collapse
Affiliation(s)
- Mengjuan Ye
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Junlin Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xianglin He
- Anhui Huoshan Changchong Chinese Herbal Medicine Co. Ltd, Huoshan, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
17
|
Xu P, Lin B, Deng X, Huang K, Zhang Y, Wang N. VDR activation attenuates osteoblastic ferroptosis and senescence by stimulating the Nrf2/GPX4 pathway in age-related osteoporosis. Free Radic Biol Med 2022; 193:720-735. [PMID: 36402439 DOI: 10.1016/j.freeradbiomed.2022.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis plays an essential role in the pathology of osteoporosis. This study investigated whether vitamin D receptor (VDR) activation could protect against age-related osteoporosis through an anti-ferroptosis mechanism. d-galactose (D-gal)-induced mice and VDR-knockout mice were used in the in-vivo study. The VDR activator (1,25(OH)2D3) attenuated senescence and ferroptosis in the D-gal-induced bone, as illustrated by downregulated senescence-associated secretory phenotype genes, improved mitochondrial morphology, elevated glutathione, and decreased lipid peroxidation markers (malondialdehyde and 4-hydroxynonenal). The pre-osteoblast MC3T3-E1 cells and primary rat osteoblasts were applied in the in-vitro studies. 1,25(OH)2D3 or ferroptosis inhibitor (ferrostatin-1) treatment downregulated the cellular senescence markers in D-gal-induced osteoblasts. Mechanistically, 1,25(OH)2D3 activated the VDR and its downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, resulting in the downregulation of lipid peroxidation. Nrf2 knockdown or addition of GPX4 inhibitor (RSL-3) blocked the protective effect of 1,25(OH)2D3 against D-gal-induced ferroptosis and senescence. VDR knockdown impeded the 1,25(OH)2D3-induced activation of Nrf2/GPX4 pathway in osteoblasts. Proteomics and immunofluorescence analysis confirmed that ferroptosis and suppression of the Nrf2/GPX4 pathway occurred in VDR-knockout mice. Our data demonstrated that ferroptosis played an essential role in age-related osteoporosis. The VDR activation attenuated osteoblast ferroptosis via stimulating the Nrf2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China
| | - Kai Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China; Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
18
|
Wang X, Li X, Li L, Yang X, Wang J, Liu X, Chen J, Liu S, Zhang N, Li J, Wang H. Hawthorn fruit extract ameliorates H 2O 2-induced oxidative damage in neuronal PC12 cells and prolongs the lifespan of Caenorhabditis elegans via the IIS signaling pathway. Food Funct 2022; 13:10680-10694. [PMID: 36172739 DOI: 10.1039/d2fo01657e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hawthorn (Crataegus pinnatifida) fruit has a long history of use as traditional Chinese medicine and is shown to have many health benefits including antioxidant and anti-aging. In this study, the anti-aging mechanism of hawthorn fruit extract (HFE) is predicted by network pharmacology and further verified in H2O2-induced PC12 cells and Caenorhabditis elegans. Network pharmacology predicted that the antiaging mechanism of HFE is mainly involved in phosphoinositide 3-kinase (PI3K)/AKT and the insulin/insulin-like growth factor-1 (IIS) signaling pathway. HFE significantly improved cell viability, increased superoxide dismutase, catalase, and glutathione peroxidase activity, decreased lactate dehydrogenase release, the level of reactive oxygen species (ROS), and malondialdehyde content in H2O2-induced PC12 cells (p < 0.05). HFE significantly increased the mean lifespan of C. elegans by 28.43% (100 μg mL-1) and enhanced the stress resistance to H2O2, paraquat, juglone, ultraviolet radiation, and heat shock. HFE also suppressed the accumulation of aging pigments, improved the body bending ability, increased antioxidant enzyme activities, and reduced the contents of ROS and malondialdehyde. In addition, relevant gene expression, lifespan experiments with mutant strains, and molecular docking studies supported the results that HFE might extend lifespan through the IIS signal pathway.
Collapse
Affiliation(s)
- Xinxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Xin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Luyi Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Xu Yang
- National center of supervision and inspection for processed food quality, Tianjin institute for food safety inspection technology, Tianjin 300457, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner MongoliaBayannur, China
| | - Xiaozhi Liu
- Department of neurosurgery, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Jingnan Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Nan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
19
|
DHPA Protects SH-SY5Y Cells from Oxidative Stress-Induced Apoptosis via Mitochondria Apoptosis and the Keap1/Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11091794. [PMID: 36139869 PMCID: PMC9495558 DOI: 10.3390/antiox11091794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress in the brain is highly related to the pathogenesis of Alzheimer’s disease (AD). It could be induced by the overproduction of reactive oxygen species (ROS), produced by the amyloid beta (Aβ) peptide and excess copper (Cu) in senile plaques and cellular species, such as ascorbic acid (AA) and O2. In this study, the protective effect of 5-hydroxy-7-(4′-hydroxy-3′-methoxyphenyl)-1-phenyl-3-heptanone (DHPA) on Aβ(1–42)/Cu2+/AA mixture-treated SH-SY5Y cells was investigated via in vitro and in silico studies. The results showed that DHPA could inhibit Aβ/Cu2+/AA-induced SH-SY5Y apoptosis, OH· production, intracellular ROS accumulation, and malondialdehyde (MDA) production. Further research demonstrated that DHPA could decrease the ratio of Bax/Bcl-2 and repress the increase of mitochondrial membrane potential (MMP) of SH-SY5Y cells, to further suppress the activation of caspase-3, and inhibit cell apoptosis. Meanwhile, DHPA could inhibit the Aβ/Cu2+/AA-induced phosphorylation of Erk1/2 and P38 in SH-SY5Y cells, and increase the expression of P-AKT. Furthermore, DHPA could bind to Keap1 to promote the separation of Nrf2 to Keap1 and activate the Keap1/Nrf2/HO-1 signaling pathway to increase the expression of heme oxygenase-1 (HO-1), quinone oxidoreductase-1 (NQO1), glutathione (GSH), and superoxide dismutase (SOD). Thus, our results demonstrated that DHPA could inhibit Aβ/Cu2+/AA-induced SH-SY5Y apoptosis via scavenging OH·, inhibit mitochondria apoptosis, and activate the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
|
20
|
Peptide-Calcium Chelate from Antler ( Cervus elaphus) Bone Enhances Calcium Absorption in Intestinal Caco-2 Cells and D-gal-Induced Aging Mouse Model. Nutrients 2022; 14:nu14183738. [PMID: 36145113 PMCID: PMC9504974 DOI: 10.3390/nu14183738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Antler bone calcium (AB−Ca) and bioactive peptides (ABPs) were extracted from antler bones (Cervus elaphus) to maximize their value. In this study, 0.14 g calcium was obtained from 1 g antler bone. The peptide−calcium chelate rate was 53.68 ± 1.80%, and the Gly, Pro, and Glu in ABPs were identified to donate most to the increased calcium affinity through the mass spectrometry. Fourier transform infrared spectroscopy showed that calcium predominantly interacted with amino nitrogen atoms and carboxyl oxygen atoms, thereby generating a peptide–calcium chelate. The peptide−calcium chelates were characterized using scanning electron microscopy. A Caco-2 cell monolayer model showed that ABPs significantly increased calcium transport. Furthermore, the D-gal-induced aging mouse model indicated that the ABPs + AB−Ca group showed higher Ca and PINP levels, lower P, ALP, and CTX-1content in serum, and considerably higher tibia index and tibia calcium content. Results showed that ABPs + AB-Ca increased bone formation and inhibited bone resorption, thereby providing calcium supplements for ameliorating senile osteoporosis (SOP).
Collapse
|
21
|
Li J, Bi H. Integrated Strategy of Network Pharmacology and in vitro Screening to Identify Mechanism of Diazinon-induced Hippocampal Neurotoxicity. Neurotoxicology 2022; 92:122-130. [DOI: 10.1016/j.neuro.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
22
|
SF/PVP nanofiber wound dressings loaded with phlorizin: preparation, characterization, in vivo and in vitro evaluation. Colloids Surf B Biointerfaces 2022; 217:112692. [PMID: 35834996 DOI: 10.1016/j.colsurfb.2022.112692] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/08/2023]
Abstract
Electrospinning-based wound dressings have multiple functions such as antibacterial, anti-inflammatory, and therapeutic, and are important in skin wound care. Herein, we designed a phlorizin (PHL)-loaded silk protein/polyvinylpyrrolidone (SF/PVP) composite nanofibrous membrane, which can be used as multiple wound dressings. In particular, SF/PVP/PHL scaffolds have high porosity and mechanical properties, exhibiting suitable permeability and hydrophilicity. The SF/PVP/PHL scaffolds containing PHL also have excellent antibacterial and antioxidant activities. Furthermore, the nanofiber significantly accelerated the wound healing process in a full-thickness skin injury model by enhancing wound re-epithelialization and collagen deposition density, increasing the content of macrophage antigen (CD68), platelet-endothelial cell adhesion molecule (CD31), proliferating cell nuclear antigen (PCNA) and inhibiting the expression of α-smooth muscle actin (α-SMA) at the wound site. The mechanism may be related to the inhibition of activation of phosphatidylinositol 3-kinase/serine-threonine kinase/ target of rapamycin (PI3K/AKT/mTOR) signaling pathway to enhance autophagy. Therefore, SF/PVP/PHL nanofibers can ideally meet the various requirements of the wound healing process and are promising wound dressing candidates for future clinical applications.
Collapse
|
23
|
Patchouli Alcohol Inhibits D-Gal Induced Oxidative Stress and Ameliorates the Quality of Aging Cartilage via Activating the Nrf2/HO-1 Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6821170. [PMID: 35720186 PMCID: PMC9200550 DOI: 10.1155/2022/6821170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Chondrocytes play an essential role in maintaining the structure and function of articular cartilage. Oxidative stress occurred in chondrocytes accelerates cell senescence and death, which contributes to the development of osteoarthritis (OA). Patchouli alcohol (PA), a kind of sesquiterpene in Pogostemon cablin, processes multiple bioactivities in treatment of many diseases. However, its effects of antisenescence and antioxidation on chondrocytes in a D-gal-induced aging mice model are still obscure. In this study, we found that PA treatment could ameliorate the degradation of cartilage extracellular matrix (ECM) in a D-gal-induced aging mice model. Further analyses through the immunofluorescent staining and western blot revealed that PA inhibited D-gal-induced chondrocyte senescence via the activation of antioxidative system. Besides, the damage caused by D-gal could not be recovered with PA treatment in Nrf2-silencing chondrocytes. In addition, molecular docking analysis between PA and Keap1 further suggested that the mechanism of PA's antisenescence and antioxidation was attributed to the activation of Nrf2/HO-1 pathway. Therefore, our results demonstrated that PA was a promising candidate for preventing the quality loss of aging cartilage through inhibiting oxidative stress-mediated senescence in chondrocytes.
Collapse
|
24
|
Su YL, Liu D, Liu YJ, Ji YL, Liu GS, Wang JLT, Wang B, Wang H. Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Exp Gerontol 2022; 165:111863. [PMID: 35660419 DOI: 10.1016/j.exger.2022.111863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
We explored the effect of phlorizin against cholinergic memory impairment and dysbacteriosis in D-galactose induced ICR mice. The control (CON) group, D-galactose model (DGM) group, and three groups (DG-PL, DG-PM, DG-PH) treated with phlorizin at 0.01%, 0.02%, and 0.04% (w/w) in diets were raised for 12 weeks. Supplementing with phlorizin reversed the loss of organ coefficient and body weight caused by D-galactose. The functional abilities of phlorizin on hippocampal-dependent spatial learning and memory, anti-oxidation, anti-inflammation were also observed. Meanwhile, phlorizin intervention upregulated the gene expression of Nrf2, GSH-PX, SOD1, decreased the gene expression of NF-κB, TLR-4, TNF-α, and IL-1β in the hippocampus, while enhanced the gene expression of JAM-A, Mucin2, Occludin in the caecum. Furthermore, a neurotransmitter of acetylcholine (ACh) was enhanced, while acetylcholinesterase (AChE) activity was inhibited by phlorizin administration. Moreover, phlorizin administration increased short-chain fatty acids (SCFAs) content, and reduced lipopolysaccharides (LPS) levels, which may relate to the rebuilding of gut microbiota homeostasis. Treatment with phlorizin may be an effective intervention for alleviating cognitive decline and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yan-Ling Su
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yao-Jie Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang-Lin Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Gui-Shan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur 015000, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
25
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
26
|
Nutrition Interventions of Herbal Compounds on Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1059257. [PMID: 35528514 PMCID: PMC9068308 DOI: 10.1155/2022/1059257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging. The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to aid the clinical management of age-related diseases.
Collapse
|
27
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
28
|
Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside Ameliorates Alzheimer's Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Front Aging Neurosci 2022; 13:809433. [PMID: 35126093 PMCID: PMC8814655 DOI: 10.3389/fnagi.2021.809433] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Amyloid β-protein (Aβ) is reported to activate NLRP3 inflammasomes and drive pyroptosis, which is subsequently involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). To date, the pathogenesis of AD is unfortunately insufficiently elucidated. Therefore, this study was conducted to explore whether Salidroside (Sal) treatment could benefit AD by improving pyroptosis. Firstly, two animal models of AD, induced, respectively, by Aβ1-42 and D-galactose (D-gal)/AlCl3, have been created to assist our appreciation of AD pathophysiology. We then confirmed that pyroptosis is related to the pathogenesis of AD, and Sal can slow the progression of AD by inhibiting pyroptosis. Subsequently, we established the D-gal and Nigericin-induced PC12 cells injury model in vitro to verify Sal blocks pyroptosis mainly by targeting the NLRP3 inflammasome. For in vivo studies, we observed that Aβ accumulation, Tau hyperphosphorylation, neurons of hippocampal damage, and cognitive dysfunction in AD mice, caused by bilateral injection of Aβ1-42 into the hippocampus and treatments with D-gal combine AlCl3. Besides, accumulated Aβ promotes NLRP3 inflammasome activation, which leads to the activation and release of a pro-inflammatory cytokine, interleukin-1 beta (IL-1β). Notably, both Aβ accumulation and hyperphosphorylation of Tau decreased and inhibited pyroptosis by downregulating the expression of IL-1β and IL-18, which can be attributed to the treatment of Sal. We further found that Sal can reverse the increased protein expression of TLR4, MyD88, NF-κB, P-NF-κB, NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18 in vitro. The underlying mechanism may be through inhibiting TLR4/NF-κB/NLRP3/Caspase-1 signaling pathway. Our study highlights the importance of NLRP3 inflammasome-mediated pyroptosis in AD, and how the administration of pharmacological doses of Sal can inhibit NLRP3 inflammasome-mediated pyroptosis and ameliorate AD. Thus, we conclude that NLRP3 inflammasome-mediated pyroptosis plays a significant role in AD and Sal could be a therapeutic drug for AD.
Collapse
Affiliation(s)
- Yawen Cai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Fu
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingdi Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Lingpeng Zhu
| | - Mingxing Miao
- Center of National Pharmaceutical Experimental Teaching Demonstration, China Pharmaceutical University, Nanjing, China
- Mingxing Miao
| | - Tianhua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Tianhua Yan
| |
Collapse
|
29
|
Anti-fatigue effect of phlorizin on exhaustive exercise-induced oxidative injury mediated by Nrf2/ARE signaling pathway in mice. Eur J Pharmacol 2021; 918:174563. [PMID: 34942162 DOI: 10.1016/j.ejphar.2021.174563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays a crucial role in fatigue, thus it is of significance to develop safe and efficient antioxidant to prevent fatigue. Phlorizin (PHZ) is a major active ingredient of dihydrochalcone from Lithocarpus polystachyus Rehd., which has already been approved as a new food material in China since 2017. The current study was designed to investigate the effect of PHZ on fatigue, and further to elucidate its possible underlying mechanism. Our results revealed that PHZ exerted beneficial effect on exhaustive exercise-induced fatigue in mice, as reflected by rotarod test and exhaustive swimming test. Moreover, PHZ also effectively decreased the levels of blood urea nitrogen, creatine kinase and plasma lactic acid, increased the liver glycogen and skeletal muscle glycogen of fatigued mice, as evidenced by enzyme linked immunosorbent assay. PHZ balanced the redox status through reducing generation of reactive oxygen species, enhancing the activities of antioxidative enzymes. Furthermore, PHZ not only increased the ratio of Bcl2/Bax, but also decreased the level of cleaved-caspase 3. Notably, PHZ facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) translocated from cytoplasm to nucleus, and up-regulated its downstream antioxidant response element including heme oxygenase-1 and NADPH quinone oxidoreductase-1. Intriguingly, PHZ directly bound to Nrf2, as evidenced by molecular docking, and the anti-fatigue effects of PHZ were almost abolished in Nrf2 deficient mice. In summary, our findings suggest that PHZ might be a natural occurring antioxidant with safety profile to relieve fatigue via targeting Nrf2 to inhibit apoptosis.
Collapse
|
30
|
Li L, Li Y, Luo J, Jiang Y, Zhao Z, Chen Y, Huang Q, Zhang L, Wu T, Pang J. Resveratrol, a novel inhibitor of GLUT9, ameliorates liver and kidney injuries in a D-galactose-induced ageing mouse model via the regulation of uric acid metabolism. Food Funct 2021; 12:8274-8287. [PMID: 34180933 DOI: 10.1039/d1fo00538c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural ageing and induce liver and kidney injury. Previous studies showed that d-gal increased uric acid (UA) levels in mice. The increase in UA levels caused inflammation, accelerated oxidative stress, and aggravated liver and kidney injury. Oxidative stress and inflammation play vital roles in the ageing process. Therefore, reducing the levels of UA in ageing mice improved liver and kidney injury. Glucose transporter 9 (GLUT9) is responsible for the reabsorption of UA in the body, and its inhibition helps downregulate UA levels. The present study investigated the UA-lowering activity of the GLUT9 inhibitor resveratrol (RSV) using the patch clamping technique established in our laboratory in vitro. This research is the first study to demonstrate that RSV effectively inhibits UA uptake via GLUT9 (IC50 = 68.77 μM) in vitro. An in vivo study was also performed to investigate the possible protective effect of RSV on d-gal-induced liver and kidney injury. RSV significantly reduced serum UA levels via the downregulation of GLUT9 mRNA and protein expression and promoted the excretion of excess UA through urine. Biochemical analysis showed that RSV significantly downregulated abnormal increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine (CRE) caused by long-term d-gal treatment, which effectively improved pathological damage, increased superoxide dismutase (SOD) activity and decreased the content of malondialdehyde (MDA) in the liver and kidneys. RSV also downregulated the expression of the inflammatory cytokines, interleukin IL-6, IL-1β and tumor necrosis factor (TNF)-α in the liver and kidneys of ageing mice. Our findings provide new insights into the treatment strategies for ageing-induced liver and kidney injury and reveal a new mechanism of RSV-induced reduction in UA levels in ageing individuals.
Collapse
Affiliation(s)
- Lu Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yongmei Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jian Luo
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanqing Jiang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanyu Chen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qinghua Huang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Leqi Zhang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|