1
|
Moinuddin SM, Ibrahim M, Sarkar T, Hossain MS, Rose M, Ahsan F. Protocol for quantum dot-based cell counting and immunostaining of pulmonary arterial cells from patients with pulmonary arterial hypertension. STAR Protoc 2024; 5:103319. [PMID: 39298320 PMCID: PMC11426121 DOI: 10.1016/j.xpro.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Currently, there is no protocol for growing and culturing primary pulmonary arterial cells (PACs) available from the Pulmonary Hypertension Breakthrough Initiative (PHBI). Here, we present a protocol for cultivating and maintaining three major PACs collected from patients with pulmonary arterial hypertension (PAH): endothelial (PAH-ECs), smooth muscle (PAH-SMCs), and adventitial cells (PAH-ADCs). We describe steps for obtaining PACs from PHBI, evaluating the growth of cells labeled with quantum dots (QDs), and staining endothelial cell (EC) markers for immunofluorescence imaging. For complete details on the use and execution of this protocol, please refer to Al-Hilal et al.1.
Collapse
Affiliation(s)
- Sakib M Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Md Ibrahim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.
| | - Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Md Shahadat Hossain
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Melanie Rose
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; Veterans Affairs Northern California Health Care System, Martinez, CA, USA.
| |
Collapse
|
2
|
Ewell DJ, Vue N, Moinuddin SM, Sarkar T, Ahsan F, Vinall RL. Development of a Bladder Cancer-on-a-Chip Model to Assess Bladder Cancer Cell Invasiveness. Cancers (Basel) 2024; 16:2657. [PMID: 39123388 PMCID: PMC11311651 DOI: 10.3390/cancers16152657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
We have developed a bladder cancer-on-a-chip model which supports the 3D growth of cells and can be used to assess and quantify bladder cancer cell invasiveness in a physiologically appropriate environment. Three bladder cancer cell lines (T24, J82, and RT4) were resuspended in 50% Matrigel® and grown within a multi-channel organ-on-a-chip system. The ability of live cells to invade across into an adjacent 50% Matrigel®-only channel was assessed over a 2-day period. Cell lines isolated from patients with high-grade bladder cancer (T24 and J82) invaded across into the Matrigel®-only channel at a much higher frequency compared to cells isolated from a patient with low-grade cancer (RT4) (p < 0.001). The T24 and J82 cells also invaded further distances into the Matrigel®-only channel compared to the RT4 cells (p < 0.001). The cell phenotype within the model was maintained as assessed by cell morphology and immunohistochemical analysis of E-cadherin. Treatment with ATN-161, an α5β1 integrin inhibitor and well-known migrastatic drug, caused a dose-dependent decrease in the invasiveness of the J82 cells (p < 0.01). The combined data demonstrate that our bladder cancer-on-a-chip model supports the retention of the bladder cancer cell phenotype and can be used to reproducibly assess and quantify the invasiveness of live bladder cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruth L. Vinall
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (D.J.E.); (N.V.); (S.M.M.); (T.S.); (F.A.)
| |
Collapse
|
3
|
Vo Q, Benam KH. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip. Eur J Pharm Sci 2024; 195:106709. [PMID: 38246431 PMCID: PMC10939731 DOI: 10.1016/j.ejps.2024.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Lung vasculature is particularly important due to its involvement in genesis and progression of rare, debilitating disorders as well as common chronic pathologies. Here, we provide an overview of the latest advances in the development of pulmonary vascular (PV) models using emerging microfluidic tissue engineering technology Organs-on-Chips (so-called PV-Chips). We first review the currently reported PV-Chip systems and their key features, and then critically discuss their major limitations in reproducing in vivo-seen and disease-relevant cellularity, localization, and microstructure. We conclude by presenting latest efforts to overcome such technical and biological limitations and future directions.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Shakeri A, Wang Y, Zhao Y, Landau S, Perera K, Lee J, Radisic M. Engineering Organ-on-a-Chip Systems for Vascular Diseases. Arterioscler Thromb Vasc Biol 2023; 43:2241-2255. [PMID: 37823265 PMCID: PMC10842627 DOI: 10.1161/atvbaha.123.318233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Vascular diseases, such as atherosclerosis and thrombosis, are major causes of morbidity and mortality worldwide. Traditional in vitro models for studying vascular diseases have limitations, as they do not fully recapitulate the complexity of the in vivo microenvironment. Organ-on-a-chip systems have emerged as a promising approach for modeling vascular diseases by incorporating multiple cell types, mechanical and biochemical cues, and fluid flow in a microscale platform. This review provides an overview of recent advancements in engineering organ-on-a-chip systems for modeling vascular diseases, including the use of microfluidic channels, ECM (extracellular matrix) scaffolds, and patient-specific cells. We also discuss the limitations and future perspectives of organ-on-a-chip for modeling vascular diseases.
Collapse
Affiliation(s)
- Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Ying Wang
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Yimu Zhao
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Shira Landau
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Kevin Perera
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jonguk Lee
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
5
|
Nguyen T, Ahsan F. An Overview of Organ-on-a-Chip Models for Recapitulating Human Pulmonary Vascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:265-272. [PMID: 37195535 DOI: 10.1007/978-3-031-26625-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Traditionally, animal models have been used for recapitulating human physiology and for studying the pathological basis of many diseases affecting humankind. Indeed, over the centuries, animal models helped advance our understanding of the biology and pathology of drug therapy for humans. However, with the advent of genomics and pharmacogenomics, we now know that conventional models cannot accurately capture the pathological conditions and biological processes in humans, although humans share many physiological and anatomical features with many animals [1-3]. Species to species variation have raised concerns about the validity and suitability of animal models for studying human conditions. Over the past decade, the development and advances in microfabrication and biomaterials have spurred the growth in micro-engineered tissue and organ models (organs-on-a-chip, OoC) as alternatives to animal and cellular models [4]. This state-of-the-art technology has been used to emulate human physiology for investigating multitudes of cellular and biomolecular processes implicated in the pathological basis of disease (Fig. 13.1) [4]. Because of their tremendous potential, OoC-based models have been listed as one of the top 10 emerging technologies in the 2016 World Economic Forum [2].
Collapse
Affiliation(s)
- Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, CA, USA
- East Bay Institute for Research and Education, Mather, CA, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, CA, USA.
- East Bay Institute for Research and Education, Mather, CA, USA.
| |
Collapse
|
6
|
Kumar R, Aktay-Cetin Ö, Craddock V, Morales-Cano D, Kosanovic D, Cogolludo A, Perez-Vizcaino F, Avdeev S, Kumar A, Ram AK, Agarwal S, Chakraborty A, Savai R, de Jesus Perez V, Graham BB, Butrous G, Dhillon NK. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathog 2023; 19:e1011063. [PMID: 36634048 PMCID: PMC9836319 DOI: 10.1371/journal.ppat.1011063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Öznur Aktay-Cetin
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Vaughn Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergey Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anil Kumar Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Stuti Agarwal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Ananya Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Ghazwan Butrous
- Cardiopulmonary Sciences, University of Kent, Canterbury, United Kingdom
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
7
|
Yuan Y. Clinical Translation of Engineered Pulmonary Vascular Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:273-288. [PMID: 37195536 DOI: 10.1007/978-3-031-26625-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Diseases in pulmonary vasculature remain a major cause of morbidity and mortality worldwide. Numerous pre-clinical animal models were developed to understand lung vasculature during diseases and development. However, these systems are typically limited in their ability to represent human pathophysiology for the study of disease and drug mechanisms. In recent years, a growing number of studies have focused on developing in vitro experimental platforms that mimic human tissues/organs. In this chapter, we discuss the key components involved in developing engineered pulmonary vascular modeling systems and provide perspectives on ways to improve the translational potential of existing models.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Medicine (Pulmonary), Department of Anesthesiology, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
10
|
Ainscough AJ, Smith TJ, Haensel M, Rhodes CJ, Fellows A, Whitwell HJ, Vasilaki E, Gray K, Freeman A, Howard LS, Wharton J, Dunmore B, Upton PD, Wilkins MR, Edel JB, Wojciak-Stothard B. An organ-on-chip model of pulmonary arterial hypertension identifies a BMPR2-SOX17-prostacyclin signalling axis. Commun Biol 2022; 5:1192. [PMID: 36344664 PMCID: PMC9640600 DOI: 10.1038/s42003-022-04169-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an unmet clinical need. The lack of models of human disease is a key obstacle to drug development. We present a biomimetic model of pulmonary arterial endothelial-smooth muscle cell interactions in PAH, combining natural and induced bone morphogenetic protein receptor 2 (BMPR2) dysfunction with hypoxia to induce smooth muscle activation and proliferation, which is responsive to drug treatment. BMPR2- and oxygenation-specific changes in endothelial and smooth muscle gene expression, consistent with observations made in genomic and biochemical studies of PAH, enable insights into underlying disease pathways and mechanisms of drug response. The model captures key changes in the pulmonary endothelial phenotype that are essential for the induction of SMC remodelling, including a BMPR2-SOX17-prostacyclin signalling axis and offers an easily accessible approach for researchers to study pulmonary vascular remodelling and advance drug development in PAH.
Collapse
Affiliation(s)
- Alexander J Ainscough
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Chemistry, Imperial College London, London, UK
| | - Timothy J Smith
- Department of Chemistry, Imperial College London, London, UK
| | - Maike Haensel
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Adam Fellows
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Harry J Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eleni Vasilaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kelly Gray
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Adrian Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Benjamin Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, London, UK
| | | |
Collapse
|
11
|
Engineering Smooth Muscle to Understand Extracellular Matrix Remodeling and Vascular Disease. Bioengineering (Basel) 2022; 9:bioengineering9090449. [PMID: 36134994 PMCID: PMC9495899 DOI: 10.3390/bioengineering9090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The vascular smooth muscle is vital for regulating blood pressure and maintaining cardiovascular health, and the resident smooth muscle cells (SMCs) in blood vessel walls rely on specific mechanical and biochemical signals to carry out these functions. Any slight change in their surrounding environment causes swift changes in their phenotype and secretory profile, leading to changes in the structure and functionality of vessel walls that cause pathological conditions. To adequately treat vascular diseases, it is essential to understand how SMCs crosstalk with their surrounding extracellular matrix (ECM). Here, we summarize in vivo and traditional in vitro studies of pathological vessel wall remodeling due to the SMC phenotype and, conversely, the SMC behavior in response to key ECM properties. We then analyze how three-dimensional tissue engineering approaches provide opportunities to model SMCs’ response to specific stimuli in the human body. Additionally, we review how applying biomechanical forces and biochemical stimulation, such as pulsatile fluid flow and secreted factors from other cell types, allows us to study disease mechanisms. Overall, we propose that in vitro tissue engineering of human vascular smooth muscle can facilitate a better understanding of relevant cardiovascular diseases using high throughput experiments, thus potentially leading to therapeutics or treatments to be tested in the future.
Collapse
|
12
|
Sarkar T, Nguyen T, Moinuddin SM, Stenmark KR, Nozik ES, Saha D, Ahsan F. A Protocol for Fabrication and on-Chip Cell Culture to Recreate PAH-Afflicted Pulmonary Artery on a Microfluidic Device. MICROMACHINES 2022; 13:mi13091483. [PMID: 36144106 PMCID: PMC9504537 DOI: 10.3390/mi13091483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 05/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disease that affects people of all ethnic origins and age groups including newborns. In PAH, pulmonary arteries and arterioles undergo a series of pathological changes including remodeling of the entire pulmonary vasculatures and extracellular matrices, mis-localized growth of pulmonary arterial cells, and development of glomeruloid-like lesions called plexiform lesions. Traditionally, various animal and cellular models have been used to understand PAH pathophysiology, investigate sex-disparity in PAH and monitor therapeutic efficacy of PAH medications. However, traditional models can only partially capture various pathological features of PAH, and they are not adaptable to combinatorial study design for deciphering intricately intertwined complex cellular processes implicated in PAH pathogenesis. While many microfluidic chip-based models are currently available for major diseases, no such disease-on-a-device model is available for PAH, an under investigated disease. In the absence of any chip-based models of PAH, we recently proposed a five-channel polydimethylsiloxane (PDMS)-based microfluidic device that can emulate major pathological features of PAH. However, our proposed model can make a bigger impact on the PAH field only when the larger scientific community engaged in PAH research can fabricate the device and develop the model in their laboratory settings. With this goal in mind, in this study, we have described the detailed methodologies for fabrication and development of the PAH chip model including a thorough explanation of scientific principles for various steps for chip fabrication, a detailed list of reagents, tools and equipment along with their source and catalogue numbers, description of laboratory setup, and cautionary notes. Finally, we explained the methodologies for on-chip cell seeding and application of this model for studying PAH pathophysiology. We believe investigators with little or no training in microfluidic chip fabrication can fabricate this eminently novel PAH-on-a-chip model. As such, this study will have a far-reaching impact on understanding PAH pathophysiology, unravelling the biological mystery associated with sexual dimorphism in PAH, and developing PAH therapy based on patient sex and age.
Collapse
Affiliation(s)
- Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Sakib M. Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Kurt R. Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eva S. Nozik
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
- Correspondence: (D.S.); (F.A.)
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
- MedLuidics, Elk Grove, CA 95757, USA
- Correspondence: (D.S.); (F.A.)
| |
Collapse
|
13
|
Nguyen T, Ho L, Moinuddin SM, Sarkar T, Saha D, Ahsan F. Multicellular Cell Seeding on a Chip: New Design and Optimization towards Commercialization. BIOSENSORS 2022; 12:bios12080587. [PMID: 36004984 PMCID: PMC9405756 DOI: 10.3390/bios12080587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 05/09/2023]
Abstract
This paper shows both experimental and in-depth theoretical studies (including simulations and analytical solutions) on a microfluidic platform to optimize its design and use for 3D multicellular co-culture applications, e.g., creating a tissue-on-chip model for investigating diseases such as pulmonary arterial hypertension (PAH). A tissue microfluidic chip usually has more than two channels to seed cells and supply media. These channels are often separated by barriers made of micro-posts. The optimization for the structures of these micro-posts and their spacing distances is not considered previously, especially for the aspects of rapid and cost-efficient fabrication toward scaling up and commercialization. Our experimental and theoretical (COMSOL simulations and analytical solutions) results showed the followings: (i) The cell seeding was performed successfully for this platform when the pressure drops across the two posts were significantly larger than those across the channel width. The circular posts can be used in the position of hexagonal or other shapes. (ii) In this work, circular posts are fabricated and used for the first time. They offer an excellent barrier effect, i.e., prevent the liquid and gel from migrating from one channel to another. (iii) As for rapid and cost-efficient production, our computer-aided manufacturing (CAM) simulation confirms that circular-post fabrication is much easier and more rapid than hexagonal posts when utilizing micro-machining techniques, e.g., micro-milling for creating the master mold, i.e., the shim for polymer injection molding. The findings open up a possibility for rapid, cost-efficient, large-scale fabrication of the tissue chips using micro-milling instead of expensive clean-room (soft) lithography techniques, hence enhancing the production of biochips via thermoplastic polymer injection molding and realizing commercialization.
Collapse
Affiliation(s)
- Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (T.N.); (L.H.); (S.M.M.); (T.S.)
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA;
| | - Linh Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (T.N.); (L.H.); (S.M.M.); (T.S.)
| | - Sakib M. Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (T.N.); (L.H.); (S.M.M.); (T.S.)
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA;
| | - Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (T.N.); (L.H.); (S.M.M.); (T.S.)
| | - Dipongkor Saha
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA;
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (T.N.); (L.H.); (S.M.M.); (T.S.)
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA;
- MedLuidics, Elk Grove, CA 95757, USA
- Correspondence:
| |
Collapse
|
14
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
15
|
Chen YT, Ramalingam L, Garcia CR, Ding Z, Wu J, Moustaid-Moussa N, Li W. Engineering and Characterization of a Biomimetic Microchip for Differentiating Mouse Adipocytes in a 3D Microenvironment. Pharm Res 2022; 39:329-340. [PMID: 35166994 DOI: 10.1007/s11095-022-03195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Although two-dimensional (2D) cell cultures are the standard in cell research, one pivotal disadvantage is the lack of cell-cell and cell-extracellular matrix (ECM) signaling in the culture milieu. However, such signals occur in three-dimensional (3D) in vivo environments and are essential for cell differentiation, proliferation, and a range of cellular functions. In this study, we developed a microfluidic device to proliferate and differentiate functional adipose tissue and adipocytes by utilizing 3D cell culture technology. This device was used to generate a tissue-specific 3D microenvironment to differentiate 3T3-L1 preadipocytes into either visceral white adipocytes using visceral adipose tissue (VAT) or subcutaneous white adipose tissue (SAT). The microchip has been tested and validated by functional assessments including cell morphology, inflammatory response to a lipopolysaccharide (LPS) challenge, GLUT4 tracking, and gene expression analyses. The biomimetic microfluidic chip is expected to mimic functional adipose tissues that can replace 2D cell cultures and allow for more accurate analysis of adipose tissue physiology.
Collapse
Affiliation(s)
- Yu-Ting Chen
- School of Materials Science & Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu 1st road, Wuhan, 430205, People's Republic of China.,Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, TX, 79409, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, & Obesity Research Institute, Texas Tech University, P.O. Box 41270, Lubbock, TX, 79409, USA.,Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, 13210, USA
| | - Celine R Garcia
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, TX, 79409, USA
| | - Zhenya Ding
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, TX, 79409, USA
| | - Jiangyu Wu
- School of Materials Science & Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu 1st road, Wuhan, 430205, People's Republic of China.
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, & Obesity Research Institute, Texas Tech University, P.O. Box 41270, Lubbock, TX, 79409, USA.
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, TX, 79409, USA.
| |
Collapse
|
16
|
Ho L, Hossen N, Nguyen T, Vo A, Ahsan F. Epigenetic Mechanisms as Emerging Therapeutic Targets and Microfluidic Chips Application in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10010170. [PMID: 35052850 PMCID: PMC8773438 DOI: 10.3390/biomedicines10010170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.
Collapse
Affiliation(s)
- Linh Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (N.H.); (T.N.)
- Correspondence: (L.H.); (F.A.); Tel.: +1-916-686-7370 (L.H.); +1-916-686-3529 (F.A.)
| | - Nazir Hossen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (N.H.); (T.N.)
| | - Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (N.H.); (T.N.)
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA
| | - Au Vo
- Department of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA; (N.H.); (T.N.)
- Correspondence: (L.H.); (F.A.); Tel.: +1-916-686-7370 (L.H.); +1-916-686-3529 (F.A.)
| |
Collapse
|
17
|
Meng X, Xing Y, Li J, Deng C, Li Y, Ren X, Zhang D. Rebuilding the Vascular Network: In vivo and in vitro Approaches. Front Cell Dev Biol 2021; 9:639299. [PMID: 33968926 PMCID: PMC8097043 DOI: 10.3389/fcell.2021.639299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.
Collapse
Affiliation(s)
- Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhui Xing
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cechuan Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
18
|
Hye T, Dwivedi P, Li W, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1025-L1037. [PMID: 33719549 DOI: 10.1152/ajplung.00559.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy. In contrast, the male sex hormone testosterone is associated with reduced survival in male animals, where it is associated with increased RV mass, volume, and fibrosis. However, it also has a vasodilatory effect on pulmonary arteries. Furthermore, patients of both sexes show varying degrees of response to current therapies for PAH. As such, there are many gaps and contradictions regarding PAH development, progression, and therapeutic interventions in male versus female patients. Many of these questions remain unanswered, which may be due in part to lack of effective experimental models that can consistently reproduce PAH pulmonary microenvironments in their sex-specific forms. This review article summarizes the roles of estrogens and related sex hormones, immunological and genetical differences, and the benefits and limitations of existing experimental tools to fill in gaps in our understanding of the sex-based variation in PAH development and progression. Finally, we highlight the potential of a new tissue chip-based model mimicking PAH-afflicted male and female pulmonary arteries to study the sex-based differences in PAH and to develop personalized therapies based on patient sex and responsiveness to existing and new drugs.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas.,Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, California
| |
Collapse
|