1
|
Yrjänäinen A, Mesiä E, Lampela E, Kreutzer J, Vihinen J, Tornberg K, Vuorenpää H, Miettinen S, Kallio P, Mäki AJ. Barrier-free, open-top microfluidic chip for generating two distinct, interconnected 3D microvascular networks. Sci Rep 2024; 14:22916. [PMID: 39358415 PMCID: PMC11447027 DOI: 10.1038/s41598-024-74493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Developing microphysiological cell culture platforms with a three-dimensional (3D) microenvironment has been a significant advancement from traditional monolayer cultures. Still, most of the current microphysiological platforms are limited in closed designs, i.e. are not accessible after 3D cell culture loading. Here, we report an open-top microfluidic chip which enables the generation of two sequentially loaded 3D cell cultures without physical barriers restricting the nurture, gas exchange and cellular communication. As a proof-of-concept, we demonstrated the formation of two 3D vasculatures, one in the upper and the other in the lower compartment, under three distinct flow conditions: asymmetric side-to-center, symmetric side-to-center and symmetric center-to-side. We used computational modelling to characterize initial flow pressures in cell culture compartments. We showed prominent vessel formation and branched vasculatures in upper and lower cell culture compartments with interconnecting, lumenized vessels with in vivo-relevant diameter in all flow conditions. With advanced image processing, we quantified and compared the overall vascular network volume and the total length formed in asymmetric side-to-center, symmetric side-to-center and symmetric center-to-side flow conditions. Our results indicate that the developed chip can house two distinct 3D cell cultures with merging vessels between compartments and by providing asymmetric side-to-center or symmetric center-to-side flow vascular morphogenesis is enhanced in terms of overall network length. The developed open-top microfluidic chip may find various applications in generation of tissue-specific 3D-3D co-cultures for studying cellular interactions in vascularized tissues and organs.
Collapse
Grants
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
Collapse
Affiliation(s)
- Alma Yrjänäinen
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland.
| | - Elina Mesiä
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Ella Lampela
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Jorma Vihinen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| | - Kaisa Tornberg
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| |
Collapse
|
2
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
3
|
Lam J, Yu J, Lee B, Campagna C, Yoo S, Baek K, Jeon NL, Sung KE. Characterizing On-Chip Angiogenesis Induction in a Microphysiological System as a Functional Measure of Mesenchymal Stromal Cell Bioactivity. Adv Biol (Weinh) 2024; 8:e2300094. [PMID: 37409400 DOI: 10.1002/adbi.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) continue to be proposed for clinical investigation to treat myriad diseases given their purported potential to stimulate endogenous regenerative processes, such as angiogenesis. However, MSC functional heterogeneity has hindered clinical success and still poses a substantial manufacturing challenge from a product quality control perspective. Here, a quantitative bioassay based on an enhanced-throughput is described, microphysiological system (MPS) to measure the specific bioactivity of MSCs to stimulate angiogenesis as a potential measure of MSC potency. Using this novel bioassay, MSCs derived from multiple donors at different passages are co-cultured with human umbilical vein endothelial cells and exhibit significant heterogeneity in angiogenic potency between donors and cell passage. Depending on donor source and cellular passage number, MSCs varied in their ability to stimulate tip cell dominant or stalk cell dominant phenotypes in angiogenic sprout morphology which correlated with expression levels of hepatocyte growth factor (HGF). These findings suggest that MSC angiogenic bioactivity may be considered as a possible potency attribute in MSC quality control strategies. Development of a reliable and functionally relevant potency assay for measuring clinically relevant potency attributes of MSCs will help to improve consistency in quality and thereby, accelerate clinical development of these cell-based products.
Collapse
Affiliation(s)
- Johnny Lam
- Office of Therapeutic Product, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - James Yu
- Office of Therapeutic Product, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byungjun Lee
- Qureator, Inc., 7094 Miratech Drive, Suite 110, San Diego, CA, 92121, USA
| | - Courtney Campagna
- Office of Therapeutic Product, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Sanghee Yoo
- Qureator, Inc., 7094 Miratech Drive, Suite 110, San Diego, CA, 92121, USA
| | - Kyusuk Baek
- Qureator, Inc., 7094 Miratech Drive, Suite 110, San Diego, CA, 92121, USA
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyung E Sung
- Office of Therapeutic Product, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|
4
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
Affiliation(s)
- Emma M Streutker
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Utku Devamoglu
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
5
|
Orge I, Nogueira Pinto H, Silva M, Bidarra S, Ferreira S, Calejo I, Masereeuw R, Mihăilă S, Barrias C. Vascular units as advanced living materials for bottom-up engineering of perfusable 3D microvascular networks. Bioact Mater 2024; 38:499-511. [PMID: 38798890 PMCID: PMC11126780 DOI: 10.1016/j.bioactmat.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The timely establishment of functional neo-vasculature is pivotal for successful tissue development and regeneration, remaining a central challenge in tissue engineering. In this study, we present a novel (micro)vascularization strategy that explores the use of specialized "vascular units" (VUs) as building blocks to initiate blood vessel formation and create perfusable, stroma-embedded 3D microvascular networks from the bottom-up. We demonstrate that VUs composed of endothelial progenitor cells and organ-specific fibroblasts exhibit high angiogenic potential when embedded in fibrin hydrogels. This leads to the formation of VUs-derived capillaries, which fuse with adjacent capillaries to form stable microvascular beds within a supportive, extracellular matrix-rich fibroblastic microenvironment. Using a custom-designed biomimetic fibrin-based vessel-on-chip (VoC), we show that VUs-derived capillaries can inosculate with endothelialized microfluidic channels in the VoC and become perfused. Moreover, VUs can establish capillary bridges between channels, extending the microvascular network throughout the entire device. When VUs and intestinal organoids (IOs) are combined within the VoC, the VUs-derived capillaries and the intestinal fibroblasts progressively reach and envelop the IOs. This promotes the formation of a supportive vascularized stroma around multiple IOs in a single device. These findings underscore the remarkable potential of VUs as building blocks for engineering microvascular networks, with versatile applications spanning from regenerative medicine to advanced in vitro models.
Collapse
Affiliation(s)
- I.D. Orge
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - H. Nogueira Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - M.A. Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - S.J. Bidarra
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - S.A. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - I. Calejo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - R. Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - S.M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - C.C. Barrias
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Margolis EA, Choi LS, Friend NE, Putnam AJ. Engineering primitive multiscale chimeric vasculature by combining human microvessels with explanted murine vessels. Sci Rep 2024; 14:4036. [PMID: 38369633 PMCID: PMC10874928 DOI: 10.1038/s41598-024-54880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/17/2024] [Indexed: 02/20/2024] Open
Abstract
Strategies to separately manufacture arterial-scale tissue engineered vascular grafts and microvascular networks have been well-established, but efforts to bridge these two length scales to create hierarchical vasculature capable of supporting parenchymal cell functions or restoring perfusion to ischemic tissues have been limited. This work aimed to create multiscale vascular constructs by assessing the capability of macroscopic vessels isolated from mice to form functional connections to engineered capillary networks ex vivo. Vessels of venous and arterial origins from both thoracic and femoral locations were isolated from mice, and then evaluated for their abilities to sprout endothelial cells (EC) capable of inosculating with surrounding human cell-derived microvasculature within bulk fibrin hydrogels. Comparing aortae, vena cavae, and femoral vessel bundles, we identified the thoracic aorta as the rodent macrovessel that yielded the greatest degree of sprouting and interconnection to surrounding capillaries. The presence of cells undergoing vascular morphogenesis in the surrounding hydrogel attenuated EC sprouting from the macrovessel compared to sprouting into acellular hydrogels, but ultimately sprouted mouse EC interacted with human cell-derived capillary networks in the bulk, yielding chimeric vessels. We then integrated micromolded mesovessels into the constructs to engineer a primitive 3-scale vascular hierarchy comprising capillaries, mesovessels, and macrovessels. Overall, this study yielded a primitive hierarchical vasculature suitable as proof-of-concept for regenerative medicine applications and as an experimental model to better understand the spontaneous formation of host-graft vessel anastomoses.
Collapse
Affiliation(s)
- Emily A Margolis
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Lucia S Choi
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Moccia C, Cherubini M, Fortea M, Akinbote A, Padmanaban P, Beltran‐Sastre V, Haase K. Mammary Microvessels are Sensitive to Menstrual Cycle Sex Hormones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302561. [PMID: 37897317 PMCID: PMC10724440 DOI: 10.1002/advs.202302561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/04/2023] [Indexed: 10/30/2023]
Abstract
The mammary gland is a highly vascularized organ influenced by sex hormones including estrogen (E2) and progesterone (P4). Beyond whole-organism studies in rodents or cell monocultures, hormonal effects on the breast microvasculature remain largely understudied. Recent methods to generate 3D microvessels on-chip have enabled direct observation of complex vascular processes; however, these models often use non-tissue-specific cell types, such as human umbilical vein endothelial cells (HUVECs) and fibroblasts from various sources. Here, novel mammary-specific microvessels are generated by coculturing primary breast endothelial cells and fibroblasts under optimized culture conditions. These microvessels are mechanosensitive (to interstitial flow) and require endothelial-stromal interactions to develop fully perfusable vessels. These mammary-specific microvessels are also responsive to exogenous stimulation by sex hormones. When treated with combined E2 and P4, corresponding to the four phases of the menstrual cycle (period, follicular, ovular, and luteal), vascular remodeling and barrier function are altered in a phase-dependent manner. The presence of high E2 (ovulation) promotes vascular growth and remodeling, corresponding to high depletion of proangiogenic factors, whereas high P4 concentrations (luteal) promote vascular regression. The effects of combined E2 and P4 hormones are not only dose-dependent but also tissue-specific, as are shown by similarly treating non-tissue-specific HUVEC microvessels.
Collapse
Affiliation(s)
- Carmen Moccia
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Marta Cherubini
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Marina Fortea
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Akinola Akinbote
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
- Heidelberg UniversityHeidelbergGermany
| | - Prasanna Padmanaban
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | | | - Kristina Haase
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| |
Collapse
|
9
|
Wu Y, Zhao Y, Islam K, Zhou Y, Omidi S, Berdichevsky Y, Liu Y. Acoustofluidic Engineering of Functional Vessel-on-a-Chip. ACS Biomater Sci Eng 2023; 9:6273-6281. [PMID: 37787770 PMCID: PMC10646832 DOI: 10.1021/acsbiomaterials.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Construction of in vitro vascular models is of great significance to various biomedical research, such as pharmacokinetics and hemodynamics, and thus is an important direction in the tissue engineering field. In this work, a standing surface acoustic wave field was constructed to spatially arrange suspended endothelial cells into a designated acoustofluidic pattern. The cell patterning was maintained after the acoustic field was withdrawn within the solidified hydrogel. Then, interstitial flow was provided to activate vessel tube formation. In this way, a functional vessel network with specific vessel geometry was engineered on-chip. Vascular function, including perfusability and vascular barrier function, was characterized by microbead loading and dextran diffusion, respectively. A computational atomistic simulation model was proposed to illustrate how solutes cross the vascular membrane lipid bilayer. The reported acoustofluidic methodology is capable of facile and reproducible fabrication of the functional vessel network with specific geometry and high resolution. It is promising to facilitate the development of both fundamental research and regenerative therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Saeed Omidi
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yevgeny Berdichevsky
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
10
|
Margolis EA, Friend NE, Rolle MW, Alsberg E, Putnam AJ. Manufacturing the multiscale vascular hierarchy: progress toward solving the grand challenge of tissue engineering. Trends Biotechnol 2023; 41:1400-1416. [PMID: 37169690 PMCID: PMC10593098 DOI: 10.1016/j.tibtech.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
In human vascular anatomy, blood flows from the heart to organs and tissues through a hierarchical vascular tree, comprising large arteries that branch into arterioles and further into capillaries, where gas and nutrient exchange occur. Engineering a complete, integrated vascular hierarchy with vessels large enough to suture, strong enough to withstand hemodynamic forces, and a branching structure to permit immediate perfusion of a fluidic circuit across scales would be transformative for regenerative medicine (RM), enabling the translation of engineered tissues of clinically relevant size, and perhaps whole organs. How close are we to solving this biological plumbing problem? In this review, we highlight advances in engineered vasculature at individual scales and focus on recent strategies to integrate across scales.
Collapse
Affiliation(s)
- Emily A Margolis
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Nicole E Friend
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Marsha W Rolle
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, MA, USA
| | - Eben Alsberg
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, USA
| | - Andrew J Putnam
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Rota A, Possenti L, Offeddu GS, Senesi M, Stucchi A, Venturelli I, Rancati T, Zunino P, Kamm RD, Costantino ML. A three-dimensional method for morphological analysis and flow velocity estimation in microvasculature on-a-chip. Bioeng Transl Med 2023; 8:e10557. [PMID: 37693050 PMCID: PMC10487341 DOI: 10.1002/btm2.10557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 09/12/2023] Open
Abstract
Three-dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly used to visualize in vitro models, especially microvasculature on-a-chip. Conversely, 3D analysis is not the standard method to extract quantitative information from those models. We developed the μVES algorithm to analyze vascularized in vitro models leveraging 3D data. It computes morphological parameters (geometry, diameter, length, tortuosity, eccentricity) and intravascular flow velocity. μVES application to microfluidic vascularized in vitro models shows that they successfully replicate functional features of the microvasculature in vivo in terms of intravascular fluid flow velocity. However, wall shear stress is lower compared to in vivo references. The morphological analysis also highlights the model's physiological similarities (vessel length and tortuosity) and shortcomings (vessel radius and surface-over-volume ratio). The addition of the third dimension in our analysis produced significant differences in the metrics assessed compared to 2D estimations. It enabled the computation of new indices, such as vessel eccentricity. These μVES capabilities can find application in analyses of different in vitro vascular models, as well as in vivo and ex vivo microvasculature.
Collapse
Affiliation(s)
- Alberto Rota
- LaBS, Chemistry, Materials, and Chemical Engineering "Giulio Natta" DepartmentPolitecnico di MilanoMilanItaly
| | - Luca Possenti
- Data Science Unit, Department of Epidemiology and Data ScienceFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Giovanni S. Offeddu
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Martina Senesi
- LaBS, Chemistry, Materials, and Chemical Engineering "Giulio Natta" DepartmentPolitecnico di MilanoMilanItaly
| | - Adelaide Stucchi
- LaBS, Chemistry, Materials, and Chemical Engineering "Giulio Natta" DepartmentPolitecnico di MilanoMilanItaly
| | - Irene Venturelli
- LaBS, Chemistry, Materials, and Chemical Engineering "Giulio Natta" DepartmentPolitecnico di MilanoMilanItaly
| | - Tiziana Rancati
- Data Science Unit, Department of Epidemiology and Data ScienceFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Paolo Zunino
- MOX, Department of MathematicsPolitecnico di MilanoMilanItaly
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Maria Laura Costantino
- LaBS, Chemistry, Materials, and Chemical Engineering "Giulio Natta" DepartmentPolitecnico di MilanoMilanItaly
| |
Collapse
|
12
|
Wu Y, Zhao Y, Islam K, Zhou Y, Omidi S, Berdichevsky Y, Liu Y. Acoustofluidic Engineering Functional Vessel-on-a-Chip. ARXIV 2023:arXiv:2308.06219v2. [PMID: 37608938 PMCID: PMC10441438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Construction of in vitro vascular models is of great significance to various biomedical research, such as pharmacokinetics and hemodynamics, thus is an important direction in tissue engineering. In this work, a standing surface acoustic wave field was constructed to spatially arrange suspended endothelial cells into a designated patterning. The cell patterning was maintained after the acoustic field was withdrawn by the solidified hydrogel. Then, interstitial flow was provided to activate vessel tube formation. Thus, a functional vessel-on-a-chip was engineered with specific vessel geometry. Vascular function, including perfusability and vascular barrier function, was characterized by beads loading and dextran diffusion, respectively. A computational atomistic simulation model was proposed to illustrate how solutes cross vascular lipid bilayer. The reported acoustofluidic methodology is capable of facile and reproducible fabrication of functional vessel network with specific geometry. It is promising to facilitate the development of both fundamental research and regenerative therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuwen Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Khayrul Islam
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Saeed Omidi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
13
|
Nam U, Lee S, Jeon JS. Generation of a 3D Outer Blood-Retinal Barrier with Advanced Choriocapillaris and Its Application in Diabetic Retinopathy in a Microphysiological System. ACS Biomater Sci Eng 2023; 9:4929-4939. [PMID: 37494673 DOI: 10.1021/acsbiomaterials.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The outer blood-retinal barrier (oBRB) provides an optimal environment for the function of the photoreceptor by regulating the exchange of molecules between subretinal space and the choriocapillaris, and its dysfunction could impair the photoreceptor's function and vision. The existing in vitro models have limitations in reproducing the barrier function or physiological characteristics of oBRB and choriocapillaris. Here, we engineered a microphysiological system-based oBRB-choriocapillaris model that simultaneously incorporates the desired physiological characteristics and is simple to fabricate. First, we generated microvascular networks to mimic choriocapillaris and investigated the role of fibroblasts in vasculogenesis. By adding retinal pigment epithelial cells to one side of blood vessels formed with endothelial cells and fibroblasts and optimizing their culture medium conditions, we established an oBRB-choriocapillaris model. To verify the physiological similarity of our oBRB-choriocapillaris model, we identified the polarization and expression of the tight junction of the retinal pigment epithelium, Bruch's membrane, and the fenestral diaphragm of choriocapillaris. Finally, we tried to recapitulate the diabetes mellitus environment in our model with hyperglycemia and diabetes-related cytokines. This induced a decrease in tight junction integrity, loss of barrier function, and shrinkage of blood vessels, similar to the in vivo pathological changes observed in the oBRB and choriocapillaris. The oBRB-choriocapillaris model developed using a microphysiological system is expected to offer a valuable in vitro platform for retinal and choroidal vascular diseases in preclinical applications.
Collapse
Affiliation(s)
- Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seokhun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Wan Z, Floryan MA, Coughlin MF, Zhang S, Zhong AX, Shelton SE, Wang X, Xu C, Barbie DA, Kamm RD. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv Healthc Mater 2023; 12:e2201784. [PMID: 36333913 PMCID: PMC10156888 DOI: 10.1002/adhm.202201784] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Previous studies have developed vascularized tumor spheroid models to demonstrate the impact of intravascular flow on tumor progression and treatment. However, these models have not been widely adopted so the vascularization of tumor spheroids in vitro is generally lower than vascularized tumor tissues in vivo. To improve the tumor vascularization level, a new strategy is introduced to form tumor spheroids by adding fibroblasts (FBs) sequentially to a pre-formed tumor spheroid and demonstrate this method with tumor cell lines from kidney, lung, and ovary cancer. Tumor spheroids made with the new strategy have higher FB densities on the periphery of the tumor spheroid, which tend to enhance vascularization. The vessels close to the tumor spheroid made with this new strategy are more perfusable than the ones made with other methods. Finally, chimeric antigen receptor (CAR) T cells are perfused under continuous flow into vascularized tumor spheroids to demonstrate immunotherapy evaluation using vascularized tumor-on-a-chip model. This new strategy for establishing tumor spheroids leads to increased vascularization in vitro, allowing for the examination of immune, endothelial, stromal, and tumor cell responses under static or flow conditions.
Collapse
Affiliation(s)
- Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMA02215USA
| | - Marie A. Floryan
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark F. Coughlin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Amy X. Zhong
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMA02215USA
| | - Xun Wang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Chenguang Xu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouGuangdong510515China
| | - David A. Barbie
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMA02215USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
15
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Wu Y, Zhao Y, Zhou Y, Islam K, Liu Y. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15152-15161. [PMID: 36920885 PMCID: PMC10249002 DOI: 10.1021/acsami.2c23305] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/07/2023] [Indexed: 06/11/2023]
Abstract
High-fidelity in vitro tumor models are important for preclinical drug discovery processes. Currently, the most commonly used model for in vitro drug testing remains the two-dimensional (2D) cell monolayer. However, the natural in vivo tumor microenvironment (TME) consists of extracellular matrix (ECM), supporting stromal cells and vasculature. They not only participate in the progression of tumors but also hinder drug delivery and effectiveness on tumor cells. Here, we report an integrated engineering system to generate vessel-supported tumors for preclinical drug screening. First, gelatin-methacryloyl (GelMA) hydrogel was selected to mimic tumor extracellular matrix (ECM). HCT-116 tumor cells were encapsulated into individual micro-GelMA beads with microfluidic droplet technique to mimic tumor-ECM interactions in vitro. Then, normal human lung fibroblasts were mingled with tumor cells to imitate the tumor-stromal interaction. The tumor cells and fibroblasts reconstituted in the individual GelMA microbead and formed a biomimetic heterotypic tumor model with a core-shell structure. Next, the cell-laden beads were consociated into a functional on-chip vessel network platform to restore the tumor-tumor microenvironment (TME) interaction. Afterward, the anticancer drug paclitaxel was tested on the individual and vessel-supported tumor models. It was demonstrated that the blood vessel-associated TME conferred significant additional drug resistance in the drug screening experiment. The reported system is expected to enable the large-scale fabrication of vessel-supported heterotypic tumor models of various cellular compositions. It is believed to be promising for the large-scale fabrication of biomimetic in vitro tumor models and may be valuable for improving the efficiency of preclinical drug discovery processes.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
17
|
Zhou Y, Wu Y, Paul R, Qin X, Liu Y. Hierarchical Vessel Network-Supported Tumor Model-on-a-Chip Constructed by Induced Spontaneous Anastomosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6431-6441. [PMID: 36693007 PMCID: PMC10249001 DOI: 10.1021/acsami.2c19453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
The vascular system in living tissues is a highly organized system that consists of vessels with various diameters for nutrient delivery and waste transport. In recent years, many vessel construction methods have been developed for building vascularized on-chip tissue models. These methods usually focused on constructing vessels at a single scale. In this work, a method that can build a hierarchical and perfusable vessel networks was developed. By providing flow stimuli and proper HUVEC concentration, spontaneous anastomosis between endothelialized lumens and the self-assembled capillary network was induced; thus, a perfusable network containing vessels at different scales was achieved. With this simple method, an in vivo-like hierarchical vessel-supported tumor model was prepared and its application in anticancer drug testing was demonstrated. The tumor growth rate was predicted by combining computational fluid dynamics simulation and a tumor growth mathematical model to understand the vessel perfusability effect on tumor growth rate in the hierarchical vessel network. Compared to the tumor model without capillary vessels, the hierarchical vessel-supported tumor shows a significantly higher growth rate and drug delivery efficiency.
Collapse
Affiliation(s)
- Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Ratul Paul
- Department
of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Xiaochen Qin
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
- Department
of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| |
Collapse
|
18
|
Deng P, Zhao M, Zhang X, Qin J. A Transwell-Based Vascularized Model to Investigate the Effect of Interstitial Flow on Vasculogenesis. Bioengineering (Basel) 2022; 9:668. [PMID: 36354579 PMCID: PMC9687519 DOI: 10.3390/bioengineering9110668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 09/08/2024] Open
Abstract
Interstitial flow plays a significant role in vascular system development, mainly including angiogenesis and vasculogenesis. However, compared to angiogenesis, the effect of interstitial flow on vasculogenesis is less explored. Current in vitro models for investigating the effect of interstitial flow on vasculogenesis heavily rely on microfluidic chips, which require microfluidic expertise and facilities, and may not be accessible to biological labs. Here, we proposed a facile approach to building perfusable vascular networks through the self-assembly of endothelial cells in a modified transwell format and investigated the effect of interstitial flow on vasculogenesis. We found that the effect of interstitial flow on vasculogenesis was closely related to the existence of VEGF and fibroblasts in the developed model: (1) In the presence of fibroblasts, interstitial flow (within the range of 0.1-0.6 μm/s) facilitated the perfusability of the engineered vasculatures. Additional VEGF in the culture medium further worked synergically with interstitial flow to develop longer, wider, denser, and more perfusable vasculatures than static counterparts; (2) In the absence of fibroblasts, vasculatures underwent severe regression within 7 days under static conditions. However, interstitial flow greatly inhibited vessel regression and enhanced vascular perfusability and morphogenesis without the need for additional VEGF. These results revealed that the effect of interstitial flow might vary depending on the existence of VEGF and fibroblasts, and would provide some guidelines for constructing in vitro self-assembled vasculatures. The established transwell-based vascularized model provides a simple method to build perfusable vasculatures and could also be utilized for creating functional tissues in regenerative medicine.
Collapse
Affiliation(s)
- Pengwei Deng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Lam J, Lee B, Yu J, Kwee BJ, Kim Y, Kim J, Choi Y, Yoon JS, Kim Y, Baek K, Jeon NL, Sung KE. A microphysiological system-based potency bioassay for the functional quality assessment of mesenchymal stromal cells targeting vasculogenesis. Biomaterials 2022; 290:121826. [DOI: 10.1016/j.biomaterials.2022.121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
20
|
Zhang S, Tuk B, van de Peppel J, Kremers GJ, Koedam M, Pesch GR, Rahman Z, Hoogenboezem RM, Bindels EMJ, van Neck JW, Boukany PE, van Leeuwen JPTM, van der Eerden BCJ. Microfluidic evidence of synergistic effects between mesenchymal stromal cell-derived biochemical factors and biomechanical forces to control endothelial cell function. Acta Biomater 2022; 151:346-359. [PMID: 35995408 DOI: 10.1016/j.actbio.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood. Here, we used two different microfluidic designs to investigate critical steps during angiogenesis and found pronounced effects of endothelial cell proliferation as well as chemotactic and mechanotactic migration induced by BMSC conditioned medium (CM). The application of BMSC-CM in dynamic cultures demonstrates that bioactive factors in combination with fluidic flow-induced biomechanical signals significantly enhanced endothelial cell migration. Transcriptional analyses of endothelial cells demonstrate the induction of a unique gene expression profile related to tricarboxylic acid cycle and energy metabolism by the combination of BMSC-CM factors and shear stress, which opens an interesting avenue to explore during fracture healing. Our results stress the importance of in vivo - like microenvironments simultaneously including biochemical, biomechanical and oxygen levels when investigating key events during vessel repair. STATEMENT OF SIGNIFICANCE: Our results demonstrate the importance of recapitulating in vivo - like microenvironments when investigating key events during vessel repair. Endothelial cells exhibit enhanced angiogenesis characteristics when simultaneous exposing them to hMSC-CM, mechanical forces and biochemical signals simultaneously. The improved angiogenesis may not only result from the direct effect of growth factors, but also by reprogramming of endothelial cell metabolism. Moreover, with this model we demonstrated a synergistic impact of mechanical forces and biochemical factors on endothelial cell behavior and the expression of genes involved in the TCA cycle and energy metabolism, which opens an interesting new avenue to stimulate angiogenesis during fracture healing.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Bastiaan Tuk
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Center, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Georg R Pesch
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Johan W van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Multi-Layered Human Blood Vessels-on-Chip Design Using Double Viscous Finger Patterning. Biomedicines 2022; 10:biomedicines10040797. [PMID: 35453546 PMCID: PMC9027030 DOI: 10.3390/biomedicines10040797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessel-on-a-chip models aim at reproducing vascular functions. However, very few efficient methods have been designed to address the need for biological replicates in medium- to high-throughput screenings. Here, vessels-on-chip were designed in polydimethylsiloxane-glass chips using the viscous finger patterning technique which was adapted to create channels with various internal diameters inside a collagen solution and to simultaneously seed cells. This method was refined to create blood vessels composed of two concentric, distinct, and closely appositioned layers of human endothelial and perivascular cells arranged around a hollow lumen. These approaches allowed the formation of structurally correct blood vessels-on-chips which were constituted of either only endothelial cells or of both cell types in order to distinguish the vascular barrier reactivity to drugs in the presence or not of perivascular cells. The established vessels showed a tight vascular barrier, as assessed by immunostaining of the adherens junctions, and were reactive to the natural vasopermeant thrombin and to inflammatory cytokines. The presence of perivascular cells markedly increased the tightness of the vascular barrier and lowered its response to thrombin. The design allowed us to simultaneously challenge in real-time several tens of 3D-reconstituted, multicellular blood vessels in a standard multiwell plate format suitable for high-throughput drug screening.
Collapse
|
22
|
Mykuliak A, Yrjänäinen A, Mäki AJ, Gebraad A, Lampela E, Kääriäinen M, Pakarinen TK, Kallio P, Miettinen S, Vuorenpää H. Vasculogenic Potency of Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Results in Differing Vascular Network Phenotypes in a Microfluidic Chip. Front Bioeng Biotechnol 2022; 10:764237. [PMID: 35211462 PMCID: PMC8861308 DOI: 10.3389/fbioe.2022.764237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The vasculature is an essential, physiological element in virtually all human tissues. Formation of perfusable vasculature is therefore crucial for reliable tissue modeling. Three-dimensional vascular networks can be formed through the co-culture of endothelial cells (ECs) with stromal cells embedded in hydrogel. Mesenchymal stem/stromal cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ASCs) are an attractive choice as stromal cells due to their natural perivascular localization and ability to support formation of mature and stable microvessels in vitro. So far, BMSCs and ASCs have been compared as vasculature-supporting cells in static cultures. In this study, BMSCs and ASCs were co-cultured with endothelial cells in a fibrin hydrogel in a perfusable microfluidic chip. We demonstrated that using MSCs of different origin resulted in vascular networks with distinct phenotypes. Both types of MSCs supported formation of mature and interconnected microvascular networks-on-a-chip. However, BMSCs induced formation of fully perfusable microvasculature with larger vessel area and length whereas ASCs resulted in partially perfusable microvascular networks. Immunostainings revealed that BMSCs outperformed ASCs in pericytic characteristics. Moreover, co-culture with BMSCs resulted in significantly higher expression levels of endothelial and pericyte-specific genes, as well as genes involved in vasculature maturation. Overall, our study provides valuable knowledge on the properties of MSCs as vasculature-supporting cells and highlights the importance of choosing the application-specific stromal cell source for vascularized organotypic models.
Collapse
Affiliation(s)
- Anastasiia Mykuliak
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Alma Yrjänäinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arjen Gebraad
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Ella Lampela
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | | | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
23
|
Wang WY, Kent RN, Huang SA, Jarman EH, Shikanov EH, Davidson CD, Hiraki HL, Lin D, Wall MA, Matera DL, Shin JW, Polacheck WJ, Shikanov A, Baker BM. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Acta Biomater 2021; 135:260-273. [PMID: 34469789 PMCID: PMC8595798 DOI: 10.1016/j.actbio.2021.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Vascularization of large, diffusion-hindered biomaterial implants requires an understanding of how extracellular matrix (ECM) properties regulate angiogenesis. Sundry biomaterials assessed across many disparate angiogenesis assays have highlighted ECM determinants that influence this complex multicellular process. However, the abundance of material platforms, each with unique parameters to model endothelial cell (EC) sprouting presents additional challenges of interpretation and comparison between studies. In this work we directly compared the angiogenic potential of commonly utilized natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels in a multiplexed angiogenesis-on-a-chip platform. Modulating matrix density of collagen and fibrin hydrogels confirmed prior findings that increases in matrix density correspond to increased EC invasion as connected, multicellular sprouts, but with decreased invasion speeds. Angiogenesis in synthetic DexVS hydrogels, however, resulted in fewer multicellular sprouts. Characterizing hydrogel Young's modulus and permeability (a measure of matrix porosity), we identified matrix permeability to significantly correlate with EC invasion depth and sprout diameter. Although microporous collagen and fibrin hydrogels produced lumenized sprouts in vitro, they rapidly resorbed post-implantation into the murine epididymal fat pad. In contrast, DexVS hydrogels proved comparatively stable. To enhance angiogenesis within DexVS hydrogels, we incorporated sacrificial microgels to generate cell-scale pores throughout the hydrogel. Microporous DexVS hydrogels resulted in lumenized sprouts in vitro and enhanced cell invasion in vivo. Towards the design of vascularized biomaterials for long-term regenerative therapies, this work suggests that synthetic biomaterials offer improved size and shape control following implantation and that tuning matrix porosity may better support host angiogenesis. STATEMENT OF SIGNIFICANCE: Understanding how extracellular matrix properties govern angiogenesis will inform biomaterial design for engineering vascularized implantable grafts. Here, we utilized a multiplexed angiogenesis-on-a-chip platform to compare the angiogenic potential of natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels. Characterization of matrix properties and sprout morphometrics across these materials points to matrix porosity as a critical regulator of sprout invasion speed and diameter, supported by the observation that nanoporous DexVS hydrogels yielded endothelial cell sprouts that were not perfusable. To enhance angiogenesis into synthetic hydrogels, we incorporated sacrificial microgels to generate microporosity. We find that microporosity increased sprout diameter in vitro and cell invasion in vivo. This work establishes a composite materials approach to enhance the vascularization of synthetic hydrogels.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States
| | - Evan H Jarman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Eve H Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christopher D Davidson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daphne Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Monica A Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine & Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|