1
|
Nguyen HT, Kan EL, Humayun M, Gurvich N, Offeddu GS, Wan Z, Coughlin MF, Renteria DC, Loew A, Wilson S, Zhang C, Vu V, Lee SWL, Tan SL, Barbie D, Hsu J, Gillrie MR, Kamm RD. Patient-specific vascularized tumor model: Blocking monocyte recruitment with multispecific antibodies targeting CCR2 and CSF-1R. Biomaterials 2025; 312:122731. [PMID: 39153324 DOI: 10.1016/j.biomaterials.2024.122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-β (CSF1R/CCR2/TGF-β Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ellen L Kan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mouhita Humayun
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nadia Gurvich
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Giovanni S Offeddu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mark F Coughlin
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Diana C Renteria
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andreas Loew
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Susan Wilson
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Christie Zhang
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Vivian Vu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sharon Wei Ling Lee
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seng-Lai Tan
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - David Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan Hsu
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Mark Robert Gillrie
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Liu X, Shu Y, Zhu J, Fang H, Su Y, Ma H, Li B, Xu J, Cheng YY, Pan B, Song K. A 3D bioprinted potential colorectal tumor model based on decellularized matrix/gelatin methacryloyl/nanoclay/sodium alginate hydrogel. Int J Biol Macromol 2024; 293:139346. [PMID: 39743054 DOI: 10.1016/j.ijbiomac.2024.139346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Colorectal cancer (CRC) is now the third most common cancer worldwide. However, the development cycle for anticancer drugs is lengthy and the failure rate is high, highlighting the urgent need for new tumor models for CRC-related research. The decellular matrix (dECM) offers numerous cell adhesion sites, proteoglycan and cytokines. Notably, porcine small intestine is rich in capillaries and lymphatic capillaries, which facilitates nutrient absorption. This study, we utilized dECM, along with methylacryloyl gelatin (GelMA), sodium alginate (SA) and nanoclay (NC) to create a hydrogel scaffold through 3D extrusion bioprinting. Human CRC cells (HCT8) were seeded onto the scaffold and their drug resistance was tested using 5-fluorouracil (5-FU). Our findings indicate that dECM enhances the hydrophilic properties, mechanical strength and biocompatibility of the scaffold. Furthermore, compared to traditional two-dimensional (2D) models, the three-dimensional (3D) scaffold supports the long-term growth of tumor spheres. After 2 days of 5-FU treatment, the cell survival rate reaches 88.06 ± 0.51 %. This suggests that our scaffold provides a promising alternative platform for in vitro research on cancer mechanisms, anti-cancer drug screening and new drug development.
Collapse
Affiliation(s)
- Xinyue Liu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ya Su
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bing Li
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Mazzaglia C, Shery Huang YY, Shields JD. Advancing tumor microenvironment and lymphoid tissue research through 3D bioprinting and biofabrication. Adv Drug Deliv Rev 2024; 217:115485. [PMID: 39653084 DOI: 10.1016/j.addr.2024.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Cancer progression is significantly influenced by the complex interactions within the tumor microenvironment (TME). Immune cells, in particular, play a critical role by infiltrating tumors from the circulation and surrounding lymphoid tissues in an attempt to control their spread. However, they often fail in this task. Current in vivo and in vitro preclinical models struggle to fully capture these intricate interactions affecting our ability to understand immune evasion and predict drugs behaviour in the clinic. To address this challenge, biofabrication and particularly 3D bioprinting has emerged as a promising tool for modeling both tumors and the immune system. Its ability to incorporate multiple cell types into 3D matrices, enable tissue compartmentalization with high spatial accuracy, and integrate vasculature makes it a valuable approach. Nevertheless, limited research has focused on capturing the complex tumor-immune interplay in vitro. This review highlights the composition and significance of the TME, the architecture and function of lymphoid tissues, and innovative approaches to modeling their interactions in vitro, while proposing the concept of an extended TME.
Collapse
Affiliation(s)
- Corrado Mazzaglia
- The Nanoscience Centre, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Department of Engineering, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Center for Life Nano, and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy.
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Department of Engineering, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland
| | - Jacqueline D Shields
- Translational Medical Sciences, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, the United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
4
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
5
|
Randall-Demllo S, Al-Qadami G, Raposo AE, Ma C, Priebe IK, Hor M, Singh R, Fung KYC. Ex Vivo Intestinal Organoid Models: Current State-of-the-Art and Challenges in Disease Modelling and Therapeutic Testing for Colorectal Cancer. Cancers (Basel) 2024; 16:3664. [PMID: 39518102 PMCID: PMC11544769 DOI: 10.3390/cancers16213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Despite improvements in participation in population-based screening programme, colorectal cancer remains a major cause of cancer-related mortality worldwide. Targeted interventions are desirable to reduce the health and economic burden of this disease. Two-dimensional monolayers of colorectal cancer cell lines represent the traditional in vitro models for disease and are often used for diverse purposes, including the delineation of molecular pathways associated with disease aetiology or the gauging of drug efficacy. The lack of complexity in such models, chiefly the limited epithelial cell diversity and differentiation, attenuated mucus production, lack of microbial interactions and mechanical stresses, has driven interest in the development of more holistic and physiologically relevant in vitro model systems. In particular, established ex vivo patient-derived explant and patient-derived tumour xenograft models have been supplemented by progress in organoid and microfluidic organ-on-a-chip cultures. Here, we discuss the applicability of advanced culturing technologies, such as organoid systems, as models for colorectal cancer and for testing chemotherapeutic drug sensitivity and efficacy. We highlight current challenges associated with organoid technologies and discuss their future for more accurate disease modelling and personalized medicine.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Ghanyah Al-Qadami
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Anita E. Raposo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Chenkai Ma
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Ilka K. Priebe
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Maryam Hor
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Rajvinder Singh
- Division of Gastroenterology, Lyell McEwin Hospital, Adelaide 5112, Australia
| | - Kim Y. C. Fung
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| |
Collapse
|
6
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
7
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Lampejo AO, Lightsey SE, Gomes MC, Nguyen CM, Siemann DW, Sharma B, Murfee WL. A Novel Ex Vivo Tumor Spheroid-Tissue Model for Investigating Microvascular Remodeling and Lymphatic Blood Vessel Plasticity. Ann Biomed Eng 2024; 52:2457-2472. [PMID: 38796670 DOI: 10.1007/s10439-024-03535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Biomimetic tumor microenvironment models bridge the gap between in vitro and in vivo systems and serve as a useful way to address the modeling challenge of how to recreate the cell and system complexity associated with real tissues. Our laboratory has developed an ex vivo rat mesentery culture model, which allows for simultaneous investigation of blood and lymphatic microvascular network remodeling in an intact tissue environment. Given that angiogenesis and lymphangiogenesis are key contributors to the progression of cancer, the objective of this study was to combine tissue and tumor spheroid culture methods to establish a novel ex vivo tumor spheroid-tissue model by verifying its use for evaluating the effects of cancer cell behavior on the local microvascular environment. H1299 or A549 tumor spheroids were formed via hanging drop culture and seeded onto rat mesenteric tissues harvested from adult male Wistar rats. Tissues with transplanted spheroids were cultured in serum-free media for 3 to 5 days. PECAM, NG2, CD11b, and αSMA labeling identified endothelial cells, pericytes, immune cells, and smooth muscle cells, respectively. Time-lapse imaging confirmed cancer cell type specific migration. In addition to increasing PECAM positive capillary sprouting and LYVE-1 positive endothelial cell extensions indicative of lymphangiogenesis, tumor spheroid presence induced the formation of lymphatic/blood vessel connections and the formation of hybrid, mosaic vessels that were characterized by discontinuous LYVE-1 labeling. The results support the application of a novel tumor spheroid microenvironment model for investigating cancer cell-microvascular interactions.
Collapse
Affiliation(s)
- Arinola O Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Suzanne E Lightsey
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Maria C Gomes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christian M Nguyen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar W Siemann
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Department of Radiation Oncology, University of Florida, University of Florida Health, Gainesville, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
9
|
Munoz JM, Pileggi GF, Nucci MP, Alves ADH, Pedrini F, do Valle NME, Mamani JB, de Oliveira FA, Lopes AT, Carreño MNP, Gamarra LF. In Silico Approach to Model Heat Distribution of Magnetic Hyperthermia in the Tumoral and Healthy Vascular Network Using Tumor-on-a-Chip to Evaluate Effective Therapy. Pharmaceutics 2024; 16:1156. [PMID: 39339193 PMCID: PMC11434665 DOI: 10.3390/pharmaceutics16091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer in adults, characterized by its complex vascular network that contributes to resistance to conventional therapies. Thermal therapies, such as magnetic hyperthermia (MHT), emerge as promising alternatives, using heat to selectively target tumor cells while minimizing damage to healthy tissues. The organ-on-a-chip can replicate this complex vascular network of GBM, allowing for detailed investigations of heat dissipation in MHT, while computational simulations refine treatment parameters. In this in silico study, tumor-on-a-chip models were used to optimize MHT therapy by comparing heat dissipation in normal and abnormal vascular networks, considering geometries, flow rates, and concentrations of magnetic nanoparticles (MNPs). In the high vascular complexity model, the maximum velocity was 19 times lower than in the normal vasculature model and 4 times lower than in the low-complexity tumor model, highlighting the influence of vascular complexity on velocity and temperature distribution. The MHT simulation showed greater heat intensity in the central region, with a flow rate of 1 µL/min and 0.5 mg/mL of MNPs being the best conditions to achieve the therapeutic temperature. The complex vasculature model had the lowest heat dissipation, reaching 44.15 °C, compared to 42.01 °C in the low-complexity model and 37.80 °C in the normal model. These results show that greater vascular complexity improves heat retention, making it essential to consider this heterogeneity to optimize MHT treatment. Therefore, for an efficient MHT process, it is necessary to simulate ideal blood flow and MNP conditions to ensure heat retention at the tumor site, considering its irregular vascularization and heat dissipation for effective destruction.
Collapse
Affiliation(s)
- Juan Matheus Munoz
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Giovana Fontanella Pileggi
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Mariana Penteado Nucci
- LIM44—Hospital das Clínicas da Faculdade Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil;
| | - Arielly da Hora Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Flavia Pedrini
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Nicole Mastandrea Ennes do Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Javier Bustamante Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Fernando Anselmo de Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Alexandre Tavares Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil; (A.T.L.); (M.N.P.C.)
| | - Marcelo Nelson Páez Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil; (A.T.L.); (M.N.P.C.)
| | - Lionel Fernel Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| |
Collapse
|
10
|
Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications. Adv Healthc Mater 2024; 13:e2303419. [PMID: 38686434 PMCID: PMC11338730 DOI: 10.1002/adhm.202303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ninghao Zhu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
11
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
12
|
Lopez-Vince E, Wilhelm C, Simon-Yarza T. Vascularized tumor models for the evaluation of drug delivery systems: a paradigm shift. Drug Deliv Transl Res 2024; 14:2216-2241. [PMID: 38619704 PMCID: PMC11208221 DOI: 10.1007/s13346-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
As the conversion rate of preclinical studies for cancer treatment is low, user-friendly models that mimic the pathological microenvironment and drug intake with high throughput are scarce. Animal models are key, but an alternative to reduce their use would be valuable. Vascularized tumor-on-chip models combine great versatility with scalable throughput and are easy to use. Several strategies to integrate both tumor and vascular compartments have been developed, but few have been used to assess drug delivery. Permeability, intra/extravasation, and free drug circulation are often evaluated, but imperfectly recapitulate the processes at stake. Indeed, tumor targeting and chemoresistance bypass must be investigated to design promising cancer therapeutics. In vitro models that would help the development of drug delivery systems (DDS) are thus needed. They would allow selecting good candidates before animal studies based on rational criteria such as drug accumulation, diffusion in the tumor, and potency, as well as absence of side damage. In this review, we focus on vascularized tumor models. First, we detail their fabrication, and especially the materials, cell types, and coculture used. Then, the different strategies of vascularization are described along with their classical applications in intra/extravasation or free drug assessment. Finally, current trends in DDS for cancer are discussed with an overview of the current efforts in the domain.
Collapse
Affiliation(s)
- Elliot Lopez-Vince
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France.
| |
Collapse
|
13
|
Martier A, Chen Z, Schaps H, Mondrinos MJ, Fang JS. Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms. Front Physiol 2024; 15:1425618. [PMID: 39135710 PMCID: PMC11317428 DOI: 10.3389/fphys.2024.1425618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.
Collapse
Affiliation(s)
- A. Martier
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Z. Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - H. Schaps
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - M. J. Mondrinos
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - J. S. Fang
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
14
|
Gallegos-Martínez S, Choy-Buentello D, Pérez-Álvarez KA, Lara-Mayorga IM, Aceves-Colin AE, Zhang YS, Trujillo-de Santiago G, Álvarez MM. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Biofabrication 2024; 16:045010. [PMID: 38866003 DOI: 10.1088/1758-5090/ad5765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.
Collapse
Affiliation(s)
- Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - David Choy-Buentello
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | - Kristen Aideé Pérez-Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| |
Collapse
|
15
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
16
|
Hughes CCW, Fang J, Hatch C, Andrejecsk J, Trigt WV, Juat D, Chen YH, Matsumoto S, Lee A. A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions. RESEARCH SQUARE 2024:rs.3.rs-4578507. [PMID: 38947000 PMCID: PMC11213165 DOI: 10.21203/rs.3.rs-4578507/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations (VM) - including small telangiectasias and large arteriovenous malformations (AVMs) - focally develop in multiple organs. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations affecting Endoglin (ENG) or Alk1 (ACVRL1); however, why loss of these genes manifests as VMs remains poorly understood. To complement ongoing work in animal models, we have developed a fully human, cell-based microphysiological model based on our Vascularized Micro-organ (VMO) platform (the HHT-VMO) that recapitulates HHT patient VMs. Using inducible ACVRL1 -knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC). Resulting HHT-VMO VMs develop over several days. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that can be used to better understand HHT disease biology and identify potential new HHT drugs.
Collapse
|
17
|
Goto A, Moriya Y, Nakayama M, Iwasaki S, Yamamoto S. DMPK perspective on quantitative model analysis for chimeric antigen receptor cell therapy: Advances and challenges. Drug Metab Pharmacokinet 2024; 56:101003. [PMID: 38843652 DOI: 10.1016/j.dmpk.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects in vitro and in vivo nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of in vitro models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients' lives through efficient CAR cell therapies.
Collapse
Affiliation(s)
- Akihiko Goto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shinji Iwasaki
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan.
| |
Collapse
|
18
|
Hsu YH, Yang WC, Chen YT, Lin CY, Yang CF, Liu WW, Shivani S, Li PC. Spatially controlled diffusion range of tumor-associated angiogenic factors to develop a tumor model using a microfluidic resistive circuit. LAB ON A CHIP 2024; 24:2644-2657. [PMID: 38576341 DOI: 10.1039/d3lc00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 μm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.
Collapse
Affiliation(s)
- Yu-Hsiang Hsu
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.
- Graduate School of Advanced Technology, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C
| | - Wen-Chih Yang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.
| | - Yi-Ting Chen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.
| | - Che-Yu Lin
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.
| | - Chiou-Fong Yang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.
| | - Wei-Wen Liu
- Graduate Institute of Oral Biology, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C
| | - Subhashree Shivani
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan, R.O.C
| | - Pai-Chi Li
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan, R.O.C
| |
Collapse
|
19
|
Yu T, Yang Q, Peng B, Gu Z, Zhu D. Vascularized organoid-on-a-chip: design, imaging, and analysis. Angiogenesis 2024; 27:147-172. [PMID: 38409567 DOI: 10.1007/s10456-024-09905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
20
|
Ahmad Zawawi SS, Salleh EA, Musa M. Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:409-431. [PMID: 38745769 PMCID: PMC11090692 DOI: 10.37349/etat.2024.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.
Collapse
Affiliation(s)
| | - Elyn Amiela Salleh
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
21
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
22
|
Jouybar M, de Winde CM, Wolf K, Friedl P, Mebius RE, den Toonder JMJ. Cancer-on-chip models for metastasis: importance of the tumor microenvironment. Trends Biotechnol 2024; 42:431-448. [PMID: 37914546 DOI: 10.1016/j.tibtech.2023.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Cancer-on-chip (CoC) models, based on microfluidic chips harboring chambers for 3D tumor-cell culture, enable us to create a controlled tumor microenvironment (TME). CoC models are therefore increasingly used to systematically study effects of the TME on the various steps in cancer metastasis. Moreover, CoC models have great potential for developing novel cancer therapies and for predicting patient-specific response to cancer treatments. We review recent developments in CoC models, focusing on three main TME components: (i) the anisotropic extracellular matrix (ECM) architectures, (ii) the vasculature, and (iii) the immune system. We aim to provide guidance to biologists to choose the best CoC approach for addressing questions about the role of the TME in metastasis, and to inspire engineers to develop novel CoC technologies.
Collapse
Affiliation(s)
- Mohammad Jouybar
- Microsystems, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands
| | - Katarina Wolf
- Department of Medical BioSciences, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Medical BioSciences, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, Utrecht, The Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory diseases, Amsterdam, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven, The Netherlands.
| |
Collapse
|
23
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
24
|
Konopka J, Żuchowska A, Jastrzębska E. Vascularized tumor-on-chip microplatforms for the studies of neovasculature as hope for more effective cancer treatments. Biosens Bioelectron 2024; 249:115986. [PMID: 38194813 DOI: 10.1016/j.bios.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Angiogenesis is the development of new blood vessels from pre-existing vasculature. Multiple factors control its course. Disorders of the distribution of angiogenic agents are responsible for development of solid tumors and its metastases. Understanding of the molecular interactions regulating pathological angiogenesis will allow for development of more effective, even personalized treatment. A simulation of angiogenesis under microflow conditions is a promising alternative to previous studies conducted on animals and on 2D cell cultures. In this review, we summarize what has been discovered so far in the field of vascularized tumor-on-a-chip platforms. For this purpose, we describe different vascularization techniques used in microfluidics, present various attempts to induce angiogenesis-on-a-chip and report some approaches to recapitulate vascularized tumor microenvironment under microflow conditions.
Collapse
Affiliation(s)
- Joanna Konopka
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland
| | - Agnieszka Żuchowska
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland.
| |
Collapse
|
25
|
Hu J, Liu K, Ghosh C, Khaket TP, Shih H, Kebebew E. Anaplastic thyroid cancer spheroids as preclinical models to test therapeutics. J Exp Clin Cancer Res 2024; 43:85. [PMID: 38500204 PMCID: PMC10949686 DOI: 10.1186/s13046-024-03009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive thyroid cancer. Despite advances in tissue culture techniques, a robust model for ATC spheroid culture is yet to be developed. In this study, we created an efficient and cost-effective 3D tumor spheroids culture system from human ATC cells and existing cell lines that better mimic patient tumors and that can enhance our understanding of in vivo treatment response. We found that patient-derived ATC cells and cell lines can readily form spheroids in culture with a unique morphology, size, and cytoskeletal organization. We observed both cohesive (dense and solid structures) and discohesive (irregularly shaped structures) spheroids within the same culture condition across different cell lines. BRAFWT ATC spheroids grew in a cohesive pattern, while BRAFV600E-mutant ATC spheroids had a discohesive organization. In the patient-derived BRAFV600E-mutant ATC spheroids, we observed both growth patterns, but mostly the discohesive type. Histologically, ATC spheroids had a similar morphology to the patient's tumor through H&E staining and proliferation marker staining. Moreover, RNA sequencing analysis revealed that the gene expression profile of tumor cells derived from the spheroids closely matched parental patient tumor-derived cells in comparison to monolayer cultures. In addition, treatment response to combined BRAF and MEK inhibition in BRAFV600E-mutant ATC spheroids exhibited a similar sensitivity to the patient clinical response. Our study provides a robust and novel ex vivo spheroid model system that can be used in both established ATC cell lines and patient-derived tumor samples to better understand the biology of ATC and to test therapeutics.
Collapse
Affiliation(s)
- Jiangnan Hu
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Chandrayee Ghosh
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Tejinder Pal Khaket
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Helen Shih
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Fang JS, Hatch CJ, Andrejecsk J, Trigt WV, Juat DJ, Chen YH, Matsumoto S, Lee AP, Hughes CCW. A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584490. [PMID: 38559155 PMCID: PMC10979959 DOI: 10.1101/2024.03.11.584490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations focally develop in multiple organs. These can be small (telangiectasias) or large (arteriovenous malformations, AVMs) and may rupture leading to frequent, uncontrolled bleeding. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations for Endoglin (ENG) or Alk1 (ACVRL1), however, why loss of these genes manifests as vascular malformations remains poorly understood. To complement ongoing work in animal models, we have developed a microphysiological system model of HHT. Based on our existing vessel-on-a-chip (VMO) platform, our fully human cell-based HHT-VMO recapitulates HHT patient vascular lesions. Using inducible ACVRL1 (Alk1)-knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC) in the HHT-VMO. HHT-VMO vascular lesions develop over several days, and are dependent upon timing of Alk1 knockdown. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB expression implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring the positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that is sensitive to a treatment effective in patients. The VMO-HHT can be used to better understand HHT disease biology and identify potential new HHT drugs. Significance This manuscript describes development of an organ-on-a-chip model of Hereditary Hemorrhagic Telangiectasia (HHT), a rare genetic disease involving development of vascular malformations. Our VMO-HHT model produces vascular malformations similar to those seen in human HHT patients, including small (telangiectasias) and large (arteriovenous malformations) lesions. We show that VMO-HHT lesions are sensitive to a drug, pazopanib, that appears to be effective in HHT human patients. We further use the VMO-HHT platform to demonstrate that there is a critical window during vessel formation in which the HHT gene, Alk1, is required to prevent vascular malformation. Lastly, we show that lesions in the VMO-HHT model are comprised of both Alk1-deficient and Alk1-intact endothelial cells.
Collapse
|
27
|
De Lorenzi F, Hansen N, Theek B, Daware R, Motta A, Breuel S, Nasehi R, Baumeister J, Schöneberg J, Stojanović N, von Stillfried S, Vogt M, Müller-Newen G, Maurer J, Sofias AM, Lammers T, Fischer H, Kiessling F. Engineering Mesoscopic 3D Tumor Models with a Self-Organizing Vascularized Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303196. [PMID: 37865947 DOI: 10.1002/adma.202303196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/05/2023] [Indexed: 10/24/2023]
Abstract
Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.
Collapse
Affiliation(s)
- Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Nadja Hansen
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alessandro Motta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Saskia Breuel
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Julian Baumeister
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jan Schöneberg
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | | | - Michael Vogt
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Trondheim, 7491, Norway
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, 28359, Bremen, Germany
| |
Collapse
|
28
|
Bender RHF, O’Donnell BT, Shergill B, Pham BQ, Tahmouresie S, Sanchez CN, Juat DJ, Hatch MMS, Shirure VS, Wortham M, Nguyen-Ngoc KV, Jun Y, Gaetani R, Christman KL, Teyton L, George SC, Sander M, Hughes CCW. A vascularized 3D model of the human pancreatic islet for ex vivostudy of immune cell-islet interaction. Biofabrication 2024; 16:025001. [PMID: 38128127 PMCID: PMC10782895 DOI: 10.1088/1758-5090/ad17d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byβcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletβcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingβcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.
Collapse
Affiliation(s)
- R Hugh F Bender
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Benjamen T O’Donnell
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Bhupinder Shergill
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Brittany Q Pham
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Sima Tahmouresie
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Celeste N Sanchez
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Damie J Juat
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Michaela M S Hatch
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Matthew Wortham
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
| | - Kim-Vy Nguyen-Ngoc
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
| | - Yesl Jun
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
| | - Roberto Gaetani
- Department of Bioengineering, University of California, San Diego, CA, United States of America
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Karen L Christman
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, United States of America
- Department of Bioengineering, University of California, San Diego, CA, United States of America
| | - Luc Teyton
- Department of Immunology & Microbiology, The Scripps Research Institute, San Diego, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Maike Sander
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, United States of America
| | - Christopher C W Hughes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California, Irvine, CA, United States of America
| |
Collapse
|
29
|
Hachey SJ, Hatch CJ, Gaebler D, Mocherla A, Nee K, Kessenbrock K, Hughes CCW. Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model. Breast Cancer Res 2024; 26:5. [PMID: 38183074 PMCID: PMC10768273 DOI: 10.1186/s13058-023-01760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with limited available treatments. Stromal cells in the tumor microenvironment (TME) are crucial in TNBC progression; however, understanding the molecular basis of stromal cell activation and tumor-stromal crosstalk in TNBC is limited. To investigate therapeutic targets in the TNBC stromal niche, we used an advanced human in vitro microphysiological system called the vascularized micro-tumor (VMT). Using single-cell RNA sequencing, we revealed that normal breast tissue stromal cells activate neoplastic signaling pathways in the TNBC TME. By comparing interactions in VMTs with clinical data, we identified therapeutic targets at the tumor-stromal interface with potential clinical significance. Combining treatments targeting Tie2 signaling with paclitaxel resulted in vessel normalization and increased efficacy of paclitaxel in the TNBC VMT. Dual inhibition of HER3 and Akt also showed efficacy against TNBC. These data demonstrate the potential of inducing a favorable TME as a targeted therapeutic approach in TNBC.
Collapse
Affiliation(s)
- Stephanie J Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | | | - Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Aneela Mocherla
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Kevin Nee
- Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Christopher C W Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
30
|
Hwangbo H, Chae S, Kim W, Jo S, Kim GH. Tumor-on-a-chip models combined with mini-tissues or organoids for engineering tumor tissues. Theranostics 2024; 14:33-55. [PMID: 38164155 PMCID: PMC10750204 DOI: 10.7150/thno.90093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of tumor-on-a-chip technology with mini-tissues or organoids has emerged as a powerful approach in cancer research and drug development. This review provides an extensive examination of the diverse biofabrication methods employed to create mini-tissues, including 3D bioprinting, spheroids, microfluidic systems, and self-assembly techniques using cell-laden hydrogels. Furthermore, it explores various approaches for fabricating organ-on-a-chip platforms. This paper highlights the synergistic potential of combining these technologies to create tumor-on-a-chip models that mimic the complex tumor microenvironment and offer unique insights into cancer biology and therapeutic responses.
Collapse
Affiliation(s)
| | | | | | | | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM) Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
Yu Y, Zhou T, Cao L. Use and application of organ-on-a-chip platforms in cancer research. J Cell Commun Signal 2023:10.1007/s12079-023-00790-7. [PMID: 38032444 DOI: 10.1007/s12079-023-00790-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Tumors are a major cause of death worldwide, and much effort has been made to develop appropriate anti-tumor therapies. Existing in vitro and in vivo tumor models cannot reflect the critical features of cancer. The development of organ-on-a-chip models has enabled the integration of organoids, microfluidics, tissue engineering, biomaterials research, and microfabrication, offering conditions that mimic tumor physiology. Three-dimensional in vitro human tumor models that have been established as organ-on-a-chip models contain multiple cell types and a structure that is similar to the primary tumor. These models can be applied to various foci of oncology research. Moreover, the high-throughput features of microfluidic organ-on-a-chip models offer new opportunities for achieving large-scale drug screening and developing more personalized treatments. In this review of the literature, we explore the development of organ-on-a-chip technology and discuss its use as an innovative tool in basic and clinical applications and summarize its advancement of cancer research.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Hepatobiliary and Transplant Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - TingTing Zhou
- The College of Basic Medical Science, Health Sciences Institute, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
32
|
Nguyen HT, Gurvich N, Gillrie MR, Offeddu G, Humayun M, Kan EL, Wan Z, Coughlin MF, Zhang C, Vu V, Lee SWL, Tan SL, Barbie D, Hsu J, Kamm RD. Patient-Specific Vascularized Tumor Model: Blocking TAM Recruitment with Multispecific Antibodies Targeting CCR2 and CSF-1R. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568627. [PMID: 38076998 PMCID: PMC10705378 DOI: 10.1101/2023.11.28.568627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Tumor-associated inflammation drives cancer progression and therapy resistance, with the infiltration of monocyte-derived tumor-associated macrophages (TAMs) associated with poor prognosis in diverse cancers. Targeting TAMs holds potential against solid tumors, but effective immunotherapies require testing on immunocompetent human models prior to clinical trials. Here, we develop an in vitro model of microvascular networks that incorporates tumor spheroids or patient tissues. By perfusing the vasculature with human monocytes, we investigate monocyte trafficking into the tumor and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via TAM-produced CCL7 and CCL2, mediated by CSF-1R. Additionally, we assess a novel multispecific antibody targeting CCR2, CSF-1R, and neutralizing TGF-β, referred to as CSF1R/CCR2/TGF-β Ab, on monocytes and macrophages using our 3D models. This antibody repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and effectively blocks monocyte migration. Finally, we show that the CSF1R/CCR2/TGF-β Ab inhibits monocyte recruitment in patient-specific vascularized tumor models. Overall, this vascularized tumor model offers valuable insights into monocyte recruitment and enables functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Nadia Gurvich
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Mark Robert Gillrie
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
- Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4 Canada
| | - Giovanni Offeddu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Mouhita Humayun
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Ellen L. Kan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Mark Frederick Coughlin
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Christie Zhang
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Vivian Vu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Sharon Wei Ling Lee
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Seng-Lai Tan
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - David Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan Hsu
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| |
Collapse
|
33
|
Hachey SJ, Gaebler D, Hughes CCW. Establishing a Physiologic Human Vascularized Micro-Tumor Model for Cancer Research. J Vis Exp 2023:10.3791/65865. [PMID: 37782104 PMCID: PMC11050739 DOI: 10.3791/65865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
A lack of validated cancer models that recapitulate the tumor microenvironment of solid cancers in vitro remains a significant bottleneck for preclinical cancer research and therapeutic development. To overcome this problem, we have developed the vascularized microtumor (VMT), or tumor chip, a microphysiological system that realistically models the complex human tumor microenvironment. The VMT forms de novo within a microfluidic platform by co-culture of multiple human cell types under dynamic, physiological flow conditions. This tissue-engineered micro-tumor construct incorporates a living perfused vascular network that supports the growing tumor mass just as newly formed vessels do in vivo. Importantly, drugs and immune cells must cross the endothelial layer to reach the tumor, modeling in vivo physiological barriers to therapeutic delivery and efficacy. Since the VMT platform is optically transparent, high-resolution imaging of dynamic processes such as immune cell extravasation and metastasis can be achieved with direct visualization of fluorescently labeled cells within the tissue. Further, the VMT retains in vivo tumor heterogeneity, gene expression signatures, and drug responses. Virtually any tumor type can be adapted to the platform, and primary cells from fresh surgical tissues grow and respond to drug treatment in the VMT, paving the way toward truly personalized medicine. Here, the methods for establishing the VMT and utilizing it for oncology research are outlined. This innovative approach opens new possibilities for studying tumors and drug responses, providing researchers with a powerful tool to advance cancer research.
Collapse
Affiliation(s)
| | - Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine
| | - Christopher C W Hughes
- Molecular Biology and Biochemistry, University of California, Irvine; Biomedical Engineering, University of California, Irvine
| |
Collapse
|
34
|
van Rijt A, Stefanek E, Valente K. Preclinical Testing Techniques: Paving the Way for New Oncology Screening Approaches. Cancers (Basel) 2023; 15:4466. [PMID: 37760435 PMCID: PMC10526899 DOI: 10.3390/cancers15184466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Prior to clinical trials, preclinical testing of oncology drug candidates is performed by evaluating drug candidates with in vitro and in vivo platforms. For in vivo testing, animal models are used to evaluate the toxicity and efficacy of drug candidates. However, animal models often display poor translational results as many drugs that pass preclinical testing fail when tested with humans, with oncology drugs exhibiting especially poor acceptance rates. The FDA Modernization Act 2.0 promotes alternative preclinical testing techniques, presenting the opportunity to use higher complexity in vitro models as an alternative to in vivo testing, including three-dimensional (3D) cell culture models. Three-dimensional tissue cultures address many of the shortcomings of 2D cultures by more closely replicating the tumour microenvironment through a combination of physiologically relevant drug diffusion, paracrine signalling, cellular phenotype, and vascularization that can better mimic native human tissue. This review will discuss the common forms of 3D cell culture, including cell spheroids, organoids, organs-on-a-chip, and 3D bioprinted tissues. Their advantages and limitations will be presented, aiming to discuss the use of these 3D models to accurately represent human tissue and as an alternative to animal testing. The use of 3D culture platforms for preclinical drug development is expected to accelerate as these platforms continue to improve in complexity, reliability, and translational predictivity.
Collapse
Affiliation(s)
- Antonia van Rijt
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Evan Stefanek
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada;
| | - Karolina Valente
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
35
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
36
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
37
|
Li C, Holman JB, Shi Z, Qiu B, Ding W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater Today Bio 2023; 21:100724. [PMID: 37483380 PMCID: PMC10359640 DOI: 10.1016/j.mtbio.2023.100724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.
Collapse
Affiliation(s)
- Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Joseph Benjamin Holman
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
38
|
Yau JNN, Adriani G. Three-dimensional heterotypic colorectal cancer spheroid models for evaluation of drug response. Front Oncol 2023; 13:1148930. [PMID: 37469395 PMCID: PMC10352797 DOI: 10.3389/fonc.2023.1148930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 07/21/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Improved preclinical tumor models are needed to make treatment screening clinically relevant and address disease mortality. Advancements in 3D cell culture have enabled a greater recapitulation of the architecture and heterogeneity of the tumor microenvironment (TME). This has enhanced their pathophysiological relevance and enabled more accurate predictions of tumor progression and drug response in patients. An increasing number of 3D CRC spheroid models include cell populations such as cancer-associated fibroblasts (CAFs), endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the 3D spheroid models enables the identification of new therapeutic targets to develop alternative treatments and test TME-target therapies. In this mini review, we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid models by incorporating CAFs, ECs, immune cells, and gut bacteria. We introduce how, in these models, the diverse cells influence chemoresistance and tumor progression of the CRC spheroids. We also highlight important parameters evaluated during drug screening in the CRC heterocellular spheroids.
Collapse
Affiliation(s)
- Jia Ning Nicolette Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Wan Z, Floryan MA, Coughlin MF, Zhang S, Zhong AX, Shelton SE, Wang X, Xu C, Barbie DA, Kamm RD. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv Healthc Mater 2023; 12:e2201784. [PMID: 36333913 PMCID: PMC10156888 DOI: 10.1002/adhm.202201784] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Previous studies have developed vascularized tumor spheroid models to demonstrate the impact of intravascular flow on tumor progression and treatment. However, these models have not been widely adopted so the vascularization of tumor spheroids in vitro is generally lower than vascularized tumor tissues in vivo. To improve the tumor vascularization level, a new strategy is introduced to form tumor spheroids by adding fibroblasts (FBs) sequentially to a pre-formed tumor spheroid and demonstrate this method with tumor cell lines from kidney, lung, and ovary cancer. Tumor spheroids made with the new strategy have higher FB densities on the periphery of the tumor spheroid, which tend to enhance vascularization. The vessels close to the tumor spheroid made with this new strategy are more perfusable than the ones made with other methods. Finally, chimeric antigen receptor (CAR) T cells are perfused under continuous flow into vascularized tumor spheroids to demonstrate immunotherapy evaluation using vascularized tumor-on-a-chip model. This new strategy for establishing tumor spheroids leads to increased vascularization in vitro, allowing for the examination of immune, endothelial, stromal, and tumor cell responses under static or flow conditions.
Collapse
Affiliation(s)
- Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMA02215USA
| | - Marie A. Floryan
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark F. Coughlin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Amy X. Zhong
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMA02215USA
| | - Xun Wang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Chenguang Xu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouGuangdong510515China
| | - David A. Barbie
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMA02215USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
40
|
Sánchez-Salazar MG, Crespo-López Oliver R, Ramos-Meizoso S, Jerezano-Flores VS, Gallegos-Martínez S, Bolívar-Monsalve EJ, Ceballos-González CF, Trujillo-de Santiago G, Álvarez MM. 3D-Printed Tumor-on-Chip for the Culture of Colorectal Cancer Microspheres: Mass Transport Characterization and Anti-Cancer Drug Assays. Bioengineering (Basel) 2023; 10:554. [PMID: 37237624 PMCID: PMC10215397 DOI: 10.3390/bioengineering10050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Tumor-on-chips have become an effective resource in cancer research. However, their widespread use remains limited due to issues related to their practicality in fabrication and use. To address some of these limitations, we introduce a 3D-printed chip, which is large enough to host ~1 cm3 of tissue and fosters well-mixed conditions in the liquid niche, while still enabling the formation of the concentration profiles that occur in real tissues due to diffusive transport. We compared the mass transport performance in its rhomboidal culture chamber when empty, when filled with GelMA/alginate hydrogel microbeads, or when occupied with a monolithic piece of hydrogel with a central channel, allowing communication between the inlet and outlet. We show that our chip filled with hydrogel microspheres in the culture chamber promotes adequate mixing and enhanced distribution of culture media. In proof-of-concept pharmacological assays, we biofabricated hydrogel microspheres containing embedded Caco2 cells, which developed into microtumors. Microtumors cultured in the device developed throughout the 10-day culture showing >75% of viability. Microtumors subjected to 5-fluorouracil treatment displayed <20% cell survival and lower VEGF-A and E-cadherin expression than untreated controls. Overall, our tumor-on-chip device proved suitable for studying cancer biology and performing drug response assays.
Collapse
Affiliation(s)
- Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Regina Crespo-López Oliver
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Sofía Ramos-Meizoso
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Valeri Sofía Jerezano-Flores
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Edna Johana Bolívar-Monsalve
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Carlos Fernando Ceballos-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
41
|
Hachey SJ, Sobrino A, Lee JG, Jafari MD, Klempner SJ, Puttock EJ, Edwards RA, Lowengrub JS, Waterman ML, Zell JA, Hughes CCW. A human vascularized microtumor model of patient-derived colorectal cancer recapitulates clinical disease. Transl Res 2023; 255:97-108. [PMID: 36481562 PMCID: PMC10593408 DOI: 10.1016/j.trsl.2022.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Accurately modeling tumor biology and testing novel therapies on patient-derived cells is critically important to developing therapeutic regimens personalized to a patient's specific disease. The vascularized microtumor (VMT), or "tumor-on-a-chip," is a physiologic preclinical cancer model that incorporates key features of the native human tumor microenvironment within a transparent microfluidic platform, allowing rapid drug screening in vitro. Herein we optimize methods for generating patient-derived VMT (pVMT) using fresh colorectal cancer (CRC) biopsies and surgical resections to test drug sensitivities at the individual patient level. In response to standard chemotherapy and TGF-βR1 inhibition, we observe heterogeneous responses between pVMT derived from 6 patient biopsies, with the pVMT recapitulating tumor growth, histological features, metabolic heterogeneity, and drug responses of actual CRC tumors. Our results suggest that a translational infrastructure providing rapid information from patient-derived tumor cells in the pVMT, as established in this study, will support efforts to improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie J Hachey
- Irvine Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Agua Sobrino
- Irvine Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - John G Lee
- Irvine School of Medicine, University of California, Irvine, California
| | | | | | - Eric J Puttock
- Irvine Department of Mathematics, University of California, Irvine, California
| | - Robert A Edwards
- Irvine School of Medicine, University of California, Irvine, California
| | - John S Lowengrub
- Irvine Department of Mathematics, University of California, Irvine, California
| | - Marian L Waterman
- Irvine Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Jason A Zell
- Irvine School of Medicine, University of California, Irvine, California
| | - Christopher C W Hughes
- Irvine Department of Molecular Biology and Biochemistry, University of California, Irvine, California; Irvine Department of Biomedical Engineering, University of California, Irvine, California.
| |
Collapse
|
42
|
Bogseth A, Ramirez A, Vaughan E, Maisel K. In Vitro Models of Blood and Lymphatic Vessels-Connecting Tissues and Immunity. Adv Biol (Weinh) 2023; 7:e2200041. [PMID: 35751460 PMCID: PMC9790046 DOI: 10.1002/adbi.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Blood and lymphatic vessels are regulators of physiological processes, including oxygenation and fluid transport. Both vessels are ubiquitous throughout the body and are critical for sustaining tissue homeostasis. The complexity of each vessel's processes has limited the understanding of exactly how the vessels maintain their functions. Both vessels have been shown to be involved in the pathogenesis of many diseases, including cancer metastasis, and it is crucial to probe further specific mechanisms involved. In vitro models are developed to better understand blood and lymphatic physiological functions and their mechanisms. In this review, blood and lymphatic in vitro model systems, including 2D and 3D designs made using Transwells, microfluidic devices, organoid cultures, and various other methods, are described. Models studying endothelial cell-extracellular matrix interactions, endothelial barrier properties, transendothelial transport and cell migration, lymph/angiogenesis, vascular inflammation, and endothelial-cancer cell interactions are particularly focused. While the field has made significant progress in modeling and understanding lymphatic and blood vasculature, more models that include coculture of multiple cell types, complex extracellular matrix, and 3D morphologies, particularly for models mimicking disease states, will help further the understanding of the role of blood and lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Amanda Bogseth
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Ann Ramirez
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Erik Vaughan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
43
|
Nguyen HT, Peirsman A, Tirpakova Z, Mandal K, Vanlauwe F, Maity S, Kawakita S, Khorsandi D, Herculano R, Umemura C, Yilgor C, Bell R, Hanson A, Li S, Nanda HS, Zhu Y, Najafabadi AH, Jucaud V, Barros N, Dokmeci MR, Khademhosseini A. Engineered Vasculature for Cancer Research and Regenerative Medicine. MICROMACHINES 2023; 14:978. [PMID: 37241602 PMCID: PMC10221678 DOI: 10.3390/mi14050978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Engineered human tissues created by three-dimensional cell culture of human cells in a hydrogel are becoming emerging model systems for cancer drug discovery and regenerative medicine. Complex functional engineered tissues can also assist in the regeneration, repair, or replacement of human tissues. However, one of the main hurdles for tissue engineering, three-dimensional cell culture, and regenerative medicine is the capability of delivering nutrients and oxygen to cells through the vasculatures. Several studies have investigated different strategies to create a functional vascular system in engineered tissues and organ-on-a-chips. Engineered vasculatures have been used for the studies of angiogenesis, vasculogenesis, as well as drug and cell transports across the endothelium. Moreover, vascular engineering allows the creation of large functional vascular conduits for regenerative medicine purposes. However, there are still many challenges in the creation of vascularized tissue constructs and their biological applications. This review will summarize the latest efforts to create vasculatures and vascularized tissues for cancer research and regenerative medicine.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Zuzana Tirpakova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Florian Vanlauwe
- Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Christian Umemura
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Remy Bell
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Adrian Hanson
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Himansu Sekhar Nanda
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Biomedical Engineering and Technology Laboratory, PDPM—Indian Institute of Information Technology Design Manufacturing, Jabalpur 482005, Madhya Pradesh, India
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natan Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
44
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
45
|
Bourn MD, Mohajerani SZ, Mavria G, Ingram N, Coletta PL, Evans SD, Peyman SA. Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes. LAB ON A CHIP 2023; 23:1674-1693. [PMID: 36779251 PMCID: PMC10013341 DOI: 10.1039/d2lc00963c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vascular system is the primary route for the delivery of therapeutic drugs throughout the body and is an important barrier at the region of disease interest, such as a solid tumour. The development of complex 3D tumour cultures has progressed significantly in recent years however, the generation of perfusable vascularised tumour models still presents many challenges. This study presents a microfluidic-based vasculature system that can be induced to display properties of tumour-associated blood vessels without direct incorporation of tumour cells. Conditioning healthy endothelial-fibroblast cell vasculature co-cultures with media taken from tumour cell cultures was found to result in the formation of disorganised, tortuous networks which display characteristics consistent with those of tumour-associated vasculature. Integrin αvβ3, a cell adhesion receptor associated with angiogenesis, was found to be upregulated in vasculature co-cultures conditioned with tumour cell media (TCM) - consistent with the reported αvβ3 expression pattern in angiogenic tumour vasculature in vivo. Increased accumulation of liposomes (LSs) conjugated to antibodies against αvβ3 was observed in TCM networks compared to non-conditioned networks, indicating αvβ3 may be a potential target for the delivery of drugs specifically to tumour vasculature. Furthermore, the use of microbubbles (MBs) and ultrasound (US) to further enhance the delivery of LSs to TCM-conditioned vasculature was investigated. Quantification of fluorescent LS accumulation post-perfusion of the vascular network showed 3-fold increased accumulation with the use of MBs and US, suggesting that targeted LS delivery could be further improved with the use of locally administered MBs and US.
Collapse
Affiliation(s)
- Matthew D Bourn
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Safoura Zahed Mohajerani
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Georgia Mavria
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Nicola Ingram
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - P Louise Coletta
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
46
|
Cadena IA, Buchanan MR, Harris CG, Jenne MA, Rochefort WE, Nelson D, Fogg KC. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res A 2023; 111:747-764. [PMID: 36861788 DOI: 10.1002/jbm.a.37522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Cervical cancer is the second leading cause of cancer-related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5-year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population. However, the development of new anticancer drugs remains a challenge, as only 7% of novel anticancer drugs are approved for clinical use. To facilitate identification of novel and effective anticancer drugs for cervical cancer, we developed a multilayer multicellular platform of human cervical cancer cell lines and primary human microvascular endothelial cells that interfaces with high throughput drug screening methods to evaluate the anti-metastatic and anti-angiogenic drug efficacy simultaneously. Through the use of design of experiments statistical optimization, we identified the specific concentrations of collagen I, fibrinogen, fibronectin, GelMA, and PEGDA in each hydrogel layer that maximized both cervical cancer invasion and endothelial microvessel length. We then validated the optimized platform and assessed its viscoelastic properties. Finally, using this optimized platform, we conducted a targeted drug screen of four clinically relevant drugs on two cervical cancer cell lines. Overall, this work provides a valuable platform that can be used to screen large compound libraries for mechanistic studies, drug discovery, and precision oncology for cervical cancer patients.
Collapse
Affiliation(s)
- Ines A Cadena
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Mina R Buchanan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Molly A Jenne
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dylan Nelson
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
47
|
Wu L, Ai Y, Xie R, Xiong J, Wang Y, Liang Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. LAB ON A CHIP 2023; 23:1192-1212. [PMID: 36644984 DOI: 10.1039/d2lc00804a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organoids/organs-on-a-chip open up new frontiers for basic and clinical research of intestinal diseases. Species-specific differences hinder research on animal models, while organoids are emerging as powerful tools due to self-organization from stem cells and the reproduction of the functional properties in vivo. Organs-on-a-chip is also accelerating the process of faithfully mimicking the intestinal microenvironment. And by combining organoids and organ-on-a-chip technologies, they further are expected to serve as innovative preclinical tools and could outperform traditional cell culture models or animal models in the future. Above all, organoids/organs-on-a-chip with other strategies like genome editing, 3D printing, and organoid biobanks contribute to modeling intestinal homeostasis and disease. Here, the current challenges and future trends in intestinal pathophysiological models will be summarized.
Collapse
Affiliation(s)
- Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
48
|
Zhu J, Ji L, Chen Y, Li H, Huang M, Dai Z, Wang J, Xiang D, Fu G, Lei Z, Chu X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov 2023; 9:72. [PMID: 36813783 PMCID: PMC9947255 DOI: 10.1038/s41420-023-01354-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer heterogeneity has posed a great challenge to traditional cancer treatment, with the reappearance of cancer heterogeneity of inter and intra patients being especially critical. Based on this, personalized therapy has emerged as significant research focus in recent and even future years. Cancer-related therapeutic models are developing, including cell lines, patient-derived xenografts, organoids, etc. Organoids are three-dimensional in vitro models emerged in the past dozen years and are able to reproduce the cellular and molecular composition of the original tumor. These advantages demonstrate the great potential for patient-derived organoids to develop personalized anticancer therapies, including preclinical drug screening and the prediction of patient treatment response. The impact of microenvironment on cancer treatment cannot be underestimated, and the remodeling of microenvironment also allows organoids to interact with other technologies, among which organs-on-chips is a representative one. This review highlights the use of organoids and organs-on-chips as complementary reference tools in treating colorectal cancer from the perspective of clinical efficacy predictability. We also discuss the limitations of both techniques and how they complement each other well.
Collapse
Affiliation(s)
- Jialong Zhu
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China
| | - Linlin Ji
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Yitian Chen
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China ,grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China ,grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000 China ,grid.410745.30000 0004 1765 1045Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000 China
| | - Huiyu Li
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Mengxi Huang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Zhe Dai
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Jing Wang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Dan Xiang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Gongbo Fu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
49
|
Oxner M, Trang A, Mehta J, Forsyth C, Swanson B, Keshavarzian A, Bhushan A. The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases. BME FRONTIERS 2023; 4:0002. [PMID: 37849665 PMCID: PMC10521665 DOI: 10.34133/bmef.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 10/19/2023] Open
Abstract
A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.
Collapse
Affiliation(s)
- Micah Oxner
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Allyson Trang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jhalak Mehta
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Barbara Swanson
- Department of Adult Health and Gerontological Nursing, Rush University College of Nursing, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
50
|
Phillips CM, Lima EABF, Gadde M, Jarrett AM, Rylander MN, Yankeelov TE. Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis. PLoS Comput Biol 2023; 19:e1009499. [PMID: 36652468 PMCID: PMC9886306 DOI: 10.1371/journal.pcbi.1009499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/30/2023] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The goal of this study is to calibrate a multiscale model of tumor angiogenesis with time-resolved data to allow for systematic testing of mathematical predictions of vascular sprouting. The multi-scale model consists of an agent-based description of tumor and endothelial cell dynamics coupled to a continuum model of vascular endothelial growth factor concentration. First, we calibrate ordinary differential equation models to time-resolved protein concentration data to estimate the rates of secretion and consumption of vascular endothelial growth factor by endothelial and tumor cells, respectively. These parameters are then input into the multiscale tumor angiogenesis model, and the remaining model parameters are then calibrated to time resolved confocal microscopy images obtained within a 3D vascularized microfluidic platform. The microfluidic platform mimics a functional blood vessel with a surrounding collagen matrix seeded with inflammatory breast cancer cells, which induce tumor angiogenesis. Once the multi-scale model is fully parameterized, we forecast the spatiotemporal distribution of vascular sprouts at future time points and directly compare the predictions to experimentally measured data. We assess the ability of our model to globally recapitulate angiogenic vasculature density, resulting in an average relative calibration error of 17.7% ± 6.3% and an average prediction error of 20.2% ± 4% and 21.7% ± 3.6% using one and four calibrated parameters, respectively. We then assess the model's ability to predict local vessel morphology (individualized vessel structure as opposed to global vascular density), initialized with the first time point and calibrated with two intermediate time points. In this study, we have rigorously calibrated a mechanism-based, multiscale, mathematical model of angiogenic sprouting to multimodal experimental data to make specific, testable predictions.
Collapse
Affiliation(s)
- Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas, United States of America
| | - Manasa Gadde
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Angela M. Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
| | - Marissa Nichole Rylander
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Imaging Physics, The University of Texas at Austin, MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|