1
|
Ponomarenko NS, Zaluzec NJ, Zuo X, Borkiewicz OJ, Hoffman JM, Kwon G, Martinson ABF, Utschig LM, Tiede DM. Structural Characterization of the Platinum Nanoparticle Hydrogen-Evolving Catalyst Assembled on Photosystem I by Light-Driven Chemistry. ACS NANO 2025; 19:4170-4185. [PMID: 39846477 DOI: 10.1021/acsnano.4c08563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses. The results show that the PSI-supported NPs are approximately 1.8 nm diameter disk-shaped particles that assemble at discrete sites with 145 Å separation. This separation is too large to be consistent with NP nucleation and growth at a site adjacent to the FB cofactor site. Instead, we suggest a mechanism for NP growth at hydrophobic sites on the PSI stromal surface. The NPs photoreductively assembled on the PSI stromal surface are found to be analogous to the nanostructures produced by successive cycles of atomic layer deposition (ALD) of platinum onto 40 nm porous anodic alumina oxide supports, although the mechanisms for nucleation appear to differ. This work establishes a foundation for the investigation of the reductive assembly of abiotic metal catalysts at sites connected to photochemically reducing equivalent production in PSI.
Collapse
Affiliation(s)
| | - Nestor J Zaluzec
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | | - Gihan Kwon
- National Synchrotron Light source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | | | | |
Collapse
|
2
|
Mesecke K. hkl-based calculation of total scattering patterns from discrete and low-dimensional structure models using TOPAS. J Appl Crystallogr 2025; 58:187-193. [PMID: 39917183 PMCID: PMC11798516 DOI: 10.1107/s1600576724011749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025] Open
Abstract
If discrete or low-dimensional structure models are placed in large supercells in space group P1, the intrinsic periodicity of the Rietveld method is disrupted and their structural sites are scanned by millions of hkls. This allows a Rietveld-compatible calculation of diffuse scattering and small-angle scattering which is demonstrated here for a benzene molecule, a PbS quantum dot, a hydroxy-apatite nano-fibril and turbostratic carbon. Total scattering patterns are compared with the Debye scattering equation and accompanied by composite pair distribution function modelling using the same models.
Collapse
Affiliation(s)
- Karsten Mesecke
- Leibniz Institute for Materials Engineering – IWT, Paul-Feller-Str. 1, 28199Bremen, Germany
| |
Collapse
|
3
|
Pandey P, Kaushik SD, Rajput P, Singh MN, Sharma RK, Giri S. Nature of local disorder in β-NaYF 4-based, near-infrared upconverting core nanocrystals due to deliberate incorporation of a symmetry perturbing agent. NANOSCALE 2025; 17:2269-2280. [PMID: 39665566 DOI: 10.1039/d4nr03951c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
As nanocrystalline materials exhibit complex disorders, assessment of the local disorder at the nanoscale induced by implanted lattice defects plays a crucial role in understanding the structure-function relationship in these materials. In this report, a comprehensive structural analysis was performed on upconverting nanocrystals (UCNCs) of NaYF4/Nd/Yb/Tm, containing varying concentrations of Li+ to induce deliberate lattice defects. Subsequently, a comprehensive structural analysis of the UCNCs was performed using synchrotron radiation-based high-resolution X-ray diffraction (HRXRD), high-energy total angle scattering coupled with pair distribution function (PDF) analysis, neutron diffraction (ND) and EXAFS probing. The incorporation of Li+ was studied up to a theoretical maximum of 60% with predominantly single-phase β-NaYF4 (P6̄) NCs synthesized. These UCNCs exhibited varying particle morphologies with the average longest dimension ranging from 13 to 94 nm. Rietveld refinement of the ND data confirmed the incorporation of Li+ in the octahedral voids with some Li+ ions occupying lattice positions. The HRXRD results revealed no significant variation in the lattice parameters. However, the local disorder within the NCs, as determined from the PDF analysis, exhibited a distinct trend that correlated with changes in the upconversion luminescence (UCL) intensity. Since the Laporte parity selection rule governs UCL intensity through perturbations of local symmetry, this study established a definite relationship between lattice defects and crystal symmetry modifications induced by atomic-level disorder. The existence of such disorders was further corroborated by EXAFS, HRXRD and ND studies, which provided insights into the local lattice environment and disorder. In essence, this study elucidated a predictive model for understanding how local disorder propagates within a single-phase nanocrystal, particularly in relation to implanted lattice imperfections.
Collapse
Affiliation(s)
- Panchanan Pandey
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India.
| | - S D Kaushik
- UGC - DAE Consortium for Scientific Research Mumbai Centre, Bhabha Atomic Research Centre, 246 C Common Facility Building, Mumbai-400085, India
| | - Parasmani Rajput
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Manvendra Narayan Singh
- Hard X-ray Applications Lab., Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore - 452013, India
| | - Rajendra Kumar Sharma
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay Mumbai-400085, India
| | - Supratim Giri
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India.
- Centre for Nanomaterials, National Institute of Technology, Rourkela, 769008, India
| |
Collapse
|
4
|
Wheeler RA, Dalbey EE. Structure factor line shape model gives approximate nanoscale size of polar aggregates in pyrrolidinium-based ionic liquids. Phys Chem Chem Phys 2025. [PMID: 39780642 DOI: 10.1039/d4cp04488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Room temperature ionic liquids (RTILs) are interesting due to their myriad uses in fields such as catalysis and electrochemistry. Their properties are intimately related to their structures, yet structural understanding is difficult to achieve. This work presents a derivation of an approximate expression for the radial distribution function, g(r). The derivation assumes a Lorentzian line shape for total structure factors, S(Q). The derived form for g(r) is used to present new equations for maxima and minima in g(r) and to define a half-length, the value of r where g(r) decays to one-half its maximum value. A detailed test of the model is presented using experimentally measured and calculated S(Q) for N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (C1C3pyrrTFSI). Then, the model is extended to the series of RTILs with anions of increasing size, C1C3pyrrX (X- = Cl-, Br-, BF4-, PF6-, OTf-, TFSI-). The model predicts maxima and minima in the entire series within 4.2% of those calculated directly from molecular dynamics simulations. This reinforces our previous conclusion that distances within "polar scattering domains" responsible for the charge alternation peak in S(Q) are quantitatively related to inter-ionic distances within polar aggregates in these RTILs. The half-length is found to increase approximately linearly as anion size increases. We argue that the half-length is a measure of polar aggregate size in these RTILs.
Collapse
Affiliation(s)
- Ralph A Wheeler
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA.
| | - Emily E Dalbey
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA
| |
Collapse
|
5
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024; 53:11772-11803. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Glova A, Karttunen M. Learning glass transition temperatures via dimensionality reduction with data from computer simulations: Polymers as the pilot case. J Chem Phys 2024; 161:184902. [PMID: 39513447 DOI: 10.1063/5.0229161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Machine learning methods provide an advanced means for understanding inherent patterns within large and complex datasets. Here, we employ the principal component analysis (PCA) and the diffusion map (DM) techniques to evaluate the glass transition temperature (Tg) from low-dimensional representations of all-atom molecular dynamic simulations of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB). Four molecular descriptors were considered: radial distribution functions (RDFs), mean square displacements (MSDs), relative square displacements (RSDs), and dihedral angles (DAs). By applying Gaussian Mixture Models (GMMs) to analyze the PCA and DM projections and by quantifying their log-likelihoods as a density-based metric, a distinct separation into two populations corresponding to melt and glass states was revealed. This separation enabled the Tg evaluation from a cooling-induced sharp increase in the overlap between log-likelihood distributions at different temperatures. Tg values derived from the RDF and MSD descriptors using DM closely matched the standard computer simulation-based dilatometric and dynamic Tg values for both PLA and PHB models. This was not the case for PCA. The DM-transformed DA and RSD data resulted in Tg values in agreement with experimental ones. Overall, the fusion of atomistic simulations and DMs complemented with the GMMs presents a promising framework for computing Tg and studying the glass transition in a unified way across various molecular descriptors for glass-forming materials.
Collapse
Affiliation(s)
- Artem Glova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Mikko Karttunen
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Pittkowski RK, Punke S, Anker AS, Bornet A, Magnard NP, Schlegel N, Graversen LG, Quinson J, Dworzak A, Oezaslan M, Kirkensgaard JJK, Mirolo M, Drnec J, Arenz M, Jensen KMØ. Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with Operando X-ray Total Scattering. J Am Chem Soc 2024; 146:27517-27527. [PMID: 39344255 PMCID: PMC11468871 DOI: 10.1021/jacs.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Understanding the structure of nanoparticles under (electro)catalytic operating conditions is crucial for uncovering structure-property relationships. By combining operando X-ray total scattering and pair distribution function analysis with operando small-angle X-ray scattering (SAXS), we obtained comprehensive structural information on ultrasmall (<3 nm) iridium nanoparticles and tracked their changes during oxygen evolution reaction (OER) in acid. When subjected to electrochemical conditions at reducing potentials, the metallic Ir nanoparticles are found to be decahedral. The iridium oxide formed in the electrochemical oxidation contains small rutile-like clusters composed of edge- and corner-connected [IrO6] octahedra of a very confined range. These rutile domains are smaller than 1 nm. Combined with complementary SAXS data analysis to extract the particle size, we find that the OER-active iridium oxide phase lacks crystalline order. Additionally, we observe an iridium oxide contraction under OER conditions, which is confirmed by operando X-ray absorption spectroscopy. Our results highlight the need for multitechnique operando studies for a complete understanding of the electrochemically formed Ir oxide active in OER.
Collapse
Affiliation(s)
- Rebecca K. Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stefanie Punke
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andy S. Anker
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Nicolas Schlegel
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Laura G. Graversen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jonathan Quinson
- Biological
and Chemical Engineering Department, Aarhus
University, 40 Åbogade, 8200 Aarhus, Denmark
| | - Alexandra Dworzak
- Technical
Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Mehtap Oezaslan
- Technical
Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Jacob J. K. Kirkensgaard
- Niels
Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Department
of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marta Mirolo
- ESRF—The
European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Jakub Drnec
- ESRF—The
European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Lynch RP, Ugras TJ, Robinson RD. Discovery of Isomerization Intermediates in CdS Magic-Size Clusters. ACS NANO 2024; 18:27524-27536. [PMID: 39234998 DOI: 10.1021/acsnano.4c08319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Isomerization, the process by which a molecule is coherently transformed into another molecule with the same molecular formula but a different atomic structure, is an important and well-known phenomenon of organic chemistry, but has only recently been observed for inorganic nanoclusters. Previously, CdS nanoclusters were found to isomerize between two end point structures rapidly and reversibly (the α-phase and β-phase), mediated by hydroxyl groups on the surface. This observation raised many significant structural and pathway questions. One critical question is why no intermediate states were observed during the isomerization; it is not obvious why an atomic cluster should only have two stable end points rather than multiple intermediate arrangements. In this study, we report that the use of amide functional groups can stabilize intermediate phases during the transformation of CdS magic-size clusters between the α-phase and the β-phase. When treated with amides in organic solvents, the amides not only facilitate the α-phase to β-phase isomerization but also exhibit three distinct excitonic features, which we call the β340-phase, β350-phase, and β367-phase. Based on pair distribution function analysis, these intermediates strongly resemble the β-phase structure but deviate greatly from the α-phase structure. All phases (β340-phase, β350-phase, and β367-phase) have nearly identical structures to the β-phase, with the β340-phase having the largest deviation. Despite these intermediates having similar atomic structures, they have up to a 583 meV difference in band gap compared to the β-phase. Kinetic studies show that the isomers and intermediates follow a traditional progression in the thermodynamic stability of β340-phase/β350-phase < α-phase < β367-phase < β-phase. The solvent identity and polarity play a crucial role in kinetically arresting these intermediates. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies paired with simple density functional theory calculations reveal that the likely mechanism is due to the multifunctional nature of the amides that form an amphoteric surface binding bond motif, which promotes a change in the carboxylic acid binding mode. This change from chelating binding modes to bridging binding modes initiates the isomerization. We propose that the carbonyl group is responsible for the direct interaction with the surface, acting as an L-type ligand which then pulls electron density away from the electron-poor nitrogen site, enabling them to interact with the carboxylate ligands and initiate the change in the binding mode. The isomerization of CdS nanoclusters continues to be a topic of interest, giving insight into fundamental nanoscale chemistry and physics.
Collapse
Affiliation(s)
- Reilly P Lynch
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Thomas J Ugras
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Richard D Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Aalling-Frederiksen O, Pittkowski RK, Anker AS, Quinson J, Klemeyer L, Frandsen BA, Koziej D, Jensen KMØ. Effect of solvothermal synthesis parameters on the crystallite size and atomic structure of cobalt iron oxide nanoparticles. NANOSCALE ADVANCES 2024:d4na00590b. [PMID: 39364296 PMCID: PMC11443383 DOI: 10.1039/d4na00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
We here investigate how the synthesis method affects the crystallite size and atomic structure of cobalt iron oxide nanoparticles. By using a simple solvothermal method, we first synthesized cobalt ferrite nanoparticles of ca. 2 and 7 nm, characterized by Transmission Electron Microscopy (TEM), Small Angle X-ray scattering (SAXS), X-ray and neutron total scattering. The smallest particle size corresponds to only a few spinel unit cells. Nevertheless, Pair Distribution Function (PDF) analysis of X-ray and neutron total scattering data shows that the atomic structure, even in the smallest nanoparticles, is well described by the spinel structure, although with significant disorder and a contraction of the unit cell parameter. These effects can be explained by the surface oxidation of the small nanoparticles, which is confirmed by X-ray near edge absorption spectroscopy (XANES). Neutron total scattering data and PDF analysis reveal a higher degree of inversion in the spinel structure of the smallest nanoparticles. Neutron total scattering data also allow magnetic PDF (mPDF) analysis, which shows that the ferrimagnetic domains correspond to ca. 80% of the crystallite size in the larger particles. A similar but less well-defined magnetic ordering was observed for the smallest nanoparticles. Finally, we used a co-precipitation synthesis method at room temperature to synthesize ferrite nanoparticles similar in size to the smallest crystallites synthesized by the solvothermal method. Structural analysis with PDF demonstrates that the ferrite nanoparticles synthesized via this method exhibit a significantly more defective structure compared to those synthesized via a solvothermal method.
Collapse
Affiliation(s)
| | - Rebecca K Pittkowski
- University of Copenhagen, Department of Chemistry, Nanoscience Center 2100 Copenhagen Ø Denmark
| | - Andy S Anker
- University of Copenhagen, Department of Chemistry, Nanoscience Center 2100 Copenhagen Ø Denmark
| | - Jonathan Quinson
- University of Copenhagen, Department of Chemistry, Nanoscience Center 2100 Copenhagen Ø Denmark
- Aarhus University, Department of Biological and Chemical Engineering 8200 Aarhus Denmark
| | - Lars Klemeyer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures Luruper Chausse 149 22761 Hamburg Germany
| | - Benjamin A Frandsen
- Brighham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures Luruper Chausse 149 22761 Hamburg Germany
| | - Kirsten M Ø Jensen
- University of Copenhagen, Department of Chemistry, Nanoscience Center 2100 Copenhagen Ø Denmark
| |
Collapse
|
10
|
Xu J, Zhang X, Sun S, Fu R, Cheng F, Wei P, Luo J, Li Q, Fang C, Lin H, Han J. The ordered lattice host framework induced guest Li + disordering in high performance cobalt-free Ni-rich cathode materials. J Colloid Interface Sci 2024; 669:877-885. [PMID: 38749226 DOI: 10.1016/j.jcis.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
Recently, due to high price, resource shortage and unstable supply of cobalt, the development of low-cost cobalt-free Ni-rich cathodes has attracted extensive attention with the ever-increasing lithium-ion batteries (LIBs) industry. Selecting cost-effective elements to replace cobalt in Ni-rich cathodes is urgent. However, the principle of structural design of Ni-rich cathode remains unclear, hampering the selection of alternative elements. Herein, the cobalt-free cathodes of LiNi0.95Mg0.05O2 (NiMg) and LiNi0.95Mn0.05O2 (NiMn) are designed as alternatives to LiNi0.96Co0.04O2 (NiCo). NiMg has comparable cycle stability with NiCo, while NiMn has inferior cycle performance. Reverse Monte Carlo modelling was used to generate structural model and uncover local structure by fitting pair distribution function. It reveals Mn causes more severe Jahn-Teller distortions and disordered lattice host framework (Ni0.95M0.05O2, M = Co/Mn/Mg) than Co and Mg due to the strong size effect and coulomb interactions of Mn in Ni0.95Mn0.05O2 layer. The outstanding cycle stability of NiMg and NiCo originates from the ordered lattice host frameworks, which relieve stress and inhibit particle breakage during cycle. Meanwhile, the ordered lattice host framework induced guest Li+ disordering reduces Li+ diffusion energy barrier, improving the rate capability. This study provides a new perspective for the structural design of cobalt-free Ni-rich cathodes.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoyu Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shixiong Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Rong Fu
- School of Materials Science and Engineering, State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China; School of Mathematical and Physical Sciences, University of Technology Sydney, New South Wales 2007, Australia
| | - Fangyuan Cheng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng Wei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiahuan Luo
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chun Fang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - He Lin
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Gordon MN, Junkers LS, Googasian JS, Mathiesen JK, Zhan X, Morgan DG, Jensen KMØ, Skrabalak SE. Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM. NANOSCALE 2024; 16:15544-15557. [PMID: 39028007 DOI: 10.1039/d4nr01749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and growth in aqueous solutions. Using our recently developed single-source precursor, the formation of bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell transmission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide nanoparticles, including the absence of distinct intermediates within the available time resolution, will help facilitate future design of controlled BiOX nanostructures.
Collapse
Affiliation(s)
- Matthew N Gordon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Laura S Junkers
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jack S Googasian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Jette K Mathiesen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Xun Zhan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - David Gene Morgan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
12
|
Griffiths J, Suzana AF, Wu L, Marks SD, Esposito V, Boutet S, Evans PG, Mitchell JF, Dean MPM, Keen DA, Robinson I, Billinge SJL, Bozin ES. Resolving length-scale-dependent transient disorder through an ultrafast phase transition. NATURE MATERIALS 2024; 23:1041-1047. [PMID: 38871940 PMCID: PMC11294184 DOI: 10.1038/s41563-024-01927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here we demonstrate such a measurement of CuIr2S4 optically pumped from its low-temperature Ir-dimerized phase. Dimers are optically suppressed without spatial correlation, generating a structure whose level of disorder strongly depends on the length scale. The redevelopment of structural ordering over tens of picoseconds is directly tracked over both space and time as a transient state is approached. This measurement demonstrates the crucial role of local structure and disorder in non-equilibrium processes as well as the feasibility of accessing this information with state-of-the-art XFEL facilities.
Collapse
Affiliation(s)
- Jack Griffiths
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
| | - Ana F Suzana
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Longlong Wu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Samuel D Marks
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, USA
| | | | | | - Paul G Evans
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, USA
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Mark P M Dean
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - David A Keen
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, UK
| | - Ian Robinson
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
- London Centre for Nanotechnology, University College London, London, UK
| | - Simon J L Billinge
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Emil S Bozin
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
13
|
Pandey P, Tripathi S, Singh MN, Sharma RK, Giri S. Behavior of Microstrain in Nd 3+-Sensitized Near-Infrared Upconverting Core-Shell Nanocrystals for Defect-Induced Tailoring of Luminescence Intensity. NANO LETTERS 2024; 24:6320-6329. [PMID: 38701381 DOI: 10.1021/acs.nanolett.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In an attempt to optimize the upconversion luminescence (UCL) output of a Nd3+-sensitized near-infrared (808 nm) upconverting core-shell (CS) nanocrystal through deliberate incorporation of lattice defects, a comprehensive analysis of microstrain both at the CS interface and within the core layer was performed using integral breadth calculation of high-energy synchrotron X-ray (λ = 0.568551 Å) diffraction. An atomic level interpretation of such microstrain was performed using pair distribution function analysis of the high-energy total scattering. The core NC developed compressive microstrain, which gradually transformed into tensile microstrain with the growth of the epitaxial shell. Such a reversal was rationalized in terms of a consistent negative lattice mismatch. Upon introduction of lattice defects into the CS systems upon incorporation of Li+, the corresponding UCL intensity was maximized at some specific Li+ incorporation, where the tensile microstrain of CS, compressive microstrain of the core, and atomic level disorders exhibited their respective extreme values irrespective of the activator ions.
Collapse
Affiliation(s)
- Panchanan Pandey
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shilpa Tripathi
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Manvendra Narayan Singh
- Hard X-ray Applications Lab, Synchrotrons Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Rajendra Kumar Sharma
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Supratim Giri
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
- Centre for Nanomaterials, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
14
|
Kjær ETS, Anker AS, Kirsch A, Lajer J, Aalling-Frederiksen O, Billinge SJL, Jensen KMØ. MLstructureMining: a machine learning tool for structure identification from X-ray pair distribution functions. DIGITAL DISCOVERY 2024; 3:908-918. [PMID: 38756225 PMCID: PMC11094694 DOI: 10.1039/d4dd00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
Synchrotron X-ray techniques are essential for studies of the intrinsic relationship between synthesis, structure, and properties of materials. Modern synchrotrons can produce up to 1 petabyte of data per day. Such amounts of data can speed up materials development, but also comes with a staggering growth in workload, as the data generated must be stored and analyzed. We present an approach for quickly identifying an atomic structure model from pair distribution function (PDF) data from (nano)crystalline materials. Our model, MLstructureMining, uses a tree-based machine learning (ML) classifier. MLstructureMining has been trained to classify chemical structures from a PDF and gives a top-3 accuracy of 99% on simulated PDFs not seen during training, with a total of 6062 possible classes. We also demonstrate that MLstructureMining can identify the chemical structure from experimental PDFs from nanoparticles of CoFe2O4 and CeO2, and we show how it can be used to treat an in situ PDF series collected during Bi2Fe4O9 formation. Additionally, we show how MLstructureMining can be used in combination with the well-known methods, principal component analysis (PCA) and non-negative matrix factorization (NMF) to analyze data from in situ experiments. MLstructureMining thus allows for real-time structure characterization by screening vast quantities of crystallographic information files in seconds.
Collapse
Affiliation(s)
- Emil T S Kjær
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Andrea Kirsch
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Joakim Lajer
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | | | - Simon J L Billinge
- Department of Applied Physics and Applied Mathematics Science, Columbia University New York NY 10027 USA
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| |
Collapse
|
15
|
Akamo D, Cladek B, Goswami M, Gluesenkamp KR, Rios O, Keffer DJ. Nanoscale Stabilization Mechanism of Sodium Sulfate Decahydrate at Polyelectrolyte Interfaces. ACS OMEGA 2024; 9:18051-18061. [PMID: 38680312 PMCID: PMC11044206 DOI: 10.1021/acsomega.3c09796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Sodium sulfate decahydrate (SSD) is a low-cost phase-change material (PCM) for thermal energy storage applications that offers substantial melting enthalpy and a suitable temperature range for near-ambient applications. However, SSD's consistent phase separation with decreased melting enthalpy over repeated thermal cycles limits its application as a PCM. Sulfonated polyelectrolytes, such as dextran sulfate sodium (DSS), have shown great effectiveness in preventing phase separation in SSD. However, there is limited understanding of the stabilization mechanism of SSD by DSS at the atomic length and time scales. In this work, we investigate SSD stabilization via DSS using neutron scattering and molecular dynamics (MD) simulations. Neutron scattering and pair distribution function analysis revealed the structural evolution of the PCM samples below and above the phase change temperatures. MD simulations revealed that water from the hydrate structure migrates from the hydrate crystal to the SSD-DSS interfacial region upon melting. The water is stabilized at this interface by aggregation around the hydrophilic sulfonic acid groups attached to the backbone of the polyelectrolyte. This architecture retains water near the dehydrated sodium sulfate, preventing phase separation and, consequently, stabilizing SSD rehydration. This work provides atomistic insight into selecting and designing stable and high-performance PCMs for heating and cooling applications in building technologies.
Collapse
Affiliation(s)
- Damilola
O. Akamo
- The
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
- Buildings
and Transportation Sciences Division, Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Bernadette Cladek
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Monojoy Goswami
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kyle R. Gluesenkamp
- Buildings
and Transportation Sciences Division, Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Orlando Rios
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - David J. Keffer
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
16
|
Anker AS, Friis-Jensen U, Johansen FL, Billinge SJL, Jensen KMØ. ClusterFinder: a fast tool to find cluster structures from pair distribution function data. Acta Crystallogr A Found Adv 2024; 80:213-220. [PMID: 38420993 PMCID: PMC10913672 DOI: 10.1107/s2053273324001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105 candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.
Collapse
Affiliation(s)
- Andy S. Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Ulrik Friis-Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik L. Johansen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Simon J. L Billinge
- Department of Applied Physics and Applied Mathematics Science, Columbia University, New York, NY 10027, USA
| | - Kirsten M. Ø. Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Mariyam S, Upadhyay SK, Chakraborty K, Verma KK, Duhan JS, Muneer S, Meena M, Sharma RK, Ghodake G, Seth CS. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169097. [PMID: 38056665 DOI: 10.1016/j.scitotenv.2023.169097] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Climate change imposes various environmental stresses which substantially impact plant growth and productivity. Salinity, drought, temperature extremes, heavy metals, and nutritional imbalances are among several abiotic stresses contributing to high yield losses of crops in various parts of the world, resulting in food insecurity. Many interesting strategies are being researched in the attempt to improve plants' environmental stress tolerance. These include the application of nanoparticles, which have been found to improve plant function under stress situations. Nanotechnology will be a key driver in the upcoming agri-tech and pharmaceutical revolution, which promises a more sustainable, efficient, and resilient agricultural and medical system Nano-fertilizers can help plants utilise nutrients more efficiently by releasing nutrients slowly and sustainably. Plant physiology and nanomaterial features (such as size, shape, and charge) are important aspects influencing the impact on plant growth. Here, we discussed the most promising new opportunities and methodologies for using nanotechnology to increase the efficiency of critical inputs for crop agriculture, as well as to better manage biotic and abiotic stress. Potential development and implementation challenges are highlighted, emphasising the importance of designing suggested nanotechnologies using a systems approach. Finally, the strengths, flaws, possibilities, and risks of nanotechnology are assessed and analysed in order to present a comprehensive and clear picture of the nanotechnology potentials, as well as future paths for nano-based agri-food applications towards sustainability. Future research directions have been established in order to support research towards the long-term development of nano-enabled agriculture and evolution of pharmaceutical industry.
Collapse
Affiliation(s)
- Safoora Mariyam
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | | | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Harayana, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Aricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil-Nadu, India
| | - Mukesh Meena
- Laboratory of Phytopatholoy and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Rajesh Kumar Sharma
- Department of Botany, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
18
|
Anker AS, Kjær ETS, Juelsholt M, Jensen KMØ. POMFinder: identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning. J Appl Crystallogr 2024; 57:34-43. [PMID: 38322723 PMCID: PMC10840315 DOI: 10.1107/s1600576723010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 02/08/2024] Open
Abstract
Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques.
Collapse
Affiliation(s)
- Andy S. Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Emil T. S. Kjær
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mikkel Juelsholt
- Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PH, United Kingdom
| | - Kirsten M. Ø. Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
19
|
Zimmerli NK, Rochlitz L, Checchia S, Müller CR, Copéret C, Abdala PM. Structure and Role of a Ga-Promoter in Ni-Based Catalysts for the Selective Hydrogenation of CO 2 to Methanol. JACS AU 2024; 4:237-252. [PMID: 38274252 PMCID: PMC10806875 DOI: 10.1021/jacsau.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
Collapse
Affiliation(s)
- Nora K. Zimmerli
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Lukas Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Stefano Checchia
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christoph R. Müller
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Paula M. Abdala
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| |
Collapse
|
20
|
Anker AS, Butler KT, Selvan R, Jensen KMØ. Machine learning for analysis of experimental scattering and spectroscopy data in materials chemistry. Chem Sci 2023; 14:14003-14019. [PMID: 38098730 PMCID: PMC10718081 DOI: 10.1039/d3sc05081e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
The rapid growth of materials chemistry data, driven by advancements in large-scale radiation facilities as well as laboratory instruments, has outpaced conventional data analysis and modelling methods, which can require enormous manual effort. To address this bottleneck, we investigate the application of supervised and unsupervised machine learning (ML) techniques for scattering and spectroscopy data analysis in materials chemistry research. Our perspective focuses on ML applications in powder diffraction (PD), pair distribution function (PDF), small-angle scattering (SAS), inelastic neutron scattering (INS), and X-ray absorption spectroscopy (XAS) data, but the lessons that we learn are generally applicable across materials chemistry. We review the ability of ML to identify physical and structural models and extract information efficiently and accurately from experimental data. Furthermore, we discuss the challenges associated with supervised ML and highlight how unsupervised ML can mitigate these limitations, thus enhancing experimental materials chemistry data analysis. Our perspective emphasises the transformative potential of ML in materials chemistry characterisation and identifies promising directions for future applications. The perspective aims to guide newcomers to ML-based experimental data analysis.
Collapse
Affiliation(s)
- Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Keith T Butler
- Department of Chemistry, University College London Gower Street London WC1E 6BT UK
| | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen 2100 Copenhagen Ø Denmark
- Department of Neuroscience, University of Copenhagen 2200 Copenhagen N Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| |
Collapse
|
21
|
Wang B, Mathiesen JK, Kirsch A, Schlegel N, Anker AS, Johansen FL, Kjær ETS, Aalling-Frederiksen O, Nielsen TM, Thomsen MS, Jakobsen RK, Arenz M, Jensen KMØ. Formation of intermetallic PdIn nanoparticles: influence of surfactants on nanoparticle atomic structure. NANOSCALE ADVANCES 2023; 5:6913-6924. [PMID: 38059038 PMCID: PMC10697006 DOI: 10.1039/d3na00582h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Bimetallic nanoparticles have been extensively studied as electrocatalysts due to their superior catalytic activity and selectivity compared to their monometallic counterparts. The properties of bimetallic materials depend on the ordering of the metals in the structure, and to tailor-make materials for specific applications, it is important to be able to control the atomic structure of the materials during synthesis. Here, we study the formation of bimetallic palladium indium nanoparticles to understand how the synthesis parameters and additives used influence the atomic structure of the obtained product. Specifically, we investigate a colloidal synthesis, where oleylamine was used as the main solvent while the effect of two surfactants, oleic acid (OA) and trioctylphosphine (TOP) was studied. We found that without TOP included in the synthesis, a Pd-rich intermetallic phase with the Pd3In structure initially formed, which transformed into large NPs of the CsCl-structured PdIn phase. When TOP was included, the syntheses yielded both In2O3 and Pd3In. In situ X-ray total scattering with Pair Distribution Function analysis was used to study the formation process of PdIn bimetallic NPs. Our results highlight how seemingly subtle changes to material synthesis methods can have a large influence on the product atomic structure.
Collapse
Affiliation(s)
- Baiyu Wang
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Jette K Mathiesen
- Department of Physics, Technical University of Denmark Fysikvej, 2800 Kongens Lyngby Denmark
| | - Andrea Kirsch
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Nicolas Schlegel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Andy S Anker
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Frederik L Johansen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | | | - Tobias M Nielsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Maria S Thomsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Rasmus K Jakobsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| |
Collapse
|
22
|
Telari E, Tinti A, Settem M, Maragliano L, Ferrando R, Giacomello A. Charting Nanocluster Structures via Convolutional Neural Networks. ACS NANO 2023; 17:21287-21296. [PMID: 37856254 PMCID: PMC10655179 DOI: 10.1021/acsnano.3c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
A general method to obtain a representation of the structural landscape of nanoparticles in terms of a limited number of variables is proposed. The method is applied to a large data set of parallel tempering molecular dynamics simulations of gold clusters of 90 and 147 atoms, silver clusters of 147 atoms, and copper clusters of 147 atoms, covering a plethora of structures and temperatures. The method leverages convolutional neural networks to learn the radial distribution functions of the nanoclusters and distills a low-dimensional chart of the structural landscape. This strategy is found to give rise to a physically meaningful and differentiable mapping of the atom positions to a low-dimensional manifold in which the main structural motifs are clearly discriminated and meaningfully ordered. Furthermore, unsupervised clustering on the low-dimensional data proved effective at further splitting the motifs into structural subfamilies characterized by very fine and physically relevant differences such as the presence of specific punctual or planar defects or of atoms with particular coordination features. Owing to these peculiarities, the chart also enabled tracking of the complex structural evolution in a reactive trajectory. In addition to visualization and analysis of complex structural landscapes, the presented approach offers a general, low-dimensional set of differentiable variables that has the potential to be used for exploration and enhanced sampling purposes.
Collapse
Affiliation(s)
- Emanuele Telari
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome 00184, Italy
| | - Antonio Tinti
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome 00184, Italy
| | - Manoj Settem
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome 00184, Italy
| | - Luca Maragliano
- Dipartimento
Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | | | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome 00184, Italy
| |
Collapse
|
23
|
Pittkowski RK, Clausen CM, Chen Q, Stoian D, van Beek W, Bucher J, Welten RL, Schlegel N, Mathiesen JK, Nielsen TM, Du J, Rosenkranz AW, Bøjesen ED, Rossmeisl J, Jensen KMØ, Arenz M. The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction. EES CATALYSIS 2023; 1:950-960. [PMID: 38013789 PMCID: PMC10621632 DOI: 10.1039/d3ey00201b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023]
Abstract
High entropy alloys (HEAs) are an important new material class with significant application potential in catalysis and electrocatalysis. The entropy-driven formation of HEA materials requires high temperatures and controlled cooling rates. However, catalysts in general also require highly dispersed materials, i.e., nanoparticles. Only then a favorable utilization of the expensive raw materials can be achieved. Several recently reported HEA nanoparticle synthesis strategies, therefore, avoid the high-temperature regime to prevent particle growth. In our work, we investigate a system of five noble metal single-source precursors with superior catalytic activity for the oxygen reduction reaction. Combining in situ X-ray powder diffraction with multi-edge X-ray absorption spectroscopy, we address the fundamental question of how single-phase HEA nanoparticles can form at low temperatures. It is demonstrated that the formation of HEA nanoparticles is governed by stochastic principles and the inhibition of precursor mobility during the formation process favors the formation of a single phase. The proposed formation principle is supported by simulations of the nanoparticle formation in a randomized process, rationalizing the experimentally found differences between two-element and multi-element metal precursor mixtures.
Collapse
Affiliation(s)
- Rebecca K Pittkowski
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Christian M Clausen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Qinyi Chen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Dragos Stoian
- Swiss Norwegian Beamline, European Synchrotron Radiation Facility (ESRF) Grenoble France
| | - Wouter van Beek
- Swiss Norwegian Beamline, European Synchrotron Radiation Facility (ESRF) Grenoble France
| | - Jan Bucher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Rahel L Welten
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Nicolas Schlegel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Jette K Mathiesen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
- Department of Physics, Technical University of Denmark Kgs. Lyngby Denmark
| | - Tobias M Nielsen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Jia Du
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | | | - Espen D Bøjesen
- Aarhus University, Interdisciplinary Nanoscience Center Aarhus Denmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Kirsten M Ø Jensen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| |
Collapse
|
24
|
Greenberg MW, Lin CH, Chodankar S, Ghose SK. In situ synchrotron X-ray total scattering measurements and analysis of colloidal CsPbX 3 nanocrystals during flow synthesis. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1092-1099. [PMID: 37738031 PMCID: PMC10624037 DOI: 10.1107/s1600577523007300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
In situ X-ray scattering measurements of CsPbX3 (X = Cl, Br, I) nanocrystal formation and halide exchange at NSLS-II beamlines were performed in an automated flow reactor. Total scattering measurements were performed at the 28-ID-2 (XPD) beamline and small-angle X-ray scattering at the 16-ID (LiX) beamline. Nanocrystal structural parameters of interest, including size, size distribution and atomic structure, were extracted from modeling the total scattering data. The results highlight the potential of these beamlines and the measurement protocols described in this study for studying dynamic processes of colloidal nanocrystal synthesis in solution with timescales on the order of seconds.
Collapse
Affiliation(s)
- Matthew W. Greenberg
- Department of Chemistry and Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, NY 12504, USA
| | - Cheng-Hung Lin
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Shirish Chodankar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sanjit K. Ghose
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
25
|
Magnard NPL, Sørensen DR, Kantor I, Jensen KMØ, Jørgensen MRV. Sub-second pair distribution function using a broad bandwidth monochromator. J Appl Crystallogr 2023; 56:825-833. [PMID: 37284263 PMCID: PMC10241043 DOI: 10.1107/s1600576723004016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Here the use of a broad energy bandwidth monochromator, i.e. a pair of B4C/W multilayer mirrors (MLMs), is demonstrated for X-ray total scattering (TS) measurements and pair distribution function (PDF) analysis. Data are collected both on powder samples and from metal oxo clusters in aqueous solution at various concentrations. A comparison between the MLM PDFs and those obtained using a standard Si(111) double-crystal monochromator shows that the measurements yield MLM PDFs of high quality which are suitable for structure refinement. Moreover, the effects of time resolution and concentration on the quality of the resulting PDFs of the metal oxo clusters are investigated. PDFs of heptamolybdate clusters and tungsten α-Keggin clusters from X-ray TS data were obtained with a time resolution down to 3 ms and still showed a similar level of Fourier ripples to PDFs obtained from 1 s measurements. This type of measurement could thus open up faster time-resolved TS and PDF studies.
Collapse
Affiliation(s)
- Nicolas P. L. Magnard
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen 2100, Denmark
| | - Daniel R. Sørensen
- Department of Chemistry & iNANO, Aarhus University, Aarhus 8000, Denmark
- MAX IV Laboratory, Lund University, Lund 224 84, Sweden
| | - Innokenty Kantor
- MAX IV Laboratory, Lund University, Lund 224 84, Sweden
- Department of Physics, Technical University of Denmark, Lyngby 2880, Denmark
| | - Kirsten M. Ø. Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mads R. V. Jørgensen
- Department of Chemistry & iNANO, Aarhus University, Aarhus 8000, Denmark
- MAX IV Laboratory, Lund University, Lund 224 84, Sweden
| |
Collapse
|
26
|
Chen L, Klemeyer L, Ruan M, Liu X, Werner S, Xu W, Koeppen A, Bücker R, Gonzalez MG, Koziej D, Parak WJ, Chakraborty I. Structural Analysis and Intrinsic Enzyme Mimicking Activities of Ligand-Free PtAg Nanoalloys. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206772. [PMID: 36755199 DOI: 10.1002/smll.202206772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 05/11/2023]
Abstract
Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions. By taking advantage of the mutual interaction of zeolitic imidazolate frameworks (ZIF-8) and Pt precursors, a good dispersion of PtAg bimetal NCs with a diameter of 1.78 ± 0.1 nm is achieved with ZIF-8 as a template. The incorporation of PtAgNCs in the voids of ZIF-8 is confirmed with structural analysis using the atomic pair-distribution function and powder X-ray diffraction. Importantly, the PtAgNCs present good catalytic activity for various enzyme-mimicking reactions, including peroxidase-/catalase- and oxidase-like reactions. Further, this work compares the catalytic activity between PtAg NCs and PtAg nanoparticles with different compositions and finds that these two nanozymes present a converse dependency of Ag-loading on their activity. This study contributes to the field of nanozymes and presents a potential option to prepare ligand-free bimetal biocatalysts with sizes in the nanocluster regime.
Collapse
Affiliation(s)
- Lizhen Chen
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Lars Klemeyer
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Mingbo Ruan
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xin Liu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Stefan Werner
- Fachbereich Chemie, Universität Hamburg, 20146, Hamburg, Germany
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Andrea Koeppen
- Fachbereich Chemie, Universität Hamburg, 20146, Hamburg, Germany
| | - Robert Bücker
- Centre for Structural Systems Biology (CSSB), Department of Chemistry, University of Hamburg, 22761, Hamburg, Germany
- Rigaku Europe SE, 63263, Neu-Isenburg, Germany
| | | | - Dorota Koziej
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Indranath Chakraborty
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
27
|
Kjær ETS, Anker AS, Weng MN, Billinge SJL, Selvan R, Jensen KMØ. DeepStruc: towards structure solution from pair distribution function data using deep generative models. DIGITAL DISCOVERY 2023; 2:69-80. [PMID: 36798882 PMCID: PMC9923795 DOI: 10.1039/d2dd00086e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from total scattering data by using a conditional variational autoencoder. We first apply DeepStruc to PDFs from seven different structure types of monometallic nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including PDFs from nanoparticles that are not present in the training distribution. We also apply DeepStruc to a system of hcp, fcc and stacking faulted nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an interpolation between hcp and fcc nanoparticles and is able to solve stacking faulted structures from PDFs. Our findings suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials.
Collapse
Affiliation(s)
- Emil T S Kjær
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Marcus N Weng
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Simon J L Billinge
- Department of Applied Physics and Applied Mathematics Science, Columbia University New York NY 10027 USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory Upton NY 11973 USA
| | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen 2100 Copenhagen Ø Denmark
- Department of Neuroscience, University of Copenhagen 2200 Copenhagen N Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| |
Collapse
|
28
|
Mathiesen JK, Quinson J, Blaseio S, Kjær ETS, Dworzak A, Cooper SR, Pedersen JK, Wang B, Bizzotto F, Schröder J, Kinnibrugh TL, Simonsen SB, Theil Kuhn L, Kirkensgaard JJK, Rossmeisl J, Oezaslan M, Arenz M, Jensen KMØ. Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering: Influence of Precursors and Cations on the Reaction Pathway. J Am Chem Soc 2023; 145:1769-1782. [PMID: 36631996 DOI: 10.1021/jacs.2c10814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.
Collapse
Affiliation(s)
- Jette K Mathiesen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark.,Department of Physics, Technical University of Denmark, Fysikvej Bldg. 312, 2800Kgs. Lyngby, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark.,Department of Biochemical and Chemical Engineering, Aarhus University, Åbogade 40, 8200Aarhus N, Denmark
| | - Sonja Blaseio
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Alexandra Dworzak
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Susan R Cooper
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Jack K Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Baiyu Wang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Francesco Bizzotto
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Johanna Schröder
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Tiffany L Kinnibrugh
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois60439, United States
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, 2800Kgs. Lyngby, Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, 2800Kgs. Lyngby, Denmark
| | - Jacob J K Kirkensgaard
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958Frederiksberg C, Denmark.,Niels-Bohr-Institute, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Mehtap Oezaslan
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Matthias Arenz
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Van den Eynden D, Pokratath R, Mathew JP, Goossens E, De Buysser K, De Roo J. Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes. Chem Sci 2023; 14:573-585. [PMID: 36741516 PMCID: PMC9847641 DOI: 10.1039/d2sc05037d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.
Collapse
Affiliation(s)
- Dietger Van den Eynden
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | - Rohan Pokratath
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| | | | - Eline Goossens
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
30
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
31
|
Xing J, Wang W, Huang S, Du M, Huang B, Liu Y, He S, Yao T, Li S, Liu Y. Effects of Grain Refinement and Thermal Aging on Atomic Scale Local Structures of Ultra-Fine Explosives by X-ray Total Scattering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6835. [PMID: 36234175 PMCID: PMC9572120 DOI: 10.3390/ma15196835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The atomic scale local structures affect the initiation performance of ultra-fine explosives according to the stimulation results of hot spot formation. However, the experimental characterization of local structures in ultra-fine explosives has been rarely reported, due to the difficulty in application of characterization methods having both high resolution in and small damage to unstable organic explosive materials. In this work, X-ray total scattering was explored to investigate the atomic scale local distortion of two widely applicable ultra-fine explosives, LLM-105 and HNS. The experimental spectra of atomic pair distribution function (PDF) derived from scattering results were fitted by assuming rigid ring structures in molecules. The effects of grain refinement and thermal aging on the atomic scale local structure were investigated, and the changes in both the length of covalent bonds have been identified. Results indicate that by decreasing the particle size of LLM-105 and HNS from hundreds of microns to hundreds of nanometers, the crystal structures remain, whereas the molecular configuration slightly changes and the degree of structural disorder increases. For example, the average length of covalent bonds in LLM-105 reduces from 1.25 Å to 1.15 Å, whereas that in HNS increases from 1.25 Å to 1.30 Å, which is possibly related to the incomplete crystallization process and internal stress. After thermal aging of ultra-fine LLM-105 and HNS, the degree of structural disorder decreases, and the distortion in molecules formed in the synthesis process gradually healed. The average length of covalent bonds in LLM-105 increases from 1.15 Å to 1.27 Å, whereas that in HNS reduces from 1.30 Å to 1.20 Å. The possible reason is that the atomic vibration in the molecule intensifies during the heat aging treatment, and the internal stress was released through changes in molecular configuration, and thus the atomic scale distortion gradually heals. The characterization method and findings in local structures obtained in this work may pave the path to deeply understand the relationship between the defects and performance of ultra-fine explosives.
Collapse
Affiliation(s)
- Jiangtao Xing
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Weili Wang
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Shiliang Huang
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Maohua Du
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Bing Huang
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Yousong Liu
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Shanshan He
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Tianle Yao
- Navy Research Institute, Beijing 100072, China
| | - Shichun Li
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Yu Liu
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| |
Collapse
|
32
|
Henning LM, Müller JT, Smales GJ, Pauw BR, Schmidt J, Bekheet MF, Gurlo A, Simon U. Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential. NANOSCALE ADVANCES 2022; 4:3892-3908. [PMID: 36133322 PMCID: PMC9470055 DOI: 10.1039/d2na00368f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77-49%), mesopore size (6.2-5.2 nm), pore volume (0.50-0.22 g cm-3), and specific surface area (451-180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 °C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 × 10-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling.
Collapse
Affiliation(s)
- Laura M Henning
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Julian T Müller
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 6.5 - Polymers in Life Sciences and Nanotechnology Unter den Eichen 87 12205 Berlin Germany +49 30 8104 3314
| | - Brian R Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 6.5 - Polymers in Life Sciences and Nanotechnology Unter den Eichen 87 12205 Berlin Germany +49 30 8104 3314
| | - Johannes Schmidt
- Technische Universität Berlin, Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Chair of Functional Materials Straße des 17. Juni 135 10623 Berlin Germany
| | - Maged F Bekheet
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Aleksander Gurlo
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Ulla Simon
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| |
Collapse
|
33
|
Saura-Múzquiz M, Marlton FP, Mullens BG, Manjón-Sanz AM, Neuefeind JC, Everett M, Brand HEA, Mondal S, Vaitheeswaran G, Kennedy BJ. Understanding the Re-entrant Phase Transition in a Non-magnetic Scheelite. J Am Chem Soc 2022; 144:15612-15621. [PMID: 35994733 DOI: 10.1021/jacs.2c05620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stereochemical activity of lone pair electrons plays a central role in determining the structural and electronic properties of both chemically simple materials such as H2O, as well as more complex condensed phases such as photocatalysts or thermoelectrics. TlReO4 is a rare example of a non-magnetic material exhibiting a re-entrant phase transition and emphanitic behavior in the long-range structure. Here, we describe the role of the Tl+ 6s2 lone pair electrons in these unusual phase transitions and illustrate its tunability by chemical doping, which has broad implications for functional materials containing lone pair bearing cations. First-principles density functional calculations clearly show the contribution of the Tl+ 6s2 in the valence band region. Local structure analysis, via neutron total scattering, revealed that changes in the long-range structure of TlReO4 occur due to changes in the correlation length of the Tl+ lone pairs. This has a significant effect on the anion interactions, with long-range ordered lone pairs creating a more densely packed structure. This resulted in a trade-off between anionic repulsions and lone pair correlations that lead to symmetry lowering upon heating in the long-range structure, whereby lattice expansion was necessary for the Tl+ lone pairs to become highly correlated. Similarly, introducing lattice expansion through chemical pressure allowed long-range lone pair correlations to occur over a wider temperature range, demonstrating a method for tuning the energy landscape of lone pair containing functional materials.
Collapse
Affiliation(s)
- Matilde Saura-Múzquiz
- School of Chemistry, University of Sydney, F11, Sydney, New South Wales 2006, Australia
| | - Frederick P Marlton
- School of Chemistry, University of Sydney, F11, Sydney, New South Wales 2006, Australia
| | - Bryce G Mullens
- School of Chemistry, University of Sydney, F11, Sydney, New South Wales 2006, Australia
| | - Alicia María Manjón-Sanz
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joerg C Neuefeind
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michelle Everett
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Helen E A Brand
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Subrata Mondal
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Ganapathy Vaitheeswaran
- School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Brendan J Kennedy
- School of Chemistry, University of Sydney, F11, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Quinson J. Osmium and OsO x nanoparticles: an overview of syntheses and applications. OPEN RESEARCH EUROPE 2022; 2:39. [PMID: 37645302 PMCID: PMC10446100 DOI: 10.12688/openreseurope.14595.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 08/31/2023]
Abstract
Precious metal nanoparticles are key for a range of applications ranging from catalysis and sensing to medicine. While gold (Au), silver (Ag), platinum (Pt), palladium (Pd) or ruthenium (Ru) nanoparticles have been widely studied, other precious metals are less investigated. Osmium (Os) is one of the least studied of the precious metals. However, Os nanoparticles are interesting materials since they present unique features compared to other precious metals and Os nanomaterials have been reported to be useful for a range of applications, catalysis or sensing for instance. With the increasing availability of advanced characterization techniques, investigating the properties of relatively small Os nanoparticles and clusters has become easier and it can be expected that our knowledge on Os nanomaterials will increase in the coming years. This review aims to give an overview on Os and Os oxide materials syntheses and applications.
Collapse
Affiliation(s)
- Jonathan Quinson
- Chemistry, University of Copenhagen, Copenhagen, Denmark
- Biochemical and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Du J, Quinson J, Zhang D, Wang B, Wiberg GKH, Pittkowski RK, Schröder J, Simonsen SB, Kirkensgaard JJK, Li Y, Reichenberger S, Barcikowski S, Jensen KMØ, Arenz M. Nanocomposite Concept for Electrochemical In Situ Preparation of Pt-Au Alloy Nanoparticles for Formic Acid Oxidation. JACS AU 2022; 2:1757-1768. [PMID: 35911453 PMCID: PMC9327087 DOI: 10.1021/jacsau.2c00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we report a straightforward approach for the in situ preparation of Pt-Au alloy nanoparticles from Pt + xAu/C nanocomposites using monometallic colloidal nanoparticles as starting blocks. Four different compositions with fixed Pt content and varying Pt to Au mass ratios from 1:1 up to 1:7 were prepared as formic acid oxidation reaction (FAOR) catalysts. The study was carried out in a gas diffusion electrode (GDE) setup. It is shown that the presence of Au in the nanocomposites substantially improves the FAOR activity with respect to pure Pt/C, which serves as a reference. The nanocomposite with a mass ratio of 1:5 between Pt and Au displays the best performance during potentiodynamic tests, with the electro-oxidation rates, overpotential, and poisoning resistance being improved simultaneously. By comparison, too low or too high Au contributions in the nanocomposites lead to an unbalanced performance in the FAOR. The combination of operando small-angle X-ray scattering (SAXS), scanning transmission electron microscopy (STEM) elemental mapping, and wide-angle X-ray scattering (WAXS) reveals that for the nanocomposite with a 1:5 mass ratio, a conversion between Pt and Au from separate nanoparticles to alloy nanoparticles occurs during continuous potential cycling in formic acid. By comparison, the nanocomposites with lower Au contents, for example, 1:2, exhibit less in situ alloying, and the concomitant performance improvement is less pronounced. On applying identical location transmission electron microscopy (IL-TEM), it is revealed that the in situ alloying is due to Pt dissolution and re-deposition onto Au as well as Pt migration and coalescence with Au nanoparticles.
Collapse
Affiliation(s)
- Jia Du
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jonathan Quinson
- Department of Chemistry, University of
Copenhagen, 2100 Copenhagen, Denmark
- Department of Biochemical and Chemical Engineering, University of Aarhus, 8200 Aarhus, Denmark
| | - Damin Zhang
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Baiyu Wang
- Department of Chemistry, University of
Copenhagen, 2100 Copenhagen, Denmark
| | - Gustav K. H. Wiberg
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Johanna Schröder
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Søren B. Simonsen
- Department of Energy
Conversion and Storage, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Jacob J. K. Kirkensgaard
- Department of Food
Science, University of Copenhagen, 1958 Frederiksberg, Denmark
- Niels-Bohr-Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yao Li
- Technical Chemistry I and Center of Nanointegration Duisburg Essen
(CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center of Nanointegration Duisburg Essen
(CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center of Nanointegration Duisburg Essen
(CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | | | - Matthias Arenz
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
36
|
Zimmerli NK, Müller CR, Abdala PM. Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Dhaene E, Pokratath R, Aalling-Frederiksen O, Jensen KMØ, Smet PF, De Buysser K, De Roo J. Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS NANO 2022; 16:7361-7372. [PMID: 35476907 DOI: 10.1021/acsnano.1c08966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ligands play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that monoalkyl phosphinic acids are another interesting ligand class, forming metal complexes with a reactivity that is intermediate between the traditional carboxylates and phosphonates. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleylphosphinic acid. These compounds are suitable ligands for high-temperature nanocrystal synthesis (240-300 °C) since, in contrast to phosphonic acids, they do not form anhydride oligomers. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and their UV-vis spectrum is free from background scattering. The CdSe nanocrystals have a low polydispersity and a photoluminescence quantum yield up to 18% (without shell). Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands with high shape purity. We conclude that the reactivity toward TOP-S and TOP-Se precursors decreases in the following series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.
Collapse
Affiliation(s)
- Evert Dhaene
- Department of Chemistry, Ghent University, Gent B-9000, Belgium
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Philippe F Smet
- Department of Solid State Sciences, Ghent University, Gent B-9000, Belgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
38
|
Pussi K, Louzguine-Luzgin DV, Nokelaineni J, Barbiellini B, Kothalawala V, Ohara K, Yamada H, Bansil A, Kamali S. Atomic structure of an FeCrMoCBY metallic glass revealed by high energy x-ray diffraction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:285301. [PMID: 35472853 DOI: 10.1088/1361-648x/ac6a9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Amorphous bulk metallic glasses with the composition Fe48Cr15Mo14C15B6Y2have been of interest due to their special mechanical and electronic properties, including corrosion resistance, high yield-strength, large elasticity, catalytic performance, and soft ferromagnetism. Here, we apply a reverse Monte Carlo technique to unravel the atomic structure of these glasses. The pair-distribution functions for various atomic pairs are computed based on the high-energy x-ray diffraction data we have taken from an amorphous sample. Monte Carlo cycles are used to move the atomic positions until the model reproduces the experimental pair-distribution function. The resulting fitted model is consistent with ourab initiosimulations of the metallic glass. Our study contributes to the understanding of functional properties of Fe-based bulk metallic glasses driven by disorder effects.
Collapse
Affiliation(s)
- K Pussi
- Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland
- Natural Resources Institute Finland (Luke), Production Systems, 00790 Helsinki, Finland
| | - D V Louzguine-Luzgin
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- MathAM-OIL, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan
| | - J Nokelaineni
- Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland
- Physics Department, Northeastern University, Boston, MA 02115, United States of America
| | - B Barbiellini
- Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland
- Physics Department, Northeastern University, Boston, MA 02115, United States of America
| | - V Kothalawala
- Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland
| | - K Ohara
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - H Yamada
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - A Bansil
- Physics Department, Northeastern University, Boston, MA 02115, United States of America
| | - S Kamali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, United States of America
- Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America
| |
Collapse
|
39
|
Ghosh AC, Legrand A, Rajapaksha R, Craig GA, Sassoye C, Balázs G, Farrusseng D, Furukawa S, Canivet J, Wisser FM. Rhodium-Based Metal-Organic Polyhedra Assemblies for Selective CO 2 Photoreduction. J Am Chem Soc 2022; 144:3626-3636. [PMID: 35179874 DOI: 10.1021/jacs.1c12631] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterogenization of molecular catalysts via their immobilization within extended structures often results in a lowering of their catalytic properties due to a change in their coordination sphere. Metal-organic polyhedra (MOP) are an emerging class of well-defined hybrid compounds with a high number of accessible metal sites organized around an inner cavity, making them appealing candidates for catalytic applications. Here, we demonstrate a design strategy that enhances the catalytic properties of dirhodium paddlewheels heterogenized within MOP (Rh-MOP) and their three-dimensional assembled supramolecular structures, which proved to be very efficient catalysts for the selective photochemical reduction of carbon dioxide to formic acid. Surprisingly, the catalytic activity per Rh atom is higher in the supramolecular structures than in its molecular sub-unit Rh-MOP or in the Rh-metal-organic framework (Rh-MOF) and yields turnover frequencies of up to 60 h-1 and production rates of approx. 76 mmole formic acid per gram of the catalyst per hour, unprecedented in heterogeneous photocatalysis. The enhanced catalytic activity is investigated by X-ray photoelectron spectroscopy and electrochemical characterization, showing that self-assembly into supramolecular polymers increases the electron density on the active site, making the overall reaction thermodynamically more favorable. The catalyst can be recycled without loss of activity and with no change of its molecular structure as shown by pair distribution function analysis. These results demonstrate the high potential of MOP as catalysts for the photoreduction of CO2 and open a new perspective for the electronic design of discrete molecular architectures with accessible metal sites for the production of solar fuels.
Collapse
Affiliation(s)
- Ashta C Ghosh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501 Kyoto, Japan
| | - Rémy Rajapaksha
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Gavin A Craig
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501 Kyoto, Japan.,Department of Pure and Applied Chemistry, University of Strathclyde, G11XL Glasgow, Scotland
| | - Capucine Sassoye
- Sorbonne Université, Chimie de la Matière Condensée de Paris-UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - David Farrusseng
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501 Kyoto, Japan
| | - Jérôme Canivet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Florian M Wisser
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
40
|
Juelsholt M, Quinson J, Kjær ETS, Wang B, Pittkowski R, Cooper SR, Kinnibrugh TL, Simonsen SB, Theil Kuhn L, Escudero-Escribano M, Jensen KMØ. Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:230-235. [PMID: 35281627 PMCID: PMC8895034 DOI: 10.3762/bjnano.13.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A surfactant-free synthesis of precious metal nanoparticles (NPs) performed in alkaline low-boiling-point solvents has been recently reported. Monoalcohols are here investigated as solvents and reducing agents to obtain colloidal Os nanoparticles by using low-temperature (<100 °C) surfactant-free syntheses. The effect of the precursor (OsCl3 or H2OsCl6), precursor concentration (up to 100 mM), solvent (methanol or ethanol), presence or absence of a base (NaOH), and addition of water (0 to 100 vol %) on the resulting nanomaterials is discussed. It is found that no base is required to obtain Os nanoparticles as opposed to the case of Pt or Ir NPs. The robustness of the synthesis for a precursor concentration up to 100 mM allows for the performance of X-ray total scattering with pair distribution function (PDF) analysis, which shows that 1-2 nm hexagonal close packed (hcp) NPs are formed from chain-like [OsO x Cl y ] complexes.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Baiyu Wang
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Rebecca Pittkowski
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Susan R Cooper
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Tiffany L Kinnibrugh
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark
| | - María Escudero-Escribano
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| |
Collapse
|
41
|
Terban MW, Billinge SJL. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem Rev 2022; 122:1208-1272. [PMID: 34788012 PMCID: PMC8759070 DOI: 10.1021/acs.chemrev.1c00237] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/16/2022]
Abstract
This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.
Collapse
Affiliation(s)
- Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
42
|
Beyer J, Roth N, Brummerstedt Iversen B. Effects of Voigt diffraction peak profiles on the pair distribution function. Acta Crystallogr A Found Adv 2022; 78:10-20. [PMID: 34967326 DOI: 10.1107/s2053273321011840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Powder diffraction and pair distribution function (PDF) analysis are well established techniques for investigation of atomic configurations in crystalline materials, and the two are related by a Fourier transformation. In diffraction experiments, structural information, such as crystallite size and microstrain, is contained within the peak profile function of the diffraction peaks. However, the effects of the PXRD (powder X-ray diffraction) peak profile function on the PDF are not fully understood. Here, all the effects from a Voigt diffraction peak profile are solved analytically, and verified experimentally through a high-quality X-ray total scattering measurement on Ni powder. The Lorentzian contribution to the microstrain broadening is found to result in Voigt-shaped PDF peaks. Furthermore, it is demonstrated that an improper description of the Voigt shape during model refinement leads to overestimation of the atomic displacement parameter.
Collapse
Affiliation(s)
- Jonas Beyer
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | - Nikolaj Roth
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | | |
Collapse
|
43
|
Juelsholt M, Anker AS, Christiansen TL, Jørgensen MRV, Kantor I, Sørensen DR, Jensen KMØ. Size-induced amorphous structure in tungsten oxide nanoparticles. NANOSCALE 2021; 13:20144-20156. [PMID: 34846442 DOI: 10.1039/d1nr05991b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The properties of functional materials are intrinsically linked to their atomic structure. When going to the nanoscale, size-induced structural changes in atomic structure often occur, however these are rarely well-understood. Here, we systematically investigate the atomic structure of tungsten oxide nanoparticles as a function of the nanoparticle size and observe drastic changes when the particles are smaller than 5 nm, where the particles are amorphous. The tungsten oxide nanoparticles are synthesized by thermal decomposition of ammonium metatungstate hydrate in oleylamine and by varying the ammonium metatungstate hydrate concentration, the nanoparticle size, shape and structure can be controlled. At low concentrations, nanoparticles with a diameter of 2-4 nm form and adopt an amorphous structure that locally resembles the structure of polyoxometalate clusters. When the concentration is increased the nanoparticles become elongated and form nanocrystalline rods up to 50 nm in length. The study thus reveals a size-dependent amorphous structure when going to the nanoscale and provides further knowledge on how metal oxide crystal structures change at extreme length scales.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | | | - Mads Ry Vogel Jørgensen
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Innokenty Kantor
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- Department of Physics, The Technical University of Denmark, 2880 Lyngby, Denmark
| | - Daniel Risskov Sørensen
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
44
|
|
45
|
Pussi K, Barbiellini B, Ohara K, Yamada H, Dwivedi J, Bansil A, Gupta A, Kamali S. Atomic arrangements in an amorphous CoFeB ribbon extracted via an analysis of radial distribution functions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:395801. [PMID: 34233320 DOI: 10.1088/1361-648x/ac1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
We discuss the atomic structure of amorphous ferromagnetic FeCoB alloys, which are used widely in spintronics applications. Specifically, we obtain the pair-distribution functions for various atomic pairs based on high-energy x-ray diffraction data taken from an amorphous Co20Fe61B19specimen. We start our reverse Monte Carlo cycles to determine the disordered structure with a two-phase model in which a small amount of cobalt is mixed with Fe23B6as a second phase. The structure of the alloy is found to be heterogeneous, where the boron atoms drive disorder through the random occupation of the atomic network. Our analysis also indicates the presence of small cobalt clusters that are embedded in the iron matrix and percolating the latter throughout the structure. This morphology can explain the enhanced spin polarization observed in amorphous magnetic materials.
Collapse
Affiliation(s)
- K Pussi
- Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland
| | - B Barbiellini
- Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland
- Physics Department, Northeastern University, Boston, MA 02115, United States of America
| | - K Ohara
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - H Yamada
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - J Dwivedi
- School of Physics, Devi Ahilya University, Indore 452001, India
| | - A Bansil
- Physics Department, Northeastern University, Boston, MA 02115, United States of America
| | - A Gupta
- Department of Physics, University of Petroleum and Energy Studies, Bidholi, Dehradun-248007, India
| | - S Kamali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, United States of America
- Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America
| |
Collapse
|
46
|
Aalling-Frederiksen O, Juelsholt M, Anker AS, Jensen KMØ. Formation and growth mechanism for niobium oxide nanoparticles: atomistic insight from in situ X-ray total scattering. NANOSCALE 2021; 13:8087-8097. [PMID: 33956920 PMCID: PMC8101635 DOI: 10.1039/d0nr08299f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/14/2021] [Indexed: 06/08/2023]
Abstract
Understanding the mechanisms for nanoparticle nucleation and growth is crucial for the development of tailormade nanomaterials. Here, we use X-ray total scattering and Pair Distribution Function analysis to follow the formation and growth of niobium oxide nanoparticles. We study the solvothermal synthesis from niobium chloride in benzyl alcohol, and through investigations of the influence of reaction temperature, a formation pathway can be suggested. Upon dissolution of niobium chloride in benzyl alcohol, octahedral [NbCl6-xOx] complexes form through exchange of chloride ligands. Heating of the solution results in polymerization, where larger clusters built from multiple edge-sharing [NbCl6-xOx] octahedra assemble. This leads to the formation of a nucleation cluster with the ReO3 type structure, which grows to form nanoparticles of the Wadsley-Roth type H-Nb2O5 structure, which in the bulk phase usually only forms at high temperature. Upon further growth, structural defects appear, and the presence of shear-planes in the structure appears highly dependent on nanoparticle size.
Collapse
Affiliation(s)
| | - Mikkel Juelsholt
- Department of Chemistry and Nano-Science Center, University of Copenhagen2100 Copenhagen ØDenmark
| | - Andy S. Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen2100 Copenhagen ØDenmark
| | - Kirsten M. Ø. Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen2100 Copenhagen ØDenmark
| |
Collapse
|
47
|
Haouari C, Squires AG, Berthelot R, Stievano L, Sougrati MT, Morgan BJ, Lebedev OI, Iadecola A, Borkiewicz OJ, Dambournet D. Impact of Solution Chemistry on Growth and Structural Features of Mo-Substituted Spinel Iron Oxides. Inorg Chem 2021; 60:7217-7227. [PMID: 33956446 DOI: 10.1021/acs.inorgchem.1c00278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of crystallizing solution chemistry on the chemistry of subsequently as-grown materials was investigated for Mo-substituted iron oxides prepared by thermally activated co-precipitation. In the presence of Mo ions, we find that varying the oxidation state of the iron precursor from Fe(II) to Fe(III) causes a progressive loss of atomic long-range order with the stabilization of 2-4 nm particles for the sample prepared with Fe(III). The oxidation state of the Fe precursor also affects the distribution of Fe and Mo cations within the spinel structure. Increasing the Fe precursor oxidation state gives decreased Fe-ion occupation and increased Mo-ion occupation of tetrahedral sites, as revealed by the extended X-ray absorption fine structure. The stabilization of Mo within tetrahedral sites appears to be unexpected, considering the octahedral preferred coordination number of Mo(VI). The analysis of the atomic structure of the sample prepared with Fe(III) indicates a local ordering of vacancies and that the occupation of tetrahedral sites by Mo induces a contraction of the interatomic distances within the polyhedra as compared to Fe atoms. Moreover, the occupancy of Mo into the thermodynamic site preference of a Mo dopant in Fe2O3 assessed by density functional theory calculations points to a stronger preference for Mo substitution at octahedral sites. Hence, we suggest that the synthetized compound is thermodynamically metastable, that is, kinetically trapped. Such a state is suggested to be a consequence of the tetrahedral site occupation by Mo ions. The population of these sites, known to be reactive sites enabling particle growth, is concomitant with the stabilization of very small particles. We confirmed our hypothesis by using a blank experiment without Mo ions, further supporting the impact of tetrahedral Mo ions on the growth of iron oxide nanoparticles. Our findings provide new insights into the relationships between the Fe-chemistry of the crystallizing solution and the structural features of the as-grown Mo-substituted Fe-oxide materials.
Collapse
Affiliation(s)
- Chérazade Haouari
- ICGM, Université Montpellier, ENSCM, CNRS, F-34095 Montpellier, France.,Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, F-75005 Paris, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, F-80039 Amiens, France
| | - Alexander G Squires
- Department of Chemistry, University of Bath, BA2 7AY Bath, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, OX11 0RA Didcot, U.K
| | - Romain Berthelot
- ICGM, Université Montpellier, ENSCM, CNRS, F-34095 Montpellier, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, F-80039 Amiens, France
| | - Lorenzo Stievano
- ICGM, Université Montpellier, ENSCM, CNRS, F-34095 Montpellier, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, F-80039 Amiens, France
| | - Moulay Tahar Sougrati
- ICGM, Université Montpellier, ENSCM, CNRS, F-34095 Montpellier, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, F-80039 Amiens, France
| | - Benjamin J Morgan
- Department of Chemistry, University of Bath, BA2 7AY Bath, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, OX11 0RA Didcot, U.K
| | - Oleg I Lebedev
- Laboratoire CRISMAT, ENSICAEN, Université de Caen, CNRS, F-14050 Caen, France
| | - Antonella Iadecola
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, F-80039 Amiens, France
| | - Olaf J Borkiewicz
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, 60439 Illinois, United States
| | - Damien Dambournet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, F-75005 Paris, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, F-80039 Amiens, France
| |
Collapse
|
48
|
Quinson J, Jensen KM. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv Colloid Interface Sci 2020; 286:102300. [PMID: 33166723 DOI: 10.1016/j.cis.2020.102300] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Platinum (Pt) is one of the most studied materials in catalysis today and considered for a wide range of applications: chemical synthesis, energy conversion, air treatment, water purification, sensing, medicine etc. As a limited and non-renewable resource, optimized used of Pt is key. Nanomaterial design offers multiple opportunities to make the most of Pt resources down to the atomic scale. In particular, colloidal syntheses of Pt nanoparticles are well documented and simple to implement, which accounts for the large interest in research and development. For further breakthroughs in the design of Pt nanomaterials, a deeper understanding of the intricate synthesis-structures-properties relations of Pt nanoparticles must be obtained. Understanding how Pt nanoparticles form from molecular precursors is both a challenging and rewarding area of investigation. It is directly relevant to develop improved Pt nanomaterials but is also a source of inspiration to design other precious metal nanostructures. Here, we review the current understanding of Pt nanoparticle formation. This review is aimed at readers with interest in Pt nanoparticles in general and their colloidal syntheses in particular. Readers with a strongest interest on the study of nanomaterial formation will find here the case study of Pt. The preferred model systems and characterization techniques used to perform the study of Pt nanoparticle syntheses are discussed. In light of recent achievements, further direction and areas of research are proposed.
Collapse
|
49
|
Structural Disorder of Mechanically Activated δ-MgCl2 Studied by Synchrotron X-ray Total Scattering and Vibrational Spectroscopy. Catalysts 2020. [DOI: 10.3390/catal10091089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A combination of synchrotron X-ray total scattering and molecular simulation is a powerful approach for reliable determination of the structure of δ-MgCl2 as an indispensable component of heterogeneous Ziegler–Natta catalysts. Here, the same approach is applied to mechanically activated MgCl2. Four types of mechanically activated MgCl2 samples are prepared using ball-milling in the absence and presence of different donors. The development of structural disorder along the grinding time is compared. It was found that the presence of donors accelerates the formation of δ-MgCl2 in an early stage of grinding, while elongated grinding eventually results in δ-MgCl2 with similar extents of structural disorder in the absence and presence of different donors. The FT-IR investigation consistently verified the morphological similarity between the firmly ground samples. Thus, the structure of δ-MgCl2 is likely governed by mechanical energy when sufficiently ground.
Collapse
|
50
|
Jensen KMØ, DeBeer S, Koziej D. Spectroscopy and scattering for chemistry: new possibilities and challenges with large scale facilities. NANOSCALE 2020; 12:17968-17970. [PMID: 32856680 DOI: 10.1039/d0nr90182b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kirsten M. Ø. Jensen, Dorota Koziej and Serena DeBeer introduce the Nanoscale themed issue on spectroscopy and scattering for chemistry: new possibilities and challenges with large scale facilities.
Collapse
Affiliation(s)
- Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany.
| | - Dorota Koziej
- Center for Hybrid Nanostructures (CHyN), Institute of Nanostructure and Solid State Physics, University of Hamburg, 22761 Hamburg, Germany.
| |
Collapse
|