1
|
Shaheen MA, Darwish KM, Kishk SM, El-Sayed MAA, Salama I. Development of 1,2,3-triazole hybrids as multi-faced anticancer agents co-targeting EGFR/mTOR pathway and tubulin depolymerization. Bioorg Chem 2025; 156:108153. [PMID: 39855112 DOI: 10.1016/j.bioorg.2025.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Novel 1,2,3-triazole hybrids bearing various substituents have been synthesized as potential anticancer agents. Ligand-based approach has been adopted to design these compounds relying on the hybridization of 1,2,3-triazole with α,β-unsaturated carbonyl, 5- and 6-membered heterocyclic scaffolds. All synthesized members were investigated for their cytotoxic potency against nine types comprising 60 panels of human cancerous cells by the US National Cancer Institute: Development Therapeutic Program (US_NCI_DTP). Among the tested members, 4b, 4e, and 4h showed prominent cytotoxic effects (> 80 % growth inhibition: GI) on a wide panel of tested cancer cell lines, mainly melanoma and colorectal cancer redeeming their selection for five dose testing. Presenting low nanomolar GI50 concentrations, two representative potent anticancer compounds 4b and 4e were subjected to cytotoxicity testing on colon normal cell (FHC) to investigate their safety window and they showed less toxicity to normal cells at the concentration required to produce anticancer effect. Furthermore, 4b and 4e were exposed to additional mechanistic studies in colorectal cancer cell HCT-116 suggesting multifaceted mechanisms of action. A study into the effects of cytotoxic chemicals 4b and 4e on cell cycle progression regulation showed triggered the arrest of cell cycles during the G1 and S phases. Moreover, 4b and 4e caused cell death mainly through apoptosis the thing that has been reinforced by the elevated Bax: Bcl2 ratio, as well as concentrations of caspases 3 and 9 within HCT-116. Further, both compounds showed prominent inhibition profiles against tubulin polymerization as well as EGFR catalytic activity reaching down to low-digit micromolar and sub-micromolar concentrations, respectively, as compared to positive reference controls. Compounds' impacts on gene expression of cancer-associated and EGFR-downstream signaling markers including TNFα, IL-6, and mTOR, were explored in HCT-116 highlighted significant downregulations versus the untreated cells. Docking studies demonstrated the specific fit of 4b and 4e into EGFR and the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Mennatallah A Shaheen
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, Egypt.
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, Galala University, New Galala 43511 Egypt.
| | - Safaa M Kishk
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt.
| | - Magda A-A El-Sayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Ismail Salama
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt.
| |
Collapse
|
2
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Feng S, Zhang M, Song J, Ruan X, Xue W. Discovery of Highly Effective Antibacterial Agents Based on Chalcone-Benzisothiazolinone against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27808-27817. [PMID: 39636244 DOI: 10.1021/acs.jafc.4c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In this study, a series of novel chalcone compounds containing 1,2-benzisothiazolin-3-one were designed, synthesized, and screened for the prevention and control of plant bacterial diseases. The results showed that most of the target compounds displayed excellent antibacterial activities. Especially, F17 (2-(3-(4-cinnamoylphenoxy)propyl)benzo[d]isothiazol-3(2H)-one) exhibited remarkable efficacy against Xanthomonas oryzae pv Oryzae in vitro, with a half effective concentration (EC50) of 0.5 μg/mL, better than that of the commercial antibacterial agent thiodiazole-copper (TC, 56.1 μg/mL). Furthermore, F17 showed excellent effects against rice bacterial leaf blight in vivo, with protective and curative activities of 59.2% and 48.8% at 200 μg/mL, respectively, which were higher than those of TC (38.3% and 36.6%). Moreover, the bacteriostatic mechanism of F17 was elucidated through a series of biochemical experiments. The results indicated that F17 could inhibit the expression of multiple pathogenic factors and induce the host's resistance to disease by enhancing the activities of defense enzymes. Therefore, F17, which revealed the ability to combat plant bacterial diseases by orchestrating the control of multiple factors, might provide a new perspective for solving the problem of plant pathogen resistance. Overall, the results of this work demonstrated that chalcone compounds containing benzisothiazolinone as highly effective antibacterial candidates hold potential for the management of plant bacterial diseases.
Collapse
Affiliation(s)
- Shuang Feng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, P. R. China
| | - Miaohe Zhang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, P. R. China
| | - Junrong Song
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Xianghui Ruan
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
4
|
Li N, Lu W, Ren H, Chen Z. Chemistry, bioactivities, structure-activity relationship, biosynthesis and metabolism of prenylated flavonoids in Moraceae plants. Food Funct 2024; 15:9598-9631. [PMID: 39238316 DOI: 10.1039/d4fo02688h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Plants from Moraceae are globally popular as they represent a valuable resource with wide applications in food, health-care products, and other fields. Prenylated flavonoids are important active components in Moraceae. These compounds share a flavonoid skeleton with prenylated side chain, mostly in the form of single or multiple isoprenyl substituents and benzodimethylfuran structures. So far, nearly 400 prenylated flavonoids have been found in Moraceae, especially a large number of Diels-Alder adducts, which are characteristic components of this family. Due to their distinctive structures, diverse pharmacological properties and interesting synthesis processes, these compounds have attracted considerable attention from scientists. Herein, we review the advances in the structural characteristics, bioactivities, structure-activity relationships, biosynthesis strategies and in vivo metabolism of prenylated flavonoids in Moraceae plants, aiming at strengthening research efforts and utilization toward the great untapped potential of these unique constituents in human health.
Collapse
Affiliation(s)
- Ning Li
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China.
| | - Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China.
| | - Hui Ren
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China.
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China.
| |
Collapse
|
5
|
Yücetepe S, Koçyiğit-Kaymakçıoğlu B, Yang X, Tabanca N, Tok F. Insecticidal effect of new synthesized chalcone derivatives on Caribbean fruit fly, Anastrepha suspensa. Z NATURFORSCH C 2024; 79:267-273. [PMID: 38695678 DOI: 10.1515/znc-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/18/2024] [Indexed: 09/08/2024]
Abstract
In this present study, new chalcone derivatives were synthesized from 4-aminoacetophenone, which were confirmed by spectroscopic methods. The toxic risks of chalcones to humans and the environment were investigated by a web-based platform called ADMETlab. With this program, the possible toxic effects of the compounds on liver, respiratory system, and eyes were evaluated. For the topical insecticidal activity, adult female Caribbean fruit fly, Anastrepha suspensa, was targeted. Results of the toxicity tests showed that chalcone derivatives are effective against female A. suspensa. Among the synthesized chalcones, 1-(4-cinnamoylphenyl)-3-(p-tolyl)urea (2) exhibited the greatest insecticidal activity, resulting in 73 % mortality at 100 µg/fly after 24 h, whereas other derivatives showed less than 30 % mortality. Our results demonstrate that insecticidal activity may be modulated by the presence of a certain phenyl ring in the structure of derivative 2 and, therefore, has potential for design of efficient chemicals for tephritid fruit fly management.
Collapse
Affiliation(s)
- Sümeyye Yücetepe
- 52982 Institute of Health Sciences, Marmara University , 34865, Istanbul, Türkiye
| | - Bedia Koçyiğit-Kaymakçıoğlu
- Department of Pharmaceutical Chemistry, 20420479 Faculty of Pharmacy, Biruni University , 34015, Istanbul, Türkiye
| | - Xiangbing Yang
- 2017123 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) , Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA
| | - Nurhayat Tabanca
- 2017123 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) , Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, 52982 Faculty of Pharmacy, Marmara University , 34854, Istanbul, Türkiye
| |
Collapse
|
6
|
Huang RL, Tang W, Wang C, Yan C, Hu Y, Yang HX, Xiang HY, Huang XJ, Hu LJ, Ye WC, Song JG, Wang Y. Antiviral C-geranylated flavonoids from Artocarpus communis. PHYTOCHEMISTRY 2024; 225:114165. [PMID: 38815884 DOI: 10.1016/j.phytochem.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Ten C-geranylated flavonoids, along with three known analogues, were isolated from the leaves of Artocarpus communis. The chemical structures of these compounds were unambiguously determined via comprehensive spectroscopic analysis, single-crystal X-ray diffraction experiments, and quantum chemical electronic circular dichroism calculations. Structurally, artocarones A-I (1-9) represent a group of unusual, highly modified C-geranylated flavonoids, in which the geranyl chain is cyclised with the ortho-hydroxy group of flavonoids to form various heterocyclic scaffolds. Notably, artocarones E and G-I (5 and 7-9) feature a 6H-benzo[c]chromene core that is hitherto undescribed in C-geranylated flavonoids. Artocarone J (10) is the first example of C-9-C-16 connected C-geranylated aurone. Meanwhile, the plausible biosynthetic pathways for these rare C-geranylated flavonoids were also proposed. Notably, compounds 1, 2, 4, 8, 11, and 12 exhibited promising in vitro inhibitory activities against respiratory syncytial virus and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Rui-Li Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chaoqun Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Cong Yan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Xia Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Yang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Qian S, Zhou X, Li SM, Yuan CM, Yang S, Zhou K. Increasing structure diversity of farnesylated chalcones by a fungal aromatic prenyltransferase. PHYTOCHEMISTRY 2024; 224:114149. [PMID: 38763314 DOI: 10.1016/j.phytochem.2024.114149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 μM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 μM and 1F4 with IC50 value at 30.09 ± 0.59 μM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 μM in α-glucosidase inhibitory assays.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmaceutical Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Shiyunhua Qian
- School of Pharmaceutical Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, Marburg, 35037, Germany
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| | - Song Yang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| | - Kang Zhou
- School of Pharmaceutical Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
8
|
Ahamad J, Khan FA. Biomimetic total syntheses of renifolin F and antiarone K. Org Biomol Chem 2024; 22:4877-4881. [PMID: 38804914 DOI: 10.1039/d4ob00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The first biomimetic and concise racemic total syntheses of renifolin F and antiarone K, accomplished in 8 and 7 linear steps, respectively, are presented in this article. Our synthetic approach commences with substituted aldehydes to produce prenylated aldol products followed by ene-type intramolecular cyclization affording a five-member core ring. This key step mediated by InCl3·4H2O is a novel procedure first utilized in prenylated systems which directly culminates mainly into tertiary alcohols.
Collapse
Affiliation(s)
- Jarish Ahamad
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India.
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India.
| |
Collapse
|
9
|
He YF, Liu YP, Liao JZ, Gan Y, Li X, Wang RR, Wang F, Zhou J, Zhou L. Xanthohumol Promotes Skp2 Ubiquitination Leading to the Inhibition of Glycolysis and Tumorigenesis in Ovarian Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:865-884. [PMID: 38790085 DOI: 10.1142/s0192415x24500356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Ovarian cancer is a common, highly lethal tumor. Herein, we reported that S-phase kinase-associated protein 2 (Skp2) is essential for the growth and aerobic glycolysis of ovarian cancer cells. Skp2 was upregulated in ovarian cancer tissues and associated with poor clinical outcomes. Using a customized natural product library screening, we found that xanthohumol inhibited aerobic glycolysis and cell viability of ovarian cancer cells. Xanthohumol facilitated the interaction between E3 ligase Cdh1 and Skp2 and promoted the Ub-K48-linked polyubiquitination of Skp2 and degradation. Cdh1 depletion reversed xanthohumol-induced Skp2 downregulation, enhancing HK2 expression and glycolysis in ovarian cancer cells. Finally, a xenograft tumor model was employed to examine the antitumor efficacy of xanthohumol in vivo. Collectively, we discovered that xanthohumol promotes the binding between Skp2 and Cdh1 to suppress the Skp2/AKT/HK2 signal pathway and exhibits potential antitumor activity for ovarian cancer cells.
Collapse
Affiliation(s)
- Yi-Fu He
- Department of Obstetrics and Gynecology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Yi-Ping Liu
- Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Jin-Zhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Rui-Rui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Fang Wang
- Tengzhou Central People's Hospital, Tengzhou 277500, P. R. China
| | - Jun Zhou
- Department of Medical Science Research Center, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
10
|
Godara R, Kaushik P, Tripathi K, Kumar R, Rana VS, Kumar R, Mandal A, Shanmugam V, Pankaj, Shakil NA. Green synthesis, structure-activity relationships, in silico molecular docking, and antifungal activities of novel prenylated chalcones. Front Chem 2024; 12:1389848. [PMID: 38746019 PMCID: PMC11093228 DOI: 10.3389/fchem.2024.1389848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
A series of 16 novel prenylated chalcones (5A-5P) was synthesized by microwave-assisted green synthesis using 5-prenyloxy-2-hydroxyacetophenone and different benzaldehydes. Comparisons were also performed between the microwave and conventional methods in terms of the reaction times and yields of all compounds, where the reaction times in the microwave and conventional methods were 1-4 min and 12-48 h, respectively. The synthesized compounds were characterized using different spectroscopic techniques, including IR, 1H-NMR, 13C-NMR, and LC-HRMS. The antifungal activities of all compounds were evaluated against Sclerotium rolfsii and Fusarium oxysporum under in vitro conditions and were additionally supported by structure-activity relationship (SAR) and molecular docking studies. Out of the 16 compounds screened, 2'-hydroxy-4-benzyloxy-5'-O-prenylchalcone (5P) showed the highest activity against both S. rolfsii and F. oxysporum, with ED50 of 25.02 and 31.87 mg/L, respectively. The molecular docking studies of the prenylated chalcones within the active sites of the EF1α and RPB2 gene sequences and FoCut5a sequence as the respective receptors for S. rolfsii and F. oxysporum revealed the importance of the compounds, where the binding energies of the docked molecules ranged from -38.3538 to -26.6837 kcal/mol for S. rolfsii and -43.400 to -23.839 kcal/mol for F. oxysporum. Additional docking parameters showed that these compounds formed stable complexes with the protein molecules.
Collapse
Affiliation(s)
- Rajni Godara
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-National Research Centre on Seed Spices, Ajmer, Rajasthan, India
| | - Rakesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Inland Fisheries Research Institute, Guwahati, Assam, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - V Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Quiros-Guerrero LM, Marcourt L, Chaiwangrach N, Koval A, Ferreira Queiroz E, David B, Grondin A, Katanaev VL, Wolfender JL. Integration of Wnt-inhibitory activity and structural novelty scoring results to uncover novel bioactive natural products: new Bicyclo[3.3.1]non-3-ene-2,9-diones from the leaves of Hymenocardia punctata. Front Chem 2024; 12:1371982. [PMID: 38638877 PMCID: PMC11024435 DOI: 10.3389/fchem.2024.1371982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
In natural products (NPs) research, methods for the efficient prioritization of natural extracts (NEs) are key for discovering novel bioactive NPs. In this study a biodiverse collection of 1,600 NEs, previously analyzed by UHPLC-HRMS2 metabolite profiling was screened for Wnt pathway regulation. The results of the biological screening drove the selection of a subset of 30 non-toxic NEs with an inhibitory IC50 ≤ 5 μg/mL. To increase the chance of finding structurally novel bioactive NPs, Inventa, a computational tool for automated scoring of NEs based on structural novelty was used to mine the HRMS2 analysis and dereplication results. After this, four out of the 30 bioactive NEs were shortlisted by this approach. The most promising sample was the ethyl acetate extract of the leaves of Hymenocardia punctata (Phyllanthaceae). Further phytochemical investigations of this species resulted in the isolation of three known prenylated flavones (3, 5, 7) and ten novel bicyclo[3.3.1]non-3-ene-2,9-diones (1, 2, 4, 6, 8-13), named Hymenotamayonins. Assessment of the Wnt inhibitory activity of these compounds revealed that two prenylated flavones and three novel bicyclic compounds showed interesting activity without apparent cytotoxicity. This study highlights the potential of combining Inventa's structural novelty scores with biological screening results to effectively discover novel bioactive NPs in large NE collections.
Collapse
Affiliation(s)
- Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Laurence Marcourt
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Nathareen Chaiwangrach
- Centre of Excellence in Cannabis Research, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Bruno David
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Antonio Grondin
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
12
|
Yuan GY, Zhang JM, Xu QD, Zhang HR, Hu C, Zou Y. Biosynthesis of Cosmosporasides Reveals the Assembly Line for Fungal Hybrid Terpenoid Saccharides. Angew Chem Int Ed Engl 2023; 62:e202308887. [PMID: 37647109 DOI: 10.1002/anie.202308887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Fungal hybrid terpenoid saccharides constitute a new and growing family of natural products with significant biomedical and agricultural activities. One representative family is the cosmosporasides, which feature oxidized terpenoid units and saccharide moieties; however, the assembly line of these building blocks has been elusive. Herein, a cos cluster from Fusarium orthoceras was discovered for the synthesis of cosmosporaside C (1) by genome mining. A UbiA family intramembrane prenyltransferase (UbiA-type PT), a multifunctional cytochrome P450, an α,β-hydrolase, an acetyltransferase, a dimethylallyl transferase (DMAT-type PT) and a glycosyltransferase function cooperatively in the assembly of the scaffold of 1 using primary central metabolites. The absolute configuration at C4, C6 and C7 of 1 was also established. Our work clarifies the unexpected functions of UbiA-type and DMAT-type PTs and provides an example for understanding the synthetic logic of hybrid terpenoid saccharides in fungi.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Qing-Dong Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Hua-Ran Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
13
|
Hernández-Rivera JL, Espinoza-Hicks JC, Chacón-Vargas KF, Carrillo-Campos J, Sánchez-Torres LE, Camacho-Dávila AA. Synthesis, characterization and evaluation of prenylated chalcones ethers as promising antileishmanial compounds. Mol Divers 2023; 27:2073-2092. [PMID: 36306047 DOI: 10.1007/s11030-022-10542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022]
Abstract
Drug therapy for leishmaniasis remains a major challenge as currently available drugs have limited efficacy, induce serious side-effects and are not accessible to everyone. Thus, the discovery of affordable drugs is urgently needed. Chalcones present a great potential as bioactive agents due to simple structure and functionalization capacity. The antileishmanial activity of different natural and synthetic chalcones have been reported. Here we report the synthesis of twenty-five novel prenylated chalcones that displayed antiparasitic activity in Leishmania mexicana. All the chalcones were evaluated at 5 µg/mL and eleven compounds exhibited a metabolic inhibition close to or exceeding 50%. Compounds 49, 30 and 55 were the three most active with IC50 values < 10 μM. These chalcones also showed the highest selectivity index (SI) values. Interestingly 49 and 55 possessing a substituent at a meta position in the B ring suggests that the substitution pattern influences antileishmanial activity. Additionally, a tridimensional model of fumarate reductase of L. mexicana was obtained by homology modeling. Docking studies suggest that prenylated chalcones could modulate fumarate reductase activity by binding with good affinity to two binding sites that are critical for the target. In conclusion, the novel prenylated chalcones could be considered as promising antileishmanial agents.
Collapse
Affiliation(s)
- Jessica Lizbeth Hernández-Rivera
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II, 31125, Chihuahua, Chih., Mexico
| | - José C Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II, 31125, Chihuahua, Chih., Mexico
| | - Karla F Chacón-Vargas
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II, 31125, Chihuahua, Chih., Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340, Mexico City, Mexico
| | - Javier Carrillo-Campos
- Departamento de Investigación Científica, Universidad Tecnológica de Parras de la Fuente, Calle 20 de Noviembre #100, Colonia José G. Madero, CP 27989, Parras de la Fuente, Coah., Mexico
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340, Mexico City, Mexico.
| | - Alejandro A Camacho-Dávila
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II, 31125, Chihuahua, Chih., Mexico.
| |
Collapse
|
14
|
Chen Y, Zhao Z, Guo S, Li Y, Yin H, Tian L, Cheng G, Li Y. Red Rice Seed Coat Targeting SPHK2 Ameliorated Alcoholic Liver Disease via Restored Intestinal Barrier and Improved Gut Microbiota in Mice. Nutrients 2023; 15:4176. [PMID: 37836459 PMCID: PMC10574211 DOI: 10.3390/nu15194176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic liver disease (ALD), leading to the most common chronic liver diseases, is increasingly emerging as a global health problem, which is intensifying the need to develop novel treatments. Herein, our work aimed to estimate the therapeutic efficacy of red rice (Oryza sativa L.) seed coat on ALD and further uncover the underlying mechanisms. Red rice seed coat extract (RRA) was obtained with citric acid-ethanol and analyzed via a widely targeted components approach. The potential targets of RRA to ALD were predicted by bioinformatics analysis. Drunken behavior, histopathological examination, liver function, gut microbiota composition and intestinal barrier integrity were used to assess the effects of RRA (RRAH, 600 mg/kg·body weight; RRAL, 200 mg/kg·body weight) on ALD. Oxidative stress, inflammation, apoptosis associated factors and signaling pathways were measured by corresponding kits, Western blot and immunofluorescence staining. In ALD model mice, RRA treatment increased sphingosine kinase 2 (SPHK2) and sphingosine-1-phosphate (S1P) levels, improved gut microbiota composition, restored intestinal barrier, decreased lipopolysaccharide (LPS) levels in plasma and the liver, cut down Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-κB) pathways, alleviated liver pathological injury and oxidative stress, attenuated inflammation and apoptosis and enhanced liver function. To sum up, RRA targeting SPHK2 can ameliorate ALD by repairing intestinal barrier damage and reducing liver LPS level via the TLR4/NF-κB pathway and intestinal microbiota, revealing that red rice seed coat holds potential as a functional food for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Yuxu Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiye Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shancheng Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaxian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haiaolong Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- School of Basic Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Zhang L, Yan Y, Zhu J, Xia X, Yuan G, Li S, Deng B, Luo X. Quinone Pool, a Key Target of Plant Flavonoids Inhibiting Gram-Positive Bacteria. Molecules 2023; 28:4972. [PMID: 37446632 DOI: 10.3390/molecules28134972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Plant flavonoids have attracted increasing attention as new antimicrobial agents or adjuvants. In our previous work, it was confirmed that the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, which likely involves the inhibition of the respiratory chain. Inspired by the similar structural and antioxidant characters of plant flavonoids to hydro-menaquinone (MKH2), we deduced that the quinone pool is probably a key target of plant flavonoids inhibiting Gram-positive bacteria. To verify this, twelve plant flavonoids with six structural subtypes were preliminarily selected, and their minimum inhibitory concentrations (MICs) against Gram-positive bacteria were predicted from the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria. The results showed they have different antimicrobial activities. After their MICs against Staphylococcus aureus were determined using the broth microdilution method, nine compounds with MICs ranging from 2 to 4096 μg/mL or more than 1024 μg/mL were eventually selected, and then their MICs against S. aureus were determined interfered with different concentrations of menaquinone-4 (MK-4) and the MKs extracted from S. aureus. The results showed that the greater the antibacterial activities of plant flavonoids were, the more greatly their antibacterial activities decreased along with the increase in the interfering concentrations of MK-4 (from 2 to 256 μg/mL) and the MK extract (from 4 to 512 μg/mL), while those with the MICs equal to or more than 512 μg/mL decreased a little or remained unchanged. In particular, under the interference of MK-4 (256 μg/mL) and the MK extract (512 μg/mL), the MICs of α-mangostin, a compound with the greatest inhibitory activity to S. aureus out of these twelve plant flavonoids, increased by 16 times and 8 to 16 times, respectively. Based on the above, it was proposed that the quinone pool is a key target of plant flavonoids inhibiting Gram-positive bacteria, and which likely involves multiple mechanisms including some enzyme and non-enzyme inhibitions.
Collapse
Affiliation(s)
- Li Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Yan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Zhu
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shimin Li
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Beibei Deng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinrong Luo
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Li P, Long J, Bai G, Zhang J, Cha Y, Gao W, Luan X, Wu L, Mu M, Kennelly EJ, Gao P, Liu Y, Sun L, Yang Q, Wang G, Yu Z, He J, Yang Y, Yan J. Metabolomics and Transcriptomics Reveal that Diarylheptanoids Vary in Amomum tsao-ko Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7020-7031. [PMID: 37126773 DOI: 10.1021/acs.jafc.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amomum tsao-ko is an important spice and medicinal plant that has received extensive attention in recent years for its high content of bioactive constituents with the potential for food additives and drug development. Diarylheptanoids are major and characteristic compounds in A. tsao-ko; however, the biochemical and molecular foundation of diarylheptanoids in fruit is unknown. We performed comparative metabolomics and transcriptomics studies in the ripening stages of A. tsao-ko fruit. The chemical constituents of fruit vary in different harvest periods, and the diarylheptanoids have a trend to decrease or increase with fruit development. GO enrichment analysis revealed that plant hormone signaling pathways including the ethylene-activated signaling pathway, salicylic acid, jasmonic acid, abscisic acid, and response to hydrogen peroxide were associated with fruit ripening. The biosynthetic pathways including phenylpropanoid, flavonoids, and diarylheptanoids biosynthesis were displayed in high enrichment levels in ripening fruit. The molecular networking and phytochemistry investigation of A. tsao-ko fruit has isolated and identified 10 diarylheptanoids including three new compounds. The candidate genes related to diarylheptanoids were obtained by coexpression network analysis and phylogenetic analysis. Two key genes have been verified to biosynthesize linear diarylheptanoids. This integrative approach provides gene regulation and networking associated with the biosynthesis of characteristic diarylheptanoids, which can be used to improve the quality of A. tsao-ko as food and medicine.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junru Long
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Genxiang Bai
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yunsheng Cha
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Wenjie Gao
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinbo Luan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lianzhang Wu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Mingxing Mu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and the Graduate Center, City University of New York, Bronx, New York 10468, United States
| | - Penghui Gao
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Yuanyuan Liu
- Key lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
| | - Lirong Sun
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Quan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhijian Yu
- Nujiang State Meteorological Bureau, Lushui, Yunnan 673199, China
| | - Juncai He
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Yi Yang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Ran Q, Tao L, Zhou X, Li SM, Yuan CM, Yang S, Zhou K. Geranylation of Chalcones by a Fungal Aromatic Prenyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4675-4682. [PMID: 36893066 DOI: 10.1021/acs.jafc.2c08743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Geranylated chalcones mainly exist in plants, and many of them have attracted attention because of their diverse pharmacological and biological activities. Herein, we report geranylation of eight chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT. Ten new mono-geranylated enzyme products (1G-5G, 6G1, 6G2, 7G, 8G1, and 8G2) were obtained. Most of the products are C-geranylated products with prenyl moieties at ring B. In comparison, plant aromatic prenyltransferases usually catalyze the geranylation at ring A. Therefore, AtaPT can be used complementarily for chalcone geranylation to increase the structural diversity of small molecules. In addition, seven compounds (1G, 3G, 4G, 6G1, 7G, 8G1, and 8G2) exhibited a potential inhibitory effect on α-glucosidase with the IC50 values ranging from 45.59 ± 3.48 to 82.85 ± 2.15 μg/mL. Among them, compound 7G (45.59 ± 3.48 μg/mL) was the most potential α-glucosidase inhibitor, which is about seven times stronger than the positive control acarbose (IC50 = 346.63 ± 15.65 μg/mL).
Collapse
Affiliation(s)
- Qianqian Ran
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linlan Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Xiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Song Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Sun H, Chen D, Xin W, Ren L, LI Q, Han X. Targeting ferroptosis as a promising therapeutic strategy to treat cardiomyopathy. Front Pharmacol 2023; 14:1146651. [PMID: 37138856 PMCID: PMC10150641 DOI: 10.3389/fphar.2023.1146651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Cardiomyopathies are a clinically heterogeneous group of cardiac diseases characterized by heart muscle damage, resulting in myocardium disorders, diminished cardiac function, heart failure, and even sudden cardiac death. The molecular mechanisms underlying the damage to cardiomyocytes remain unclear. Emerging studies have demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by iron dyshomeostasis and lipid peroxidation, contributes to the development of ischemic cardiomyopathy, diabetic cardiomyopathy, doxorubicin-induced cardiomyopathy, and septic cardiomyopathy. Numerous compounds have exerted potential therapeutic effects on cardiomyopathies by inhibiting ferroptosis. In this review, we summarize the core mechanism by which ferroptosis leads to the development of these cardiomyopathies. We emphasize the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial effects in treating cardiomyopathies. This review suggests that inhibiting ferroptosis pharmacologically may be a potential therapeutic strategy for cardiomyopathy treatment.
Collapse
Affiliation(s)
- Huiyan Sun
- Health Science Center, Chifeng University, Chifeng, China
- Key Laboratory of Human Genetic Diseases in Inner Mongolia, Chifeng, China
| | - Dandan Chen
- Department of Endocrinology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wenjing Xin
- Chifeng Clinical Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Lixue Ren
- Chifeng Clinical Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Qiang LI
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
- *Correspondence: Qiang LI, ; Xuchen Han,
| | - Xuchen Han
- Department of Cardiology, The Affiliated Hospital of Chifeng University, Chifeng, China
- *Correspondence: Qiang LI, ; Xuchen Han,
| |
Collapse
|
19
|
Design, Synthesis, anticancer evaluation and in silico studies of 2,4,6-trimethoxychalcone derivatives. Saudi Pharm J 2023; 31:65-84. [PMID: 36685294 PMCID: PMC9845116 DOI: 10.1016/j.jsps.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chalcone, a common chemical scaffold of many naturally occurring compounds, has been widely used as an effective template for drug discovery due to its broad biological activities. In this study, a series of chalcone derivatives were designed and synthesized based on the hybridization of 1-(2,4,6-trimethoxyphenyl)butan-1-one with chalcone. Interestingly, most of the target compounds exhibited inhibitory effect of tumor cells in vitro. Especially, (E)-3-(5-bromopyridin-2-yl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (B3) revealed over 10-fold potency than 5-fluorocrail against the Hela and MCF-7 cells with IC50 values of 3.204 and 3.849 μM respectively. Moreover, B3 displayed low toxicity on normal cells. Further experiments indicated that B3 effectively inhibited the proliferation and migration of tumor cells, and promoted their apoptosis. The calculation and prediction of ADME showed that the target compounds may have good pharmacokinetic properties and oral bioavailability. Reverse molecular docking suggested that the possible target of B3 is CDK1. Taken together, these results suggested that B3 appears to be a promising candidate that merits further attention in the development of anticancer drugs.
Collapse
|
20
|
Yuan G, Xia X, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15101190. [PMID: 36297302 PMCID: PMC9611191 DOI: 10.3390/ph15101190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human health, and new antimicrobial agents are desperately needed. Plant flavonoids are increasingly being paid attention to for their antibacterial activities, for the enhancing of the antibacterial activity of antimicrobials, and for the reversing of AMR. To obtain more scientific and reliable equations, another two regression equations, between the minimum inhibitory concentration (MIC) (y) and the lipophilicity parameter ACD/LogP or LogD7.40 (x), were established once again, based on the reported data. Using statistical methods, the best one of the four regression equations, including the two previously reported, with regard to the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria, is y = −0.1285 x6 + 0.7944 x5 + 51.785 x4 − 947.64 x3 + 6638.7 x2 − 21,273 x + 26,087; here, x is the LogP value. From this equation, the MICs of most plant flavonoids to Gram-positive bacteria can be calculated, and the minimum MIC was predicted as approximately 0.9644 μM and was probably from 0.24 to 0.96 μM. This more reliable equation further proved that the lipophilicity is a key factor of plant flavonoids against Gram-positive bacteria; this was further confirmed by the more intuitive evidence subsequently provided. Based on the antibacterial mechanism proposed in our previous work, these also confirmed the antibacterial mechanism: the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, and this involves the damage of the phospholipid bilayers. The above will greatly accelerate the discovery and application of plant flavonoids with remarkable antibacterial activity and the thorough research on their antimicrobial mechanism.
Collapse
Affiliation(s)
- Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: ; Tel.: +86-0791-83813459
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Guan
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Houqin Yi
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shan Lai
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yifei Sun
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Seng Cao
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
21
|
Mittal A, Vashistha VK, Das DK. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radic Res 2022; 56:378-397. [PMID: 36063087 DOI: 10.1080/10715762.2022.2120396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this review, we have reported the antioxidant mechanisms and structure-antioxidant activity relationship of several chalcone derivatives, investigated in the recent past, based on the density functional theory (DFT) calculations, considering free radical scavenging and metal chelation ability. The antioxidant mechanisms include hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), single electron transfer followed by proton transfer (SET-PT), sequential proton loss hydrogen atom transfer (SPLHAT), sequential double proton loss electron transfer (SdPLET), sequential triple proton loss double electron transfer (StPLdET), sequential triple proton loss triple electron transfer (StPLtET), double HAT, double SPLET, double SET-PT, triple HAT, triple SET-PT, triple SPLET, proton-coupled electron transfer (PCET), single electron transfer (SET), radical adduct formation (RAF) and radical adduct formation followed by hydrogen atom abstraction (RAF-HAA). Furthermore, solvent effects have also been considered using different solvation models. The feasibility of scavenging different reactive oxygen and nitrogen species (ROS/RNS) has been discussed considering various factors such as the number and position of hydroxyl as well as methoxy groups present in the antioxidant molecule, stability of the species formed after scavenging reactive species, nature of substituent, steric effects, etc. This review opens new perspectives for designing new compounds with better antioxidant potential.
Collapse
Affiliation(s)
- Ankit Mittal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Vinod Kumar Vashistha
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Dipak Kumar Das
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| |
Collapse
|
22
|
Zhai J, Sun B, Sang F. Progress of isolation, chemical synthesis and biological activities of natural chalcones bearing 2-hydroxy-3-methyl-3-butenyl group. Front Chem 2022; 10:964089. [PMID: 36046729 PMCID: PMC9420912 DOI: 10.3389/fchem.2022.964089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chalcones have a three-carbon α,β-unsaturated carbonyl system composed of two phenolic rings. Many chalcones have shown broad spectrum of biological activities with clinical potentials against various diseases. They are usually abundant in seeds, fruit skin, bark and flowers of most edible plants. Among them, chalcones bearing 2-hydroxy-3-methyl-3-butenyl (HMB) group have been reported several times in the past few decades due to their novel scaffolds and numerous interesting biological activities. In this paper, we reviewed the isolation of twelve natural chalcones and a natural chalcone-type compound bearing 2-hydroxy-3-methyl-3-butenyl group discovered so far, and reviewed their synthesis methods and biological activities reported in the literature. We anticipate that this review will inspire further research of natural chalcones.
Collapse
Affiliation(s)
- Jiadai Zhai
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Bingxia Sun
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Feng Sang
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Feng Sang,
| |
Collapse
|
23
|
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383:132531. [PMID: 35413752 DOI: 10.1016/j.foodchem.2022.132531] [Citation(s) in RCA: 639] [Impact Index Per Article: 213.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Flavonoids are a group of natural polyphenol substances abundant in vegetables, fruits, grains, and tea. As plant secondary metabolites, flavonoids play essential roles in many biological processes and responses to environmental factors in plants. Flavonoids are common in human diets and have antioxidant effects as well as other bioactivities (e.g., antimicrobial and anti-inflammatory properties), which reduce the risk of disease. Flavonoid bioactivity depends on structural substitution patterns in their C6-C3-C6 rings. However, reviews of plant flavonoid distribution and biosynthesis, as well as the health benefits of its bioactivity, remain scarce. Therefore, in the present review, we systematically summarize recent progress in the research of plant flavonoids, focusing on their biosynthesis (pathway and transcription factors) and bioactive mechanisms based on epidemic evidence, in vitro and in vivo research, and bioavailability in the human body. We also discuss future opportunities in flavonoid research, including biotechnology, therapeutic phytoproducts, and dietary flavonoids.
Collapse
Affiliation(s)
- Nan Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tongfei Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Urbonavičius A, Fortunato G, Ambrazaitytė E, Plytninkienė E, Bieliauskas A, Milišiūnaitė V, Luisi R, Arbačiauskienė E, Krikštolaitytė S, Šačkus A. Synthesis and Characterization of Novel Heterocyclic Chalcones from 1-Phenyl-1 H-pyrazol-3-ol. Molecules 2022; 27:3752. [PMID: 35744875 PMCID: PMC9227189 DOI: 10.3390/molecules27123752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
An efficient synthetic route to construct diverse pyrazole-based chalcones from 1-phenyl-1H-pyrazol-3-ols bearing a formyl or acetyl group on the C4 position of pyrazole ring, employing a base-catalysed Claisen-Schmidt condensation reaction, is described. Isomeric chalcones were further reacted with N-hydroxy-4-toluenesulfonamide and regioselective formation of 3,5-disubstituted 1,2-oxazoles was established. The novel pyrazole-chalcones and 1,2-oxazoles were characterized by an in-depth analysis of NMR spectral data, which were obtained through a combination of standard and advanced NMR spectroscopy techniques.
Collapse
Affiliation(s)
- Arminas Urbonavičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Graziana Fortunato
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Emilija Ambrazaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
| | - Elena Plytninkienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Vaida Milišiūnaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Renzo Luisi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| |
Collapse
|
25
|
Xing N, Meng X, Wang S. Isobavachalcone: A comprehensive review of its plant sources, pharmacokinetics, toxicity, pharmacological activities and related molecular mechanisms. Phytother Res 2022; 36:3120-3142. [PMID: 35684981 DOI: 10.1002/ptr.7520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Isobavachalcone (IBC), also known as isobapsoralcone, is a natural flavonoid widely derived from many medicinal plants, including Fabaceae, Moraceae, and so forth. IBC has been paid more and more attention by researchers in recent years due to its pharmacological activity in many diseases. This review aims to describe in detail the plant sources, pharmacokinetics, toxicity, pharmacological activities, and molecular mechanisms of IBC on various diseases. We found that IBC can be obtained not only by extraction but also by chemical synthesis. Pharmacokinetic studies have shown that IBC has low bioavailability, but can penetrate the blood-brain barrier and is widely distributed in the brain. Its pharmacological activities mainly include anticancer, antibacterial, anti-inflammatory, antiviral, neuroprotective, bone protection, and other activities. In particular, IBC shows strong anti-tumor and anti-inflammatory therapeutic potential due to its anti-cancer and anti-inflammatory activities. However, due to its hepatotoxicity, there may be more drug interactions. Therefore, more and more in-depth studies are needed for its clinical application. Mechanically, IBC can induce the production of reactive oxygen species (ROS), inhibit AKT, ERK, and Wnt pathways, and promote apoptosis of cancer cells through mitochondrial or endoplasmic reticulum pathways. IBC can inhibit the NF-κB pathway and the production of multiple inflammatory mediators by activating NRF2/HO-1 pathway, thus producing anti-inflammatory effects. Moreover, we discussed the limitations of current research on IBC and put forward some new perspectives and challenges, which provide a strong basis for clinical application and new drug development of IBC in the future.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Maciejewska N, Olszewski M, Jurasz J, Serocki M, Dzierzynska M, Cekala K, Wieczerzak E, Baginski M. Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer. Sci Rep 2022; 12:3703. [PMID: 35260633 PMCID: PMC8904451 DOI: 10.1038/s41598-022-07691-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is considered to account for approximately one-fifth of all malignant tumor-related deaths worldwide and is therefore one of the most lethal malignancies. Pyrazole scaffold possesses a wide range of biological and pharmacological activities, which play important roles in medicinal chemistry. The present study reports the synthesis and in vitro biological characterization of nine pyrazoles derived from chalcones as potential anticancer agents for non-small cell lung cancer A-549, H226, and H460 cell lines. Most of the compounds efficiently inhibited the growth of all the tested cancer cell lines at micromolar concentrations. One of the most active compounds (PCH-1) was further evaluated for its effect on cell cycle distribution, apoptosis, migration, epithelial–mesenchymal transition, and oxidative stress. Furthermore, studies on the mechanism of action revealed that PCH-1 disrupts microtubule assembly, leading to cancer cell death. Molecular modeling studies confirmed the potent interaction of PCH-1 with the vinblastine binding site on tubulin. Overall, this study provides novel opportunities to identify anticancer agents in the pyrazole series.
Collapse
Affiliation(s)
- Natalia Maciejewska
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jakub Jurasz
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Marcin Serocki
- Ryvu Therapeutics, Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Maria Dzierzynska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Cekala
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Wieczerzak
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Maciej Baginski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
27
|
Li Y, Zhou X, Li SM, Zhang Y, Yuan CM, He S, Yang Z, Yang S, Zhou K. Increasing Structural Diversity of Prenylated Chalcones by Two Fungal Prenyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1610-1617. [PMID: 35089022 DOI: 10.1021/acs.jafc.1c07786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prenylated chalcones are found mainly in plants and exhibit diverse biological and pharmacological activities. Some of these compounds are components of food and dietary supplements with significant health benefits. In plants, they are derived from chalcones by prenylation with membrane-bound prenyltransferases. In this study, we demonstrate prenylations of 10 chalcones by two fungal prenyltransferases (AtaPT/AnaPT) in the presence of dimethylallyl diphosphate. Eleven mono- (1a-10a and 9b) and four diprenylated products (8b, 9c, 10b, and 10c) were obtained. Among them, 12 have new structures (1a, 2a, 4a-6a, 8a, 8b, 9b, 9c, 10a, 10b, and 10c). Most of the obtained prenylated chalcones are products of AnaPT and carry prenyl moieties at ring B. Our study provides an excellent example for increasing structural diversity of plant metabolites with microbial enzymes.
Collapse
Affiliation(s)
- Yunyun Li
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Xiang Zhou
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Yuping Zhang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gaohai Road, Guiyang 550014, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Song Yang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| |
Collapse
|
28
|
Li P, Bai G, He J, Liu B, Long J, Morcol T, Peng W, Quan F, Luan X, Wang Z, Zhao Y, Cha Y, Liu Y, He J, Wu L, Yang Y, Kennelly EJ, Yang Q, Sun L, Chen Z, Qian W, Hu J, Yan J. Chromosome-level genome assembly of Amomum tsao-ko provides insights into the biosynthesis of flavor compounds. HORTICULTURE RESEARCH 2022; 9:uhac211. [PMID: 36479578 PMCID: PMC9719038 DOI: 10.1093/hr/uhac211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/14/2022] [Indexed: 05/19/2023]
Abstract
Amomum tsao-ko is an economically important spice plant in the ginger family (Zingiberaceae). The dried ripe fruit has been widely used as spice and medicine in Southeast Asia due to its distinct flavor metabolites. However, there is little genomic information available to understand the biosynthesis of its characteristic flavor compounds. Here, we present a high-quality chromosome-level genome of A. tsao-ko with a total length of 2.08 Gb assembled into 24 chromosomes. Potential relationships between genetic variation and chemical constituents were analyzed by a genome-wide association study of 119 representative A. tsao-ko specimens in China. Metabolome and transcriptome correlation analysis of different plant organs and fruit developmental stages revealed the proposed biosynthesis of the characteristic bicyclononane aldehydes and aromatic metabolites in A. tsao-ko fruit. Transcription factors of 20 families may be involved in the regulatory network of terpenoids. This study provides genomic and chemical insights into the biosynthesis of characteristic aroma and flavor constituents, which can be used to improve the quality of A. tsao-ko as food and medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Taylan Morcol
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, New York, 10468, USA
| | - Weiyao Peng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Quan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xinbo Luan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenzhen Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, New York, 10468, USA
| | - Yunsheng Cha
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Yuanyuan Liu
- Key lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs ,Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Juncai He
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Lianzhang Wu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Yi Yang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, New York, 10468, USA
| | - Quan Yang
- Corresponding authors. E-mail: , , , ,
| | | | - Zepeng Chen
- Guangdong Provincial Tobacco Shaoguan Co. Ltd, Shaoguan, Guangdong, 512000, China
| | | | - Jian Hu
- Corresponding authors. E-mail: , , , ,
| | - Jian Yan
- Corresponding authors. E-mail: , , , ,
| |
Collapse
|