1
|
Rosales-Martínez C, Assis M, Castillo-Blas C, Abánades Lázaro I. Tuning the electronic properties of Zr UiO-66 through defect-functionalised multivariate modulation. Chem Commun (Camb) 2024; 60:8280-8283. [PMID: 39016000 DOI: 10.1039/d4cc02581d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The multivariate modulation of Metal-Organic Frameworks is presented as a valuable tool to introduce multiple functional units into UiO-66 while increasing its porosity. This manuscript encloses a comprehensive study using p-functionalised benzoate -NO2, -SO3 and -SH modulators, rationalizing the defects introduced and their impact on properties.
Collapse
Affiliation(s)
- Carmen Rosales-Martínez
- Instituto de Ciencia Molecular, Universitat de Valencia, Calle catedrático José Beltrán Martínez, 46980, Paterna, Valencia, Spain.
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Universidad Catolica de Valencia San Vicente Mártir (UCV), Spain
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, 27 Charles Babbage road, University of Cambridge, CB30FS, Cambridge, UK
| | - Isabel Abánades Lázaro
- Instituto de Ciencia Molecular, Universitat de Valencia, Calle catedrático José Beltrán Martínez, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
3
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
4
|
Castillo-Blas C, Chester AM, Keen DA, Bennett TD. Thermally activated structural phase transitions and processes in metal-organic frameworks. Chem Soc Rev 2024; 53:3606-3629. [PMID: 38426588 DOI: 10.1039/d3cs01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0DE, Didcot, Oxfordshire, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| |
Collapse
|
5
|
Anker AS, Friis-Jensen U, Johansen FL, Billinge SJL, Jensen KMØ. ClusterFinder: a fast tool to find cluster structures from pair distribution function data. Acta Crystallogr A Found Adv 2024; 80:213-220. [PMID: 38420993 PMCID: PMC10913672 DOI: 10.1107/s2053273324001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105 candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal-oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.
Collapse
Affiliation(s)
- Andy S. Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Ulrik Friis-Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik L. Johansen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Simon J. L Billinge
- Department of Applied Physics and Applied Mathematics Science, Columbia University, New York, NY 10027, USA
| | - Kirsten M. Ø. Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Guo L, Wu S, Zhou Z, Ma Y. Structural analysis of nanocrystals by pair distribution function combining electron diffraction with crystal tilting. IUCRJ 2024; 11:202-209. [PMID: 38362918 PMCID: PMC10916296 DOI: 10.1107/s2052252524001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
As an important characterization method, pair distribution function (PDF) has been extensively used in structural analysis of nanomaterials, providing key insights into the degree of crystallinity, atomic structure, local disorder etc. The collection of scattering signals with good statistics is necessary for a reliable structural analysis. However, current conventional electron diffraction experiments using PDF (ePDF) are limited in their ability to acquire continuous diffraction rings for large nanoparticles. Herein, a new method - tilt-ePDF - is proposed to improve the data quality and compatibility of ePDF by a combination of electron diffraction and specimen tilting. In the present work, a tilt-series of electron diffraction patterns was collected from gold nanoparticles with three different sizes and a standard sample polycrystalline aluminium film for ePDF analysis. The results show that tilt-ePDF can not only enhance the continuity of diffraction rings, but can also improve the signal-to-noise ratio in the high scattering angle range. As a result, compared with conventional ePDF data, tilt-ePDF data provide structure parameters with a better accuracy and lower residual factors in the refinement against the crystal structure. This method provides a new way of utilizing ePDF to obtain accurate local structure information from nanoparticles.
Collapse
Affiliation(s)
- Linshuo Guo
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Shitao Wu
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
7
|
Jabbour R, Ashling CW, Robinson TC, Khan AH, Wisser D, Berruyer P, Ghosh AC, Ranscht A, Keen DA, Brunner E, Canivet J, Bennett TD, Mellot-Draznieks C, Lesage A, Wisser FM. Unravelling the Molecular Structure and Confining Environment of an Organometallic Catalyst Heterogenized within Amorphous Porous Polymers. Angew Chem Int Ed Engl 2023; 62:e202310878. [PMID: 37647152 DOI: 10.1002/anie.202310878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic-level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non-crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis, 129 Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh-based organometallic complex incorporated inside the cavity of amorphous bipyridine-based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs.
Collapse
Affiliation(s)
- Ribal Jabbour
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Christopher W Ashling
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Thomas C Robinson
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Arafat Hossain Khan
- Chair of Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Pierrick Berruyer
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Ashta C Ghosh
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Alisa Ranscht
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France, PSL Research University, CNRS Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Florian M Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
8
|
Kadota K, Chen T, Gormley EL, Hendon CH, Dincă M, Brozek CK. Electrically conductive [Fe 4S 4]-based organometallic polymers. Chem Sci 2023; 14:11410-11416. [PMID: 37886097 PMCID: PMC10599474 DOI: 10.1039/d3sc02195e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Tailoring the molecular components of hybrid organic-inorganic materials enables precise control over their electronic properties. Designing electrically conductive coordination materials, e.g. metal-organic frameworks (MOFs), has relied on single-metal nodes because the metal-oxo clusters present in the vast majority of MOFs are not suitable for electrical conduction due to their localized electron orbitals. Therefore, the development of metal-cluster nodes with delocalized bonding would greatly expand the structural and electrochemical tunability of conductive materials. Whereas the cuboidal [Fe4S4] cluster is a ubiquitous cofactor for electron transport in biological systems, few electrically conductive artificial materials employ the [Fe4S4] cluster as a building unit due to the lack of suitable bridging linkers. In this work, we bridge the [Fe4S4] clusters with ditopic N-heterocyclic carbene (NHC) linkers through charge-delocalized Fe-C bonds that enhance electronic communication between the clusters. [Fe4S4Cl2(ditopic NHC)] exhibits a high electrical conductivity of 1 mS cm-1 at 25 °C, surpassing the conductivity of related but less covalent materials. These results highlight that synthetic control over individual bonds is critical to the design of long-range behavior in semiconductors.
Collapse
Affiliation(s)
- Kentaro Kadota
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Eoghan L Gormley
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
9
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
10
|
Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 2023; 7:273-286. [PMID: 37117419 DOI: 10.1038/s41570-023-00474-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.
Collapse
|
11
|
Heo J, Kim D, Choi H, Kim S, Chun H, Reboul CF, Van CTS, Elmlund D, Choi S, Kim K, Park Y, Elmlund H, Han B, Park J. Method for 3D atomic structure determination of multi-element nanoparticles with graphene liquid-cell TEM. Sci Rep 2023; 13:1814. [PMID: 36725868 PMCID: PMC9892495 DOI: 10.1038/s41598-023-28492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase.
Collapse
Grants
- IBS-R006-D1 Institute for Basic Science
- IBS-R006-D1 Institute for Basic Science
- IBS-R006-D1 Institute for Basic Science
- NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 National Research Foundation of Korea
- NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 National Research Foundation of Korea
- NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 National Research Foundation of Korea
- NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 National Research Foundation of Korea
- 2013M3A6B1078882 National Research Foundation of Korea
- 2013M3A6B1078882 National Research Foundation of Korea
- NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 National Research Foundation of Korea
- SRFC-MA2002-03 Samsung Research Funding & Incubation Center
- KSC-2020-CRE-0310 National Supercomputing Center, Korea Institute of Science and Technology Information
- Intramural Research Program of the NIH
- Samsung Display Co. Ltd.
- Samsung Research Funding & Incubation Center
Collapse
Affiliation(s)
- Junyoung Heo
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Dongjun Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyesung Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Cyril F Reboul
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Cong T S Van
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Dominika Elmlund
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Soonmi Choi
- Samsung Display Co. LTD., Yongin-si, Gyeonggi-do, 17113, Republic of Korea
| | - Kihyun Kim
- Samsung Display Co. LTD., Yongin-si, Gyeonggi-do, 17113, Republic of Korea
| | - Younggil Park
- Samsung Display Co. LTD., Yongin-si, Gyeonggi-do, 17113, Republic of Korea
| | - Hans Elmlund
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jungwon Park
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Seoul, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
12
|
Bechis I, Sapnik AF, Tarzia A, Wolpert EH, Addicoat MA, Keen DA, Bennett TD, Jelfs KE. Modeling the Effect of Defects and Disorder in Amorphous Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:9042-9054. [PMID: 36313398 PMCID: PMC9609304 DOI: 10.1021/acs.chemmater.2c01528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.
Collapse
Affiliation(s)
- Irene Bechis
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Andrew Tarzia
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Emma H. Wolpert
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - David A. Keen
- ISIS
Neutron and Muon Facility, Rutherford Appleton
Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| |
Collapse
|
13
|
Sapnik AF, Bechis I, Bumstead AM, Johnson T, Chater PA, Keen DA, Jelfs KE, Bennett TD. Multivariate analysis of disorder in metal-organic frameworks. Nat Commun 2022; 13:2173. [PMID: 35449202 PMCID: PMC9023516 DOI: 10.1038/s41467-022-29849-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry. Structural disorder in materials is challenging to characterise. Here, the authors use multivariate analysis of atomic pair distribution functions to study structural collapse and melting of metal–organic frameworks, revealing powerful mechanistic and kinetic insight.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alice M Bumstead
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
14
|
Zhang X, Maddock J, Nenoff TM, Denecke MA, Yang S, Schröder M. Adsorption of iodine in metal-organic framework materials. Chem Soc Rev 2022; 51:3243-3262. [PMID: 35363235 PMCID: PMC9328120 DOI: 10.1039/d0cs01192d] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - John Maddock
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Tina M Nenoff
- Materials, Physics and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Melissa A Denecke
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Division of Physical and Chemical Science, Department of Nuclear Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Sihai Yang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Martin Schröder
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
15
|
Terban MW, Billinge SJL. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem Rev 2022; 122:1208-1272. [PMID: 34788012 PMCID: PMC8759070 DOI: 10.1021/acs.chemrev.1c00237] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/16/2022]
Abstract
This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.
Collapse
Affiliation(s)
- Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
16
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
17
|
Firth FCN, Gaultois MW, Wu Y, Stratford JM, Keeble DS, Grey CP, Cliffe MJ. Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis. J Am Chem Soc 2021; 143:19668-19683. [PMID: 34784470 DOI: 10.1021/jacs.1c06990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.
Collapse
Affiliation(s)
- Francesca C N Firth
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michael W Gaultois
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yue Wu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Joshua M Stratford
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dean S Keeble
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
18
|
Romero-Muñiz I, Albacete P, Platero-Prats AE, Zamora F. Layered Copper-Metallated Covalent Organic Frameworks for Huisgen Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54106-54112. [PMID: 34730927 PMCID: PMC8659373 DOI: 10.1021/acsami.1c18295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are porous materials formed through condensation reactions of organic molecules via the formation of dynamic covalent bonds. Among COFs, those based on imine and β-ketoenamine linkages offer an excellent platform for binding metallic species such as copper to design efficient heterogeneous catalysts. In this work, imine- and β-ketoenamine-based COF materials were modified with catalytic copper sites following a metallation method, which favored the formation of binding amine defects. The obtained copper-metallated COF materials were tested as heterogeneous catalysts for 1,3-dipolar cycloaddition reactions, resulting in high yields and recyclability.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Pablo Albacete
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana E. Platero-Prats
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Félix Zamora
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Instituto
de Investigación Avanzada en Ciencias Químicas de la
UAM, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
19
|
Arroyos G, da Silva CM, Theodoroviez LB, Campanella JEM, Frem RCG. Insights on Luminescent Micro- and Nanospheres of Infinite Coordination Polymers. Chemistry 2021; 28:e202103104. [PMID: 34582106 DOI: 10.1002/chem.202103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Coordination polymers have been extensively studied in recent years. Some of these materials can exhibit several properties such as permanent porosity, high surface area, thermostability and light emission, as well as open sites for chemical functionalization. Concerning the fact that this kind of compounds are usually solids, the size and morphology of the particles are important parameters when an application is desired. Inside this context, there is a subclass of coordination polymers, named infinite coordination polymers (ICPs), which auto-organize as micro- or nanoparticles with low crystallinity. Specifically, the particles exhibiting spherical shapes and reduced sizes can be better dispersed, enter cells much easier than bulk crystals and be converted to inorganic materials by topotactic transformation. Luminescent ICPs, in particular, can find applications in several areas, such as sensing probes, light-emitting devices and bioimaging. In this review, we present the state-of-the-art of ICP-based spherical particles, including the growth mechanisms, some applications for luminescent ICPs and the challenges to overcome in future commercial usage of these materials.
Collapse
Affiliation(s)
- Guilherme Arroyos
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Caroline M da Silva
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Lucas B Theodoroviez
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Jonatas E M Campanella
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Regina C G Frem
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| |
Collapse
|
20
|
Freund R, Canossa S, Cohen SM, Yan W, Deng H, Guillerm V, Eddaoudi M, Madden DG, Fairen‐Jimenez D, Lyu H, Macreadie LK, Ji Z, Zhang Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks CS. 25 Jahre retikuläre Chemie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ralph Freund
- Lehrstuhl für Festkörperchemie Universität Augsburg Deutschland
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego USA
| | - Wei Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabien
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabien
| | - David G. Madden
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Großbritannien
| | - David Fairen‐Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Großbritannien
| | - Hao Lyu
- Department of Chemistry University of California, Berkeley USA
| | | | - Zhe Ji
- Department of Chemistry Stanford University Stanford USA
| | - Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Frederik Haase
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Orysia Zaremba
- Department of Chemistry University of California, Berkeley USA
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
| | - Jacopo Andreo
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| | - Christian S. Diercks
- Department of Chemistry The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
21
|
Freund R, Canossa S, Cohen SM, Yan W, Deng H, Guillerm V, Eddaoudi M, Madden DG, Fairen‐Jimenez D, Lyu H, Macreadie LK, Ji Z, Zhang Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks CS. 25 Years of Reticular Chemistry. Angew Chem Int Ed Engl 2021; 60:23946-23974. [DOI: 10.1002/anie.202101644] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg 86159 Augsburg Germany
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego USA
| | - Wei Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - David G. Madden
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge UK
| | - David Fairen‐Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge UK
| | - Hao Lyu
- Department of Chemistry University of California, Berkeley USA
| | | | - Zhe Ji
- Department of Chemistry Stanford University USA
| | - Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Frederik Haase
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Orysia Zaremba
- Department of Chemistry University of California, Berkeley USA
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
| | - Jacopo Andreo
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Christian S. Diercks
- Department of Chemistry The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
22
|
Allendorf MD, Stavila V, Witman M, Brozek CK, Hendon CH. What Lies beneath a Metal-Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. J Am Chem Soc 2021; 143:6705-6723. [PMID: 33904302 DOI: 10.1021/jacs.0c10777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rational design principles established for metal-organic frameworks (MOFs) allow clear structure-property relationships, fueling expansive growth for energy storage and conversion, catalysis, and beyond. However, these design principles are based on the assumption of compositional and structural rigidity, as measured crystallographically. Such idealization of MOF structures overlooks subtle chemical aspects that can lead to departures from structure-based chemical intuition. In this Perspective, we identify unexpected behavior of MOFs through literature examples. Based on this analysis, we conclude that departures from ideality are not uncommon. Whereas linker topology and metal coordination geometry are useful starting points for understanding MOF properties, we anticipate that deviations from the idealized crystal representation will be necessary to explain important and unexpected behaviors. Although this realization reinforces the notion that MOFs are highly complex materials, it should also stimulate a broader reexamination of the literature to identify corollaries to existing design rules and reveal new structure-property relationships.
Collapse
Affiliation(s)
- Mark D Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Matthew Witman
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States.,Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
23
|
Sapnik AF, Bechis I, Collins SM, Johnstone DN, Divitini G, Smith AJ, Chater PA, Addicoat MA, Johnson T, Keen DA, Jelfs KE, Bennett TD. Mixed hierarchical local structure in a disordered metal-organic framework. Nat Commun 2021; 12:2062. [PMID: 33824324 PMCID: PMC8024318 DOI: 10.1038/s41467-021-22218-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Amorphous metal-organic frameworks (MOFs) are an emerging class of materials. However, their structural characterisation represents a significant challenge. Fe-BTC, and the commercial equivalent Basolite® F300, are MOFs with incredibly diverse catalytic ability, yet their disordered structures remain poorly understood. Here, we use advanced electron microscopy to identify a nanocomposite structure of Fe-BTC where nanocrystalline domains are embedded within an amorphous matrix, whilst synchrotron total scattering measurements reveal the extent of local atomic order within Fe-BTC. We use a polymerisation-based algorithm to generate an atomistic structure for Fe-BTC, the first example of this methodology applied to the amorphous MOF field outside the well-studied zeolitic imidazolate framework family. This demonstrates the applicability of this computational approach towards the modelling of other amorphous MOF systems with potential generality towards all MOF chemistries and connectivities. We find that the structures of Fe-BTC and Basolite® F300 can be represented by models containing a mixture of short- and medium-range order with a greater proportion of medium-range order in Basolite® F300 than in Fe-BTC. We conclude by discussing how our approach may allow for high-throughput computational discovery of functional, amorphous MOFs.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
- School of Chemical and Process Engineering & School of Chemistry, University of Leeds, Leeds, UK
| | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Andrew J Smith
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Habermehl S, Schlesinger C, Prill D. Comparison and evaluation of pair distribution functions, using a similarity measure based on cross-correlation functions. J Appl Crystallogr 2021; 54:612-623. [PMID: 33953658 PMCID: PMC8056768 DOI: 10.1107/s1600576721001722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
An approach for the comparison of pair distribution functions (PDFs) has been developed using a similarity measure based on cross-correlation functions. The PDF is very sensitive to changes in the local structure, i.e. small deviations in the structure can cause large signal shifts and significant discrepancies between the PDFs. Therefore, a comparison based on pointwise differences (e.g. R values and difference curves) may lead to the assumption that the investigated PDFs as well as the corresponding structural models are not in agreement at all, whereas a careful visual inspection of the investigated structural models and corresponding PDFs may reveal a relatively good match. To quantify the agreement of different PDFs for those cases an alternative approach is introduced: the similarity measure based on cross-correlation functions. In this paper, the power of this application of the similarity measure to the analysis of PDFs is highlighted. The similarity measure is compared with the classical R wp values as representative of the comparison based on pointwise differences as well as with the Pearson product-moment correlation coefficient, using polymorph IV of barbituric acid as an example.
Collapse
Affiliation(s)
- Stefan Habermehl
- Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Carina Schlesinger
- Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Dragica Prill
- Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Zhu H, Huang Y, Ren J, Zhang B, Ke Y, Jen AK, Zhang Q, Wang X, Liu Q. Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003534. [PMID: 33747741 PMCID: PMC7967088 DOI: 10.1002/advs.202003534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/19/2023]
Abstract
The correlation between structure and function lies at the heart of materials science and engineering. Especially, modern functional materials usually contain inhomogeneities at an atomic level, endowing them with interesting properties regarding electrons, phonons, and magnetic moments. Over the past few decades, many of the key developments in functional materials have been driven by the rapid advances in short-range crystallographic techniques. Among them, pair distribution function (PDF) technique, capable of utilizing the entire Bragg and diffuse scattering signals, stands out as a powerful tool for detecting local structure away from average. With the advent of synchrotron X-rays, spallation neutrons, and advanced computing power, the PDF can quantitatively encode a local structure and in turn guide atomic-scale engineering in the functional materials. Here, the PDF investigations in a range of functional materials are reviewed, including ferroelectrics/thermoelectrics, colossal magnetoresistance (CMR) magnets, high-temperature superconductors (HTSC), quantum dots (QDs), nano-catalysts, and energy storage materials, where the links between functions and structural inhomogeneities are prominent. For each application, a brief description of the structure-function coupling will be given, followed by selected cases of PDF investigations. Before that, an overview of the theory, methodology, and unique power of the PDF method will be also presented.
Collapse
Affiliation(s)
- He Zhu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yalan Huang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Jincan Ren
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Binghao Zhang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of ScienceDongguan523000P. R. China
| | - Alex K.‐Y. Jen
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xun‐Li Wang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Qi Liu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
26
|
Terban MW, Ghose SK, Plonka AM, Troya D, Juhás P, Dinnebier RE, Mahle JJ, Gordon WO, Frenkel AI. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space. Commun Chem 2021; 4:2. [PMID: 36697507 PMCID: PMC9814582 DOI: 10.1038/s42004-020-00439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.
Collapse
Affiliation(s)
- Maxwell W. Terban
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sanjit K. Ghose
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Anna M. Plonka
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA
| | - Diego Troya
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pavol Juhás
- grid.202665.50000 0001 2188 4229Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Robert E. Dinnebier
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - John J. Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Wesley O. Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| |
Collapse
|
27
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
28
|
Castillo-Blas C, Romero-Muñiz I, Mavrandonakis A, Simonelli L, Platero-Prats AE. Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chem Commun (Camb) 2020; 56:15615-15618. [PMID: 33290455 DOI: 10.1039/d0cc06134d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stabilizing catalytic iron-oxo-clusters within nanoporous metal-organic frameworks (MOFs) is a powerful strategy to prepare new active materials for the degradation of toxic chemicals, such as bisphenol A. Herein, we combine pair distribution function analysis of total X-ray scattering data and X-ray absorption spectroscopy, with computational modelling to understand the local structural nature of added redox-active iron-oxo clusters bridging neighbouring zirconia-nodes within MOF-808.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | |
Collapse
|
29
|
Jiang J, Jiang P, Wang D, Li Y. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. NANOSCALE 2020; 12:20580-20589. [PMID: 33029606 DOI: 10.1039/d0nr05907b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are a good platform for the fabrication of single atomic site catalysts (SACs) due to their large specific surface area, rich pore structure, large number of unsaturated coordination metal sites and their intriguing and controllable structures. The influencing factors of each strategy used to synthesize SACs based on MOFs, such as the finetuning ligand strategy, heteroatom doping (N, P, S) strategy, space restriction strategy, bimetallic strategy, metal cluster defect strategy, substrate to capture strategy, and various post-treatment strategies have not been discussed. Here, we will discuss the influencing factors of each strategy and the relationship between the different methods, which are used to synthesize SACs based on MOFs.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Duguet M, Lemarchand A, Benseghir Y, Mialane P, Gomez-Mingot M, Roch-Marchal C, Haouas M, Fontecave M, Mellot-Draznieks C, Sassoye C, Dolbecq A. Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal-organic frameworks. Chem Commun (Camb) 2020; 56:10143-10146. [PMID: 32749407 DOI: 10.1039/d0cc04283h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We evidence the structure-directing role of the PW12O403- polyoxometalate in porphyrinic MOF synthesis whereby it promotes the formation of the kinetic topology. Its immobilization into the MOF is successfully achieved at a high temperature yielding the kinetic MOF-525/PCN-224 phases, while prohibiting the formation of the thermodynamic MOF-545 product. A combined experimental/theoretical approach uses differential PDF and DFT calculations along with solid-state NMR to show the structural integrity of the POM and its location next to the Zr-based nodes.
Collapse
Affiliation(s)
- Mathis Duguet
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France. and Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Alex Lemarchand
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Youven Benseghir
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France. and Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Pierre Mialane
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France.
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Catherine Roch-Marchal
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France.
| | - Mohamed Haouas
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France.
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Capucine Sassoye
- Sorbonne Université, UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75252 Paris cedex 05, France.
| | - Anne Dolbecq
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France.
| |
Collapse
|