1
|
Tang R, Hughes RA, Tuff WJ, Corcoran A, Neretina S. Rapid formation of gold core-satellite nanostructures using Turkevich-synthesized satellites and dithiol linkers: the do's and don'ts for successful assembly. NANOSCALE ADVANCES 2024; 6:3632-3643. [PMID: 38989523 PMCID: PMC11232561 DOI: 10.1039/d4na00390j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Turkevich syntheses represent a foundational approach for forming colloids of monodisperse gold nanoparticles where the use of these structures as building blocks when forming multicomponent nanoassemblies is pervasive. The core-satellite motif, which is characterized by a central core structure onto which satellite structures are tethered, distinguishes itself in that it can realize numerous plasmonic nanogaps with nanometer scale widths. Established procedures for assembling these multicomponent structures are, to a large extent, empirically driven, time-consuming, difficult to reproduce, and in need of a strong mechanistic underpinning relating to the close-range electrostatic interactions needed to secure satellite structures onto core materials. Described herein is a rapid, repeatable procedure for assembling core-satellite structures using Turkevich-grown satellites and dithiol linkers. With this successful procedure acting as a baseline for benchmarking modified procedures, a rather complex parameter space is understood in terms of timeline requirements for various processing steps and an analysis of the factors that prove consequential to assembly. It is shown that seemingly innocuous procedures realize sparsely populated cores whereas cores initially obstructed with commonly used capping agents lead to few disruptions to satellite attachment. Once these factors are placed under control, then it is the ionic strength imposed by the reaction biproducts of the Turkevich synthesis that is the critical factor in assembly because they decide the spatial extent of the electrical double layer surrounding each colloidal nanoparticle. With this understanding, it is possible to control the ionic strength through the addition or subtraction of various ionic species and assert control over the assembly process. The work, hence, advances the rules for a robust core-satellite assembly process and, in a broader sense, contributes to the knowhow required for the precise, programmable, and controllable assembly of multicomponent systems.
Collapse
Affiliation(s)
- Runze Tang
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Robert A Hughes
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Walker J Tuff
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Ana Corcoran
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemistry & Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
2
|
Vinnacombe-Willson GA, García-Astrain C, Troncoso-Afonso L, Wagner M, Langer J, González-Callejo P, Silvio DD, Liz-Marzán LM. Growing Gold Nanostars on 3D Hydrogel Surfaces. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5192-5203. [PMID: 38828187 PMCID: PMC11137816 DOI: 10.1021/acs.chemmater.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Nanocomposites comprising hydrogels and plasmonic nanoparticles are attractive materials for tissue engineering, bioimaging, and biosensing. These materials are usually fabricated by adding colloidal nanoparticles to the uncured polymer mixture and thus require time-consuming presynthesis, purification, and ligand-exchange steps. Herein, we introduce approaches for rapid synthesis of gold nanostars (AuNSt) in situ on hydrogel substrates, including those with complex three-dimensional (3D) features. These methods enable selective AuNSt growth at the surface of the substrate, and the growth conditions can be tuned to tailor the nanoparticle size and density (coverage). We additionally demonstrate proof-of-concept applications of these nanocomposites for SERS sensing and imaging. High surface coverage with AuNSt enabled 1-2 orders of magnitude higher SERS signals compared to plasmonic hydrogels loaded with premade colloids. Importantly, AuNSt can be prepared without the addition of any potentially cytotoxic surfactants, thereby ensuring a high biocompatibility. Overall, in situ growth becomes a versatile and straightforward approach for the fabrication of plasmonic biomaterials.
Collapse
Affiliation(s)
| | - Clara García-Astrain
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Lara Troncoso-Afonso
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), Donostia-San
Sebastián 20018, Spain
| | - Marita Wagner
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), Donostia-San
Sebastián 20018, Spain
- CIC
nanoGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San Sebastián 20018, Spain
| | - Judith Langer
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
| | | | - Desirè Di Silvio
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
- Cinbio, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
3
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
4
|
Chen BA, Dominique NL, Kipkorir A, Camden JP, Ptasinska S, Kamat PV. From Light to Dark: Dancing with Electrons in Colloidal 2D MoS 2 Nanosheets. J Phys Chem Lett 2024:4920-4927. [PMID: 38684075 DOI: 10.1021/acs.jpclett.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Extending the lifetime of photogenerated electrons in semiconductor systems is an important criterion for the conversion of light into storable energy. We have now succeeded in storing electrons in a photoirradiated colloidal molybdenum disulfide (MoS2) suspension, showcasing its unique reversible photoresponsive behavior. The dampened A and B excitonic peaks indicate the accumulation of photogenerated electrons and the minimization of interactions between MoS2 interlayers. The stored electrons were quantitatively extracted by titrating with a ferrocenium ion in the dark, giving ca. 0.2 electrons per MoS2 formula unit. The emergence of the photoinduced A1g* Raman mode and the decrease in zeta potential after irradiation suggest intercalation of counterions to maintain overall charge balance upon electron storage. These results provide insights into the mechanism of photogenerated electron storage in 2D materials and pave the way for the potential application of colloidal 2D materials in electron storage.
Collapse
|
5
|
Atta S, Canning AJ, Vo-Dinh T. A simple low-cost flexible plasmonic patch based on spiky gold nanostars for ultra-sensitive SERS sensing. Analyst 2024; 149:2084-2096. [PMID: 38415724 DOI: 10.1039/d3an02246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recently, transparent and flexible surface-enhanced Raman scattering (SERS) substrates have received great interest for direct point-of-care detection of analytes on irregular nonplanar surfaces. In this study, we proposed a simple cost-effective strategy to develop a flexible SERS patch utilizing multibranched sharp spiked gold nanostars (GNS) decorated on a commercially available adhesive Scotch Tape for achieving ultra-high SERS sensitivity. The experimental SERS measurements were correlated with theoretical finite element modeling (FEM), which indicates that the GNS having a 2.5 nm branch tip diameter (GNS-4) exhibits the strongest SERS enhancement. Using rhodamine 6G (R6G) as a model analyte, the SERS performance of the flexible SERS patch exhibited a minimum detection limit of R6G as low as 1 pM. The enhancement factor of the SERS patch with GNS-4 was calculated as 6.2 × 108, which indicates that our flexible SERS substrate has the potential to achieve ultra-high sensitivity. The reproducibility was tested with 30 different spots showing a relative standard deviation (RSD) of SERS intensity of about 5.4%, indicating good reproducibility of the SERS platform. To illustrate the usefulness of the flexible SERS sensor patch, we investigated the detection of a carcinogenic compound crystal violet (CV) on fish scales, which is often used as an effective antifungal agent in the aquaculture industry. The results realized the trace detection of CV with the minimum detection limit as low as 1 pM. We believe that our transparent, and flexible SERS patch based on GNS-4 has potential as a versatile, low-cost platform for real-world SERS sensing applications on nonplanar surfaces.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Aidan J Canning
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Dominique NL, Chandran A, Jensen IM, Jenkins DM, Camden JP. Unmasking the Electrochemical Stability of N-Heterocyclic Carbene Monolayers on Gold. Chemistry 2023:e202303681. [PMID: 38116819 DOI: 10.1002/chem.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
N-heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface-enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (-1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< -1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and -0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| |
Collapse
|
7
|
Jia J, Metzkow N, Park SM, Wu YL, Sample AD, Diloknawarit B, Jung I, Odom TW. Spike Growth on Patterned Gold Nanoparticle Scaffolds. NANO LETTERS 2023. [PMID: 38048438 DOI: 10.1021/acs.nanolett.3c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nadia Metzkow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander D Sample
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Hueckel T, Lewis DJ, Mertiri A, Carter DJD, Macfarlane RJ. Controlling Colloidal Crystal Nucleation and Growth with Photolithographically Defined Templates. ACS NANO 2023; 17:22121-22128. [PMID: 37921570 DOI: 10.1021/acsnano.3c09401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Colloidal crystallization provides a means to synthesize hierarchical nanostructures by design and to use these complex structures for nanodevice fabrication. In particular, DNA provides a means to program interactions between particles with high specificity, thereby enabling the formation of particle superlattice crystallites with tailored unit cell geometries and surface faceting. However, while DNA provides precise control of particle-particle bonding interactions, it does not inherently present a means of controlling higher-level structural features such as the size, shape, position, or orientation of a colloidal crystallite. While altering assembly parameters such as temperature or concentration can enable limited control of crystallite size and geometry, integrating colloidal assemblies into nanodevices requires better tools to manipulate higher-order structuring and improved understanding of how these tools control the fundamental kinetics and mechanisms of colloidal crystal growth. In this work, photolithography is used to produce patterned substrates that can manipulate the placement, size, dispersity, and orientation of colloidal crystals. By adjusting aspects of the pattern, such as feature size and separation, we reveal a diffusion-limited mechanism governing crystal nucleation and growth. Leveraging this insight, patterns are designed that can produce wafer-scale substrates with arrays of nanoparticle superlattices of uniform size and shape. These design principles therefore bridge a gap between a fundamental understanding of nanoparticle assembly and the fabrication of nanostructures compatible with functional devices.
Collapse
Affiliation(s)
- Theodore Hueckel
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Diana J Lewis
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Alket Mertiri
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - David J D Carter
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Tuff WJ, Hughes RA, Nieukirk BD, Ciambriello L, Neal RD, Golze SD, Gavioli L, Neretina S. Periodic arrays of structurally complex oxide nanoshells and their use as substrate-confined nanoreactors. NANOSCALE 2023; 15:17609-17620. [PMID: 37876284 DOI: 10.1039/d3nr04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sacrificial templates present an effective pathway for gaining high-level control over nanoscale reaction products. Atomic layer deposition (ALD) is ideally suited for such approaches due to its ability to replicate the surface topography of a template material through the deposition of an ultrathin conformal layer. Herein, metal nanostructures are demonstrated as sacrificial templates for the formation of architecturally complex and deterministically positioned oxide nanoshells, open-topped nanobowls, vertically standing half-shells, and nanorings. The three-step process sees metal nanocrystals formed in periodic arrays, coated with an ALD-deposited oxide, and hollowed out with a selective etch through nanopores formed in the oxide shell. The procedure is further augmented through the use of a directional ion beam that is used to sculpt the oxide shells into bowl- and ring-like configurations. The functionality of the so-formed materials is demonstrated through their use as substrate-confined nanoreactors able to promote the growth and confinement of nanomaterials. Taken together, the work expands the design space for substrate-based nanomaterials, creates a platform for advancing functional surfaces and devices and, from a broader perspective, advances the use of ALD in forming complex nanomaterials.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Luca Ciambriello
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
10
|
Yang R, Zhang Z, Miao N, Fang W, Xiao Z, Shen X, Xin W. High-Yield Gold Nanohydrangeas on Three-Dimensional Carbon Nanotube Foams for Surface-Enhanced Raman Scattering Sensors. ACS OMEGA 2023; 8:26973-26981. [PMID: 37546592 PMCID: PMC10399187 DOI: 10.1021/acsomega.3c01802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Recently, carbon nanomaterial-supported plasmonic nanocrystals used as high-performance surface-enhanced Raman scattering (SERS) substrates have attracted increasing attention due to their ultra-high sensitivity of detection. However, most of the work focuses on the design of 2-D planar substrates with traditional plasmonic structures, such as nanoparticles, nanorods, nanowires, and so forth. Here, we report a novel strategy for the preparation of high-yield Au nanohydrangeas on three-dimensional porous polydopamine (PDA)/polyvinyl alcohol (PVA)/carbon nanotube (CNT) foams. The structures and growth mechanisms of these specific Au nanocrystals are systematically investigated. PDA plays the role of both a reducing agent as well as an anchoring site for Au nanohydrangeas' growth. We also show that the ratio of surfactant KBr to the gold precursor (HAuCl4) is key to obtain these structures in a manner of high production. Moreover, the substrate of the CNT foam-Au nanohydrangea hybrid can be employed as SERS sensors and can detect the analytes down to 10-9 M.
Collapse
Affiliation(s)
- Rong Yang
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Zhen Zhang
- Shandong
Institute of Hydrogen Energy Technology, 25F, Hydrogen Building, No. 3189 Qilu Avenue, Huaiyin District, Jinan, Shandong 250000, China
- China
EV100 Hydrogen Center, Intelligent Manufacturing
Workshop, No. 27 Jiancaicheng
Zhong Road, Haidian District, Beijing 100096, China
| | - Naiqian Miao
- Shandong
Institute of Hydrogen Energy Technology, 25F, Hydrogen Building, No. 3189 Qilu Avenue, Huaiyin District, Jinan, Shandong 250000, China
- China
EV100 Hydrogen Center, Intelligent Manufacturing
Workshop, No. 27 Jiancaicheng
Zhong Road, Haidian District, Beijing 100096, China
| | - Weichen Fang
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Zuo Xiao
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Xiaodong Shen
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Wenbo Xin
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| |
Collapse
|
11
|
Mishra A, Inaam R, Okamoto S, Shibata T, Santra TS, Nagai M. Visible Pulsed Laser-Assisted Selective Killing of Cancer Cells with PVP-Capped Plasmonic Gold Nanostars. MICROMACHINES 2023; 14:1173. [PMID: 37374759 PMCID: PMC10305603 DOI: 10.3390/mi14061173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
A new generation of nanoscale photosensitizer agents has improved photothermal capabilities, which has increased the impact of photothermal treatments (PTTs) in cancer therapy. Gold nanostars (GNS) are promising for more efficient and less invasive PTTs than gold nanoparticles. However, the combination of GNS and visible pulsed lasers remains unexplored. This article reports the use of a 532 nm nanosecond pulse laser and polyvinylpyrrolidone (PVP)-capped GNS to kill cancer cells with location-specific exposure. Biocompatible GNS were synthesized via a simple method and were characterized under FESEM, UV-visible spectroscopy, XRD analysis, and particle size analysis. GNS were incubated over a layer of cancer cells that were grown in a glass Petri dish. A nanosecond pulsed laser was irradiated on the cell layer, and cell death was verified via propidium iodide (PI) staining. We assessed the effectiveness of single-pulse spot irradiation and multiple-pulse laser scanning irradiation in inducing cell death. Since the site of cell killing can be accurately chosen with a nanosecond pulse laser, this technique will help minimize damage to the cells around the target cells.
Collapse
Affiliation(s)
- Aniket Mishra
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (A.M.)
| | - Rafia Inaam
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (A.M.)
| | - Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (A.M.)
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (A.M.)
- Institute for Research on Next-Generation Semiconductor and Sensing Science (IRES), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (A.M.)
- Institute for Research on Next-Generation Semiconductor and Sensing Science (IRES), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| |
Collapse
|
12
|
Martinez LP, Poklepovich-Caride S, Gargiulo J, Martínez ED, Stefani FD, Angelomé PC, Violi IL. Optical Printing of Single Au Nanostars. NANO LETTERS 2023; 23:2703-2709. [PMID: 36952678 DOI: 10.1021/acs.nanolett.2c05109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obtaining arrays of single nanoparticles with three-dimensional complex shapes is still an open challenge. Current nanolithography methods do not allow for the preparation of nanoparticles with complex features like nanostars. In this work, we investigate the optical printing of gold nanostars of different sizes as a function of laser wavelength and power. We found that tuning the laser to the main resonances of the nanostars in the near-infrared makes it possible to avoid nanoparticles reshaping due to plasmonic heating, enabling their deposition at the single particle level and in ordered arrays.
Collapse
Affiliation(s)
- Luciana P Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, CABA, Argentina
| | - Santiago Poklepovich-Caride
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| | - Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, CABA, Argentina
- Instituto de Nanosistemas, UNSAM-CONICET, Av. 25 de Mayo 1021, San Martín 1650, Argentina
| | - Eduardo D Martínez
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Gerencia Física, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, CABA, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, CABA, Argentina
| | - Paula C Angelomé
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, CABA, Argentina
- Instituto de Nanosistemas, UNSAM-CONICET, Av. 25 de Mayo 1021, San Martín 1650, Argentina
| |
Collapse
|
13
|
Luo JJ, Zhang H, Zou HL, Luo HQ, Li NB, Li BL. Tracking the Growth of Chiral Plasmonic Nanocrystals at Molybdenum Disulfide Heterostructural Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3052-3061. [PMID: 36787386 DOI: 10.1021/acs.langmuir.2c03101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The way of accurately regulating the growth of chiral plasmonics is of great importance for exploring the chirality information and improving its potential values. Herein, cysteine enantiomers modulate the anisotropic and epitaxial growth of gold nanoplasmonics on seeds of exfoliated MoS2 nanosheets. The heterostructural Au and MoS2 hybrids induced by enantiomeric cysteine are presented with chiroptical characteristics, dendritic morphologies, and plasmonic performances. Moreover, the synthesis, condition optimization, formation mechanism, and plasmonic properties of Au and MoS2 dendritic nanostructures are studied. The chirality characteristics are identified using the circular dichroism spectra and scanning electron microscopy. Time-resolved transmission electron microscopy and UV-vis spectra of the intermediate products captured are analyzed to confirm the formation mechanism of dendritic plasmonic nanostructures at heterostructural surfaces. The specific dendritic morphologies originate from the synergistic impacts of heterostructural MoS2 interfaces and enantiomeric cysteine-induced anisotropic manipulation. Significantly, the developed synthesis strategy of chiral nanostructures at heterostructural interfaces is highly promising in promoting the understanding of the plasmonic function and crucial chirality bioinformation.
Collapse
Affiliation(s)
- Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hang Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Fernandes T, Martins NCT, Daniel-da-Silva AL, Trindade T. Dendrimer-based magneto-plasmonic nanosorbents for water quality monitoring using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121730. [PMID: 35988470 DOI: 10.1016/j.saa.2022.121730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the synthesis of magneto-plasmonic dendrimer-based nanosorbents containing Au nanostars and we demonstrate that they can be used as versatile optical sensors for the detection of pesticides in spiked water samples. The magnetic hybrid nanoparticles were obtained by conjugating silica-functionalized G5-NH2 PAMAM dendrimers to silica-coated magnetite cores. The resulting magnetic-PAMAM conjugates were then used to reduce and sequester Au seeds for the subsequent in situ growth of Au nanostars. The dendrimer-based magneto-plasmonic substrates containing the Au anisotropic nanophases were then investigated regarding their ability to monitor water quality through surface-enhanced Raman scattering (SERS) spectroscopy. As a proof-of-concept, the ensuing multifunctional materials were investigated as SERS probing systems to detect dithiocarbamate pesticides (ziram and thiram) dissolved in water samples. It was observed that the magneto-plasmonic hybrid materials enhance the Raman signal of these pesticides under variable operational conditions, suggesting the versatility of these systems for water quality monitoring. Moreover, a detailed analysis of the SERS data was accomplished to predict the adsorption profile of the dithiocarbamate pesticides to the Au surface.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Natércia C T Martins
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Vinnacombe-Willson GA, Conti Y, Jonas SJ, Weiss PS, Mihi A, Scarabelli L. Surface Lattice Plasmon Resonances by Direct In Situ Substrate Growth of Gold Nanoparticles in Ordered Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205330. [PMID: 35903851 PMCID: PMC9549758 DOI: 10.1002/adma.202205330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Indexed: 05/24/2023]
Abstract
Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom-up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom-up wet chemistry starts from batch synthesis of colloids, which requires time-consuming and hard-to-scale steps like ligand exchange and self-assembly. Herein, an unconventional bottom-up wet-chemical synthetic approach for producing gold nanoparticle ordered arrays is developed. Water-processable hydroxypropyl cellulose stencils facilitate the patterning of a reductant chemical ink on which nanoparticle growth selectively occurs. Arrays exhibiting lattice plasmon resonances in the visible region and near infrared (quality factors of >20) are produced following a rapid synthetic step (<10 min), all without cleanroom fabrication, specialized equipment, or self-assembly, constituting a major step forward in establishing in situ growth approaches. Further, the technical capabilities of this method through modulation of the particle size, shape, and array spacings directly on the substrate are demonstrated. Ultimately, establishing a fundamental understanding of in situ growth has the potential to inform the fabrication of plasmonic materials; opening the door for in situ growth fabrication of waveguides, lasing platforms, and plasmonic sensors.
Collapse
Affiliation(s)
- Gail A Vinnacombe-Willson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ylli Conti
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Agustín Mihi
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Leonardo Scarabelli
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| |
Collapse
|
16
|
Lawson ZR, Preston AS, Korsa MT, Dominique NL, Tuff WJ, Sutter E, Camden JP, Adam J, Hughes RA, Neretina S. Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28186-28198. [PMID: 35695394 DOI: 10.1021/acsami.2c04800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.
Collapse
Affiliation(s)
- Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arin S Preston
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matiyas T Korsa
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jost Adam
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
17
|
Li X, Zhang T, Chen Z, Yu J, Cao A, Liu D, Cai W, Li Y. Au Polyhedron Array with Tunable Crystal Facets by PVP-Assisted Thermodynamic Control and Its Sharp Shape As Well As High-Energy Exposed Planes Co-Boosted SERS Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105045. [PMID: 34841652 DOI: 10.1002/smll.202105045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
A route is developed for directly growing 2D Au polyhedron arrays with controllable exposed facets of polyhedron by utilizing the substrate-supported 2D Au quasi-spherical nanoparticle arrays as the Au seed arrays, which cannot be realized by traditional lithography. In the reaction system, polyvinyl pyrrolidone (PVP) plays a vital role in guiding the reduced Au atoms and stabilizing the substrate-supported Au seeds. More importantly, by thermodynamic control, PVP as a capping agent can further direct the formation of {111} facets. The key to guarantee the integrity and periodicity of array is a proper reduction of Au ions and low growth rate of crystal. Benefiting from the higher electric field intensity near the sharp vertexes and edges of Au polyhedra and the exposed {110} facets with high energy, the Au polyhedron array with {110} facets encasing polyhedron exhibits good, stable surface enhanced Raman scattering activity toward 4-aminothiophenol among the involved arrays. The proposed fabrication approach tremendously enriches the structural diversity of Au nanoarrays on substrates and greatly overcomes the shortcoming of traditional lithography.
Collapse
Affiliation(s)
- Xuejiao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zhiming Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - An Cao
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dilong Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Weiping Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
18
|
Gothe PK, Martinez A, Koh SJ. Effect of Ionic Strength, Nanoparticle Surface Charge Density, and Template Diameter on Self-Limiting Single-Particle Placement: A Numerical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11961-11977. [PMID: 34610743 DOI: 10.1021/acs.langmuir.1c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the bottom-up approach where functional materials are constructed out of nanoscale building blocks (e.g., nanoparticles), it is essential to have methods that are capable of placing the individual nanoscale building blocks onto exact substrate positions on a large scale and on a large area. One of the promising placement methods is the self-limiting single-particle placement (SPP), in which a single nanoparticle in a colloidal solution is electrostatically guided by electrostatic templates and exactly one single nanoparticle is placed on each target position in a self-limiting way. This paper presents a numerical study on SPP, where the effects of three key parameters, (1) ionic strength (IS), (2) nanoparticle surface charge density (σNP), and (3) circular template diameter (d), on SPP are investigated. For 40 different parameter sets of (IS, σNP, d), a 30 nm nanoparticle positioned at R⃗ above the substrate was modeled in two configurations (i) without and (ii) with the presence of a 30 nm nanoparticle at the center of a circular template. For each parameter set and each configuration, the electrostatic potentials were calculated by numerically solving the Poisson-Boltzmann equation, from which interaction forces and interaction free energies were subsequently calculated. These have identified realms of parameter sets that enable a successful SPP. A few exemplary parameter sets include (IS, σNP, d) = (0.5 mM, -1.5 μC/cm2, 100 nm), (0.05 mM, -0.5 μC/cm2, 100 nm), (0.5 mM, -1.5 μC/cm2, 150 nm), and (0.05 mM, -0.8 μC/cm2, 150 nm). This study provides clear guidance toward experimental realizations of large-scale and large-area SPPs, which could lead to bottom-up fabrications of novel electronic, photonic, plasmonic, and spintronic devices and sensors.
Collapse
Affiliation(s)
- Pushkar K Gothe
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anthony Martinez
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Seong Jin Koh
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
19
|
Siegel AL, Baker GA. Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3980-4004. [PMID: 36132836 PMCID: PMC9417963 DOI: 10.1039/d0na01057j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Interest in branched colloidal gold nanosystems has gained increased traction due to the structures' outstanding optical and plasmonic properties, resulting in utilization in techniques such as surface-enhanced spectroscopy and bioimaging, as well as plasmon photocatalysis and photothermal therapy. The unique morphologies of nanostars, multipods, urchins, and other highly branched nanomaterials exhibit selective optical and crystallographic features accessible by alterations in the respective wet-chemical syntheses, opening a vast array of useful applications. Examination of discriminatory reaction conditions, such as seeded growth (e.g., single-crystalline vs. multiply twinned seeds), underpotential deposition of Ag(i), galvanic replacement, and the dual use of competing reducing and capping agents, is shown to reveal conditions necessary for the genesis of assorted branched nanoscale gold frameworks. By observing diverse approaches, including template-directed, microwave-mediated, and aggregation-based methods, among others, a schema of synthetic pathways can be constructed to provide a guiding roadmap for obtaining the full range of desired branched gold nanocrystals. This review presents a comprehensive summary of such advances and these nuances of the underlying procedures, as well as offering mechanistic insights into the directed nanoscale growth. We conclude the review by discussing various applications for these fascinating nanomaterials, particularly surface-enhanced Raman spectroscopy, photothermal and photodynamic therapy, catalysis, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Asher L Siegel
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| |
Collapse
|
20
|
Imura Y, Maniwa M, Iida K, Saito H, Morita-Imura C, Kawai T. Preparing Alumina-Supported Gold Nanowires for Alcohol Oxidation. ACS OMEGA 2021; 6:16043-16048. [PMID: 34179649 PMCID: PMC8223421 DOI: 10.1021/acsomega.1c01895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The development of shape-controlled noble metal nanocrystals such as nanowires (NWs) is progressing steadily owing to their potentially novel catalytic properties and the ease with which they can be prepared by reducing the metal ions in a particular solution as capping agents. Recently, many reports have been presented on the preparation of shape-controlled Au nanocrystals, such as nanostars and nanoflowers, by a one-pot method using 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES) as capping and reducing agents. The catalytic activity is depressed due to the adsorption of the capping agent onto a Au surface. Since HEPES has low binding affinities on the Au surface, shape-controlled nanocrystals obtained using HEPES are effective for application as nanocatalysts because HEPES was easily removed from the Au surface. In this study, we report the preparation of AuNWs, with an average diameter of 7.7 nm and lengths of a few hundred nanometers, in an aqueous solution containing HEPES and sodium borohydride. A γ-Al2O3-supported AuNW (AuNW/γ-Al2O3) catalyst was obtained using catalytic supporters and a water extraction method that removed HEPES from the Au surface without morphological changes. AuNW/γ-Al2O3 was then utilized to catalyze the oxidation of 1-phenylethyl alcohol to acetophenone. The formation rate of acetophenone over AuNW/γ-Al2O3 was 3.2 times that over γ-Al2O3-supported spherical Au nanoparticles (AuNP/γ-Al2O3) with almost the same diameter.
Collapse
Affiliation(s)
- Yoshiro Imura
- Department
of Industrial Chemistry, Tokyo University
of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Motoki Maniwa
- Department
of Industrial Chemistry, Tokyo University
of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kazuki Iida
- Department
of Industrial Chemistry, Tokyo University
of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Haruna Saito
- Department
of Industrial Chemistry, Tokyo University
of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Clara Morita-Imura
- Department
of Chemistry, Faculty of Science, Ochanomizu
University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Takeshi Kawai
- Department
of Industrial Chemistry, Tokyo University
of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
21
|
Zhao X, Luo X, Bazuin CG, Masson JF. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55349-55361. [PMID: 33237739 DOI: 10.1021/acsami.0c15311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is challenging to fabricate plasmonic nanosensors on high-curvature surfaces with high sensitivity and reproducibility at low cost. Here, we report a facile and straightforward strategy, based on an in situ growth technique, for fabricating glass nanofibers covered by asymmetric gold nanoparticles (AuNPs) with tunable morphologies and adjustable spacings, leading to much improved surface-enhanced Raman scattering (SERS) sensitivity because of hotspots generated by the AuNP surface irregularities and adjacent AuNP coupling. First, nanosensors covered with uniform and well-dispersed citrate-capped spherical AuNPs were constructed using a polystyrene-b-poly(4-vinylpyridine) (PS-P4VP, with 33 mol % P4VP content and 61 kg/mol total molecular weight) block copolymer brush-layer templating method, and then, the deposited AuNPs were grown to asymmetric AuNPs. AuNP morphologies and hence the optical characteristics of AuNP-covered glass nanofibers were easily controlled by the choice of experimental parameters, such as the growth time and growth solution composition. In particular, tunable AuNP average diameters between about 40 and 80 nm with AuNP spacings between about 50 and 1 nm were achieved within 15 min of growth. The SERS sensitivity of branched AuNP-covered nanofibers (3 min growth time) was demonstrated to be more than threefold more intense than that of the original spherical AuNP-covered nanofibers using a 633 nm laser. Finite-difference time-domain simulations were performed, showing that the electric field enhancement is highest for intermediate AuNP diameters. Furthermore, SERS applications of these nanosensors for H2O2 detection and pH sensing were demonstrated, offering appealing and promising candidates for real-time monitoring of extra/intracellular species in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Xiaojun Luo
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - C Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|