1
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Miled MB, Fradin M, Benbakoura N, Mazière L, Rousseau J, Bouzid A, Carles P, Iwamoto Y, Masson O, Habrioux A, Bernard S. Encapsulating Nickel-Iron Alloy Nanoparticles in a Polysilazane-Derived Microporous Si-C-O-N-Based Support to Stimulate Superior OER Activity. CHEMSUSCHEM 2024; 17:e202400561. [PMID: 39110122 DOI: 10.1002/cssc.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 12/12/2024]
Abstract
The in situ confinement of nickel (Ni)-iron (Fe) nanoparticles (NPs) in a polymer-derived microporous silicon carboxynitride (Si-C-O-N)-based support is investigated to stimulate superior oxygen evolution reaction (OER) activity in an alkaline media. Firstly, we consider a commercial polysilazane (PSZ) and Ni and Fe chlorides to be mixed in N,N-dimethylformamide (DMF) and deliver after overnight solvent reflux a series of Ni-Fe : organosilicon coordination polymers. The latter are then heat-treated at 500 °C in flowing argon to form the title compounds. By considering a Ni : Fe ratio of 1.5, face centred cubic (fcc) NixFey alloy NPs with a size of 15-30 nm are in situ generated in a porous Si-C-O-N-based matrix displaying a specific surface area (SSA) as high as 237 m2 ⋅ g-1. Hence, encapsulated NPs are rendered accessible to promote electrocatalytic water oxidation. An OER overpotential as low as 315 mV at 10 mA ⋅ cm-2 is measured. This high catalytic performance (considering that the metal mass loading is as low as 0.24 mg cm-2) is rather stable as observed after an activation step; thus, validating our synthesis approach. This is clearly attributed to both the strong NP-matrix interaction and the confinement effect of the matrix as highlighted through post mortem microscopy observations.
Collapse
Affiliation(s)
- Marwan Ben Miled
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Marina Fradin
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Nora Benbakoura
- CNRS, IC2MP, UMR 7285, Univ. Poitiers, 4 Rue Michel Brunet, F-86073
| | - Laetitia Mazière
- CNRS, IC2MP, UMR 7285, Univ. Poitiers, 4 Rue Michel Brunet, F-86073
| | - Julie Rousseau
- CNRS, IC2MP, UMR 7285, Univ. Poitiers, 4 Rue Michel Brunet, F-86073
| | - Assil Bouzid
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Pierre Carles
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Yuji Iwamoto
- Graduate School of Engineering, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Aichi, Japan
| | - Olivier Masson
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | | | - Samuel Bernard
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| |
Collapse
|
3
|
Silva AL, Colaço MV, Liu L, Xing Y, Carvalho NMF. Electrocatalysis of Oxygen Evolution Reaction Promoted by CoNiMn Films Synthesized by Electrodeposition. ACS OMEGA 2024; 9:43503-43512. [PMID: 39493998 PMCID: PMC11525539 DOI: 10.1021/acsomega.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
Recently, efforts have been made to address the environmental damage caused by fossil-fuel-based primary energy sources. Interest in efficient technologies for converting and storing energy using renewable sources, especially sunlight, has increased, with the aim of replicating the natural photosynthesis process. However, artificial photosynthesis faces challenges with unfavorable kinetics and thermodynamics, requiring the use of stable catalysts for the hydrogen evolution (HER) and oxygen evolution (OER) reactions to generate H2 and O2, respectively. OER is the most prohibitive of the half-reactions by the highly sluggish kinetics. Mixed oxides, particularly those based on first-row transition metals, have shown promising results as catalysts for the OER. This work reports the synthesis of CoNiMn oxide via electrodeposition on fluoride tin oxide followed by electrochemical activation. This approach seeks to explore the synergistic effect between the elements and to produce a catalyst with superior efficiency and stability for the electrocatalysis of the OER compared to the monometallic and bimetallic oxides. The CoNiMn film was structurally and electrochemically characterized. The electrodeposited CoNiMn hybrid films demonstrated low overpotentials compared with standard OER electrocatalysts, with CoNiMn films outperforming all single and bimetallic oxide films. The activated CoNiMn film required an overpotential of 100 mV at 10 mA cm-2 (430 mV at 25 mA cm-2) and Tafel slope of 58 mV dec-1. The film was active for 15 h at 100 mA cm-2 and showed no significant change in morphology and structure after the chronopotentiometry, indicating that it is a promising and cost-effective alternative to enhance the OER activity using abundant elements.
Collapse
Affiliation(s)
- Ana Luisa Silva
- Universidade
do Estado do Rio de Janeiro (UERJ), Instituto de Química, Rua São Francisco Xavier,
524, Rio de Janeiro, 20550-900 Rio de Janeiro, Brasil
| | - Marcos V. Colaço
- Universidade
do Estado do Rio de Janeiro (UERJ), Instituto de Física, Rua São Francisco Xavier,
524, Rio de Janeiro, 20550-013 Rio de Janeiro, Brasil
| | - Liying Liu
- Centro
Brasileiro de Pesquisas Físicas (CBPF), Rua Doutor Xavier Sigaud 150, Rio de Janeiro, 22290180 Rio de Janeiro, Brasil
| | - Yutao Xing
- Universidade
Federal Fluminense, Instituto de Física, Niterói, 24210-346 Rio de Janeiro, Brasil
| | - Nakédia M. F. Carvalho
- Universidade
do Estado do Rio de Janeiro (UERJ), Instituto de Química, Rua São Francisco Xavier,
524, Rio de Janeiro, 20550-900 Rio de Janeiro, Brasil
| |
Collapse
|
4
|
Pittkowski RK, Punke S, Anker AS, Bornet A, Magnard NP, Schlegel N, Graversen LG, Quinson J, Dworzak A, Oezaslan M, Kirkensgaard JJK, Mirolo M, Drnec J, Arenz M, Jensen KMØ. Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with Operando X-ray Total Scattering. J Am Chem Soc 2024; 146:27517-27527. [PMID: 39344255 PMCID: PMC11468871 DOI: 10.1021/jacs.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Understanding the structure of nanoparticles under (electro)catalytic operating conditions is crucial for uncovering structure-property relationships. By combining operando X-ray total scattering and pair distribution function analysis with operando small-angle X-ray scattering (SAXS), we obtained comprehensive structural information on ultrasmall (<3 nm) iridium nanoparticles and tracked their changes during oxygen evolution reaction (OER) in acid. When subjected to electrochemical conditions at reducing potentials, the metallic Ir nanoparticles are found to be decahedral. The iridium oxide formed in the electrochemical oxidation contains small rutile-like clusters composed of edge- and corner-connected [IrO6] octahedra of a very confined range. These rutile domains are smaller than 1 nm. Combined with complementary SAXS data analysis to extract the particle size, we find that the OER-active iridium oxide phase lacks crystalline order. Additionally, we observe an iridium oxide contraction under OER conditions, which is confirmed by operando X-ray absorption spectroscopy. Our results highlight the need for multitechnique operando studies for a complete understanding of the electrochemically formed Ir oxide active in OER.
Collapse
Affiliation(s)
- Rebecca K. Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stefanie Punke
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andy S. Anker
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Nicolas Schlegel
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Laura G. Graversen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jonathan Quinson
- Biological
and Chemical Engineering Department, Aarhus
University, 40 Åbogade, 8200 Aarhus, Denmark
| | - Alexandra Dworzak
- Technical
Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Mehtap Oezaslan
- Technical
Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Jacob J. K. Kirkensgaard
- Niels
Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Department
of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marta Mirolo
- ESRF—The
European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Jakub Drnec
- ESRF—The
European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Gupta RK, Maurya PK, Mishra AK. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. Chempluschem 2024; 89:e202400278. [PMID: 38963318 DOI: 10.1002/cplu.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.
Collapse
Affiliation(s)
- Rohit Kumar Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
6
|
Tran R, Huang L, Zi Y, Wang S, Comer BM, Wu X, Raaijman SJ, Sinha NK, Sadasivan S, Thundiyil S, Mamtani KB, Iyer G, Grabow LC, Lu L, Chen J. Rational design of nanoscale stabilized oxide catalysts for OER with OC22. NANOSCALE 2024; 16:17090-17101. [PMID: 39189535 DOI: 10.1039/d4nr01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The efficiency of H2 production via water electrolysis is limited by the sluggish oxygen evolution reaction (OER). As such, significant emphasis has been placed upon improving the rate of OER through the anode catalyst. More recently, the Open Catalyst 2022 (OC22) framework has provided a large dataset of density functional theory (DFT) calculations for OER intermediates on the surfaces of oxides. When coupled with state-of-the-art graph neural network models, total energy predictions can be achieved with a mean absolute error as low as 0.22 eV. In this work, we interpolated a database of the total energy predictions for all slabs and OER surface intermediates for 4119 oxide materials in the original OC22 dataset using pre-trained models from the OC22 framework. This database includes all terminations of all facets up to a maximum Miller index of 1. To demonstrate the full utility of this database, we constructed a flexible screening framework to identify viable candidate anode catalysts for OER under varying reaction conditions for bulk, surface, and nanoscale Pourbaix stability as well as material cost, overpotential, and metastability. From our assessment, we were able to identify 122 and 68 viable candidates for OER under the bulk and nanoscale regime, respectively.
Collapse
Affiliation(s)
- Richard Tran
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA.
| | - Liqiang Huang
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA.
| | - Yuan Zi
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA.
| | - Shengguang Wang
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA.
| | - Benjamin M Comer
- Shell Information Technology International Inc., Houston, TX 77082, United Kingdom.
| | - Xuqing Wu
- Department of Information Science Technology, University of Houston, 14004 University Boulevard #318, Sugar Land, TX 77479, USA
| | - Stefan J Raaijman
- Energy Transition Campus Amsterdam, Shell Global Solutions International B.V. Grasweg 31, 1031 HW Amsterdam, the Netherlands
| | - Nishant K Sinha
- Shell Technology Centre Bangalore, Plot#7, Bengaluru Hardware Park KIADB Industrial Park North, Mahadeva Kodigehalli, Bengaluru, Bangalore, Karnataka 562149, India
| | - Sajanikumari Sadasivan
- Shell Technology Centre Bangalore, Plot#7, Bengaluru Hardware Park KIADB Industrial Park North, Mahadeva Kodigehalli, Bengaluru, Bangalore, Karnataka 562149, India
| | - Shibin Thundiyil
- Shell Technology Centre Bangalore, Plot#7, Bengaluru Hardware Park KIADB Industrial Park North, Mahadeva Kodigehalli, Bengaluru, Bangalore, Karnataka 562149, India
| | - Kuldeep B Mamtani
- Shell Technology Centre Bangalore, Plot#7, Bengaluru Hardware Park KIADB Industrial Park North, Mahadeva Kodigehalli, Bengaluru, Bangalore, Karnataka 562149, India
| | - Ganesh Iyer
- Shell Technology Centre Bangalore, Plot#7, Bengaluru Hardware Park KIADB Industrial Park North, Mahadeva Kodigehalli, Bengaluru, Bangalore, Karnataka 562149, India
| | - Lars C Grabow
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA.
| | - Ligang Lu
- Shell Information Technology International Inc., Houston, TX 77082, United Kingdom.
| | - Jiefu Chen
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA.
| |
Collapse
|
7
|
Kim NI, Lee J, Jin S, Park J, Jeong JY, Lee J, Kim Y, Kim C, Choi SM. Synergistic Effects in LaNiO 3 Perovskites between Nickel and Iron Heterostructures for Improving Durability in Oxygen Evolution Reaction for AEMWE. SMALL METHODS 2024; 8:e2400284. [PMID: 38651527 DOI: 10.1002/smtd.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Perovskite materials that aren't stable during the oxygen evolution reaction (OER) are unsuitable for anion-exchange membrane water electrolyzers (AEMWE). But through manipulating their electronic structures, their performance can further increase. Among the first-row transition metals, nickel and iron are widely recognized as prominent electrocatalysts; thus, the researchers are looking into how combining them can improve the OER. Recent research has actively explored the design and study of heterostructures in this field, showcasing the dynamic exploration of innovative catalyst configurations. In this study, a heterostructure is used to manipulate the electronic structure of LaNiO3 (LNO) to improve both OER properties and durability. Through adsorbing iron onto the LNO (LNO@Fe) as γ iron oxyhydroxide (γ-FeOOH), the binding energy of nickel in the LNO exhibited negative shifts, inferring nickel movement toward the metallic state. Consequently, the electrochemical properties of LNO@Fe are further improved. LNO@Fe showed excellent performance (1.98 A cm-2, 1 m KOH, 50 °C at 1.85 V) with 84.1% cell efficiency in AEMWE single cells, demonstrating great improvement relative to LNO. The degradation for the 850 h durability analysis of LNO@Fe is ≈68 mV kh-1, which is ≈58 times less than that of LNO.
Collapse
Affiliation(s)
- Nam In Kim
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehun Lee
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Song Jin
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Junyoung Park
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jae-Yeop Jeong
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jooyoung Lee
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yangdo Kim
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Chiho Kim
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Sung Mook Choi
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
8
|
Matter L, Abdullaeva OS, Shaner S, Leal J, Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306244. [PMID: 38460180 PMCID: PMC11251568 DOI: 10.1002/advs.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
Collapse
Affiliation(s)
- Lukas Matter
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Oliya S. Abdullaeva
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| | - Sebastian Shaner
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - José Leal
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - Maria Asplund
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| |
Collapse
|
9
|
Zhang TX, Coughlin AL, Lu CK, Heremans JJ, Zhang SX. Recent progress on topological semimetal IrO 2: electronic structures, synthesis, and transport properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:273001. [PMID: 38597335 DOI: 10.1088/1361-648x/ad3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024]
Abstract
5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter.
Collapse
Affiliation(s)
- T X Zhang
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
| | - A L Coughlin
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
| | - Chi-Ken Lu
- Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, United States of America
| | - J J Heremans
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - S X Zhang
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
- Quantum Science and Engineering Center, Indiana University, Bloomington, IN 47405, United States of America
| |
Collapse
|
10
|
Wu Z, Hu X, Cai C, Wang Y, Li X, Wen J, Li B, Gong H. Controlled three-dimensional leaf-like NiCoO 2@NiCo layered double hydroxide heterostructures for oxygen evolution electrocatalysts in rechargeable Zn-air batteries. J Colloid Interface Sci 2024; 657:75-82. [PMID: 38035421 DOI: 10.1016/j.jcis.2023.11.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) have garnered attention as a viable choice for large-scale energy storage due to their advantageous characteristics, such as high energy density and cost-effectiveness. Strategies aimed at improving the kinetics of the oxygen evolution reaction (OER) through advanced electrocatalytic materials or structural designs can significantly enhance the efficiency and longevity of ZABs. In this study, we introduce a three-dimensional (3D) leaf-vein system heterojunction architecture. In this structure, NiCoO2 nanowire arrays form the central vein, surrounded by an outer leaf composed of NiCo layered double hydroxide (LDH) nanosheets. All these components are integrated onto a substrate made of Ni foam. Notably, when tested in an alkaline environment, the NiCoO2@NiCo LDH exhibited an overpotential of 272 mV at a current density of 10 mA cm-2, and extended durability evaluations over 12 h underscored its robustness at 99.76 %. The rechargeable ZABs achieved a peak power density of 149 mW cm-2. Furthermore, the NiCoO2@NiCo LDH demonstrated stability by maintaining high round-trip efficiencies throughout more than 680 cycles (equivalent to 340 h) under galvanostatic charge-discharge cycling at 5 mA cm-2. The leaf-vein system heterojunction significantly increased the active sites of the catalysts, facilitating charge transport, improving electronic conductivity, and enhancing overall stability.
Collapse
Affiliation(s)
- Zhenkun Wu
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaolin Hu
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China.
| | - Chengbin Cai
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Yuru Wang
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Li
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Jie Wen
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Bangxing Li
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Hengxiang Gong
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Otake A, Asai K, Einaga Y. Anode Reaction Control for a Single-Compartment Electrochemical CO 2 Reduction Reactor with a Surface-Activated Diamond Cathode. Chemistry 2023:e202302798. [PMID: 38093560 DOI: 10.1002/chem.202302798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 12/23/2023]
Abstract
The electrochemical reaction of carbon dioxide (CO2 ) in aqueous electrolyte solutions is attracting increasing attention for sustainable chemical production. Boron-doped diamond (BDD) electrodes have been previously shown to be very effective for the stable electrochemical production of formic acid from CO2 . Typically, the electrochemical production of formic acid by CO2 reduction (CO2 R) reaction is performed with a dual-compartment flow reactor equipped with a membrane separator. The problems caused by the membrane separator, such as scaling-up, complicated operational control and materials costs can be solved using a membrane free single-compartment reactor. Here we demonstrate anode reaction control for a single-compartment CO2 R flow reactor using a surface-activated BDD cathode and achieve a Faradaic efficiency for formic acid production of over 70 %.
Collapse
Affiliation(s)
- Atsushi Otake
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kana Asai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| |
Collapse
|
12
|
Lee I, Surendran A, Fleury S, Gimino I, Curtiss A, Fell C, Shiwarski DJ, Refy O, Rothrock B, Jo S, Schwartzkopff T, Mehta AS, Wang Y, Sipe A, John S, Ji X, Nikiforidis G, Feinberg AW, Hester J, Weber DJ, Veiseh O, Rivnay J, Cohen-Karni T. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat Commun 2023; 14:7019. [PMID: 37945597 PMCID: PMC10636048 DOI: 10.1038/s41467-023-42697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.
Collapse
Affiliation(s)
- Inkyu Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Samantha Fleury
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ian Gimino
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander Curtiss
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Cody Fell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Omar Refy
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Blaine Rothrock
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Seonghan Jo
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tim Schwartzkopff
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abijeet Singh Mehta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam Sipe
- Department of Material Science and Engineering, The Pennsylvania State University, State College, PA, USA
| | - Sharon John
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Georgios Nikiforidis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Josiah Hester
- Interactive Computing and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Douglas J Weber
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Matter L, Harland B, Raos B, Svirskis D, Asplund M. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioeng 2023; 7:031505. [PMID: 37736015 PMCID: PMC10511262 DOI: 10.1063/5.0152669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.
Collapse
Affiliation(s)
- Lukas Matter
- Author to whom correspondence should be addressed:
| | - Bruce Harland
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | | |
Collapse
|
14
|
Fukushima T, Fukasawa M, Murakoshi K. Unveiling the Hidden Energy Profiles of the Oxygen Evolution Reaction via Machine Learning Analyses. J Phys Chem Lett 2023:6808-6813. [PMID: 37486004 DOI: 10.1021/acs.jpclett.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The oxygen evolution reaction (OER) is a crucial electrochemical process for hydrogen production in water electrolysis. However, due to the involvement of multiple proton-coupled electron transfer steps, it is challenging to identify the specific elementary reaction that limits the rate of the OER. Here we employed a machine-learning-based approach to extract the reaction pathway exhaustively from experimental data. Genetic algorithms were applied to search for thermodynamic and kinetic parameters using the current-electrochemical potential relationship of the OER. Interestingly, analysis of the datasets revealed the energy state distributions of reaction intermediates, which likely originated in the interactions among intermediates or the distribution of multiple sites. Through our exhaustive analyses, we successfully uncovered the hidden energy profiles of the OER. This approach can reveal the reaction pathway to activate for efficient hydrogen production, which facilitates the design of catalysts.
Collapse
Affiliation(s)
- Tomohiro Fukushima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Motoki Fukasawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
15
|
Wang Y, Wang Y, Huang X, Chen M, Xu Y. Ni(NH 3) 62+ more efficient than Ni(H 2O) 62+ and Ni(OH) 2 for catalyzing water and phenol oxidation on illuminated Bi 2MoO 6 with visible light. J Environ Sci (China) 2023; 126:556-564. [PMID: 36503781 DOI: 10.1016/j.jes.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Nickel (hydr)oxide (NiOH) is known to be good co-catalyst for the photoelectrochemical oxidation of water, and for the photocatalytic oxidation of organics on different semiconductors. Herein we report a greatly improved activity of Bi2MoO6 (BMO) by nickel hexammine perchlorate (NiNH). Under visible light, phenol oxidation on BMO was slow. After NiNH, NiOH, and Ni2+ loading, a maximum rate of phenol oxidation increased by factors of approximately 16, 8.8, and 4.7, respectively. With a BMO electrode, all catalysts inhibited O2 reduction, enhanced water (photo-)oxidation, and facilitated the charge transfer at solid-liquid interface, respectively, the degree of which was always NiNH > NiOH > Ni2+. Solid emission spectra indicated that all catalysts improved the charge separation of BMO, the degree of which also varied as NiNH > NiOH > Ni2+. Furthermore, after a phenol-free aqueous suspension of NiNH/BMO was irradiated, there was a considerable Ni(III) species, but a negligible NH2 radical. Accordingly, a plausible mechanism is proposed, involving the hole oxidation of Ni(II) into Ni(IV), which is reactive to phenol oxidation, and hence promotes O2 reduction. Because NH3 is a stronger ligand than H2O, the Ni(II) oxidation is easier for Ni(NH3)6+ than for Ni(H2O)6+. This work shows a simple route how to improve BMO photocatalysis through a co-catalyst.
Collapse
Affiliation(s)
- Yaru Wang
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yechen Wang
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xubo Huang
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Min Chen
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yiming Xu
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Ruiz Esquius J, Morgan DJ, Algara Siller G, Gianolio D, Aramini M, Lahn L, Kasian O, Kondrat SA, Schlögl R, Hutchings GJ, Arrigo R, Freakley SJ. Lithium-Directed Transformation of Amorphous Iridium (Oxy)hydroxides To Produce Active Water Oxidation Catalysts. J Am Chem Soc 2023; 145:6398-6409. [PMID: 36892000 PMCID: PMC10037335 DOI: 10.1021/jacs.2c13567] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The oxygen evolution reaction (OER) is crucial to future energy systems based on water electrolysis. Iridium oxides are promising catalysts due to their resistance to corrosion under acidic and oxidizing conditions. Highly active iridium (oxy)hydroxides prepared using alkali metal bases transform into low activity rutile IrO2 at elevated temperatures (>350 °C) during catalyst/electrode preparation. Depending on the residual amount of alkali metals, we now show that this transformation can result in either rutile IrO2 or nano-crystalline Li-intercalated IrOx. While the transition to rutile results in poor activity, the Li-intercalated IrOx has comparative activity and improved stability when compared to the highly active amorphous material despite being treated at 500 °C. This highly active nanocrystalline form of lithium iridate could be more resistant to industrial procedures to produce PEM membranes and provide a route to stabilize the high populations of redox active sites of amorphous iridium (oxy)hydroxides.
Collapse
Affiliation(s)
- Jonathan Ruiz Esquius
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal
| | - David J Morgan
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Gerardo Algara Siller
- Department of Inorganic Chemistry, Fritz Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Diego Gianolio
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, U.K
| | - Matteo Aramini
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, U.K
| | - Leopold Lahn
- Helmholtz Institut Erlangen-Nürnberg, Helmholtz-Zentrum Berlin GmbH, Cauerstr. 1, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Olga Kasian
- Helmholtz Institut Erlangen-Nürnberg, Helmholtz-Zentrum Berlin GmbH, Cauerstr. 1, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Simon A Kondrat
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45470 Mulheim an der Ruhr, Germany
| | - Graham J Hutchings
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Rosa Arrigo
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, U.K
| | - Simon J Freakley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 2AY, U.K
| |
Collapse
|
17
|
Muthukumar P, Nantheeswaran P, Mariappan M, Pannipara M, Al-Sehemi AG, Anthony SP. Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide. Dalton Trans 2023; 52:3877-3883. [PMID: 36876484 DOI: 10.1039/d2dt04169c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH)2/GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH)2/GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm-2 (scan rate 1 mV s-1). In contrast, N,F-Co(OH)2 without GO and Co(OH)2/GO without fluorine required higher overpotentials (370 (N,F-Co(OH)2) and 325 mV (Co(OH)2/GO)) for producing the current density of 10 mA cm-2. The low Tafel slope (52.6 mV dec-1) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH)2/GO compared to N,F-Co(OH)2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH)2/GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH)2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co2+/Co3+ and the doping of nitrogen and fluorine in N,F-Co(OH)2/GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH)2 electrocatalysts with enhanced OER activity under alkaline conditions.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamil Nadu, India
| | | | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai-603203, Tamil Nadu, India
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | | |
Collapse
|
18
|
Tyndall D, Gannon L, Hughes L, Carolan J, Pinilla S, Jaśkaniec S, Spurling D, Ronan O, McGuinness C, McEvoy N, Nicolosi V, Browne MP. Understanding the effect of MXene in a TMO/MXene hybrid catalyst for the oxygen evolution reaction. NPJ 2D MATERIALS AND APPLICATIONS 2023; 7:15. [PMID: 38665479 PMCID: PMC11041736 DOI: 10.1038/s41699-023-00377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/24/2023] [Indexed: 04/28/2024]
Abstract
Very recently, it has been reported that mixed transition metal oxide (TMO)/MXene catalysts show improved performance over TMO only catalysts for the oxygen evolution reaction (OER). However, the reasoning behind this observation is unknown. In this work mixed Co(OH)2/Ti3C2Tx were prepared and characterized for the OER using ex situ and operando spectroscopy techniques in order to initiate the understanding of why mixed TMO/MXene materials show better performances compared to TMO only catalysts. This work shows that the improved electrocatalysis for the composite material compared to the TMO only catalyst is due to the presence of higher Co oxide oxidation states at lower OER overpotentials for the mixed TMO/MXene catalysts. Furthermore, the presence of the MXene allows for a more mechanically robust film during OER, making the film more stable. Finally, our results show that small amounts of MXene are more advantageous for the OER during long-term stability measurements, which is linked to the formation of TiO2. The sensitivity of MXene oxidation ultimately limits TMO/MXene composites under alkaline OER conditions, meaning mass fractions must be carefully considered when designing such a catalyst to minimize the residual TiO2 formed during its lifetime.
Collapse
Affiliation(s)
- Daire Tyndall
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Lee Gannon
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Physics, Trinity College Dublin, Dublin, Ireland
| | - Lucia Hughes
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Julian Carolan
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Sergio Pinilla
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Sonia Jaśkaniec
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Dahnan Spurling
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Oskar Ronan
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Cormac McGuinness
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Physics, Trinity College Dublin, Dublin, Ireland
| | - Niall McEvoy
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Valeria Nicolosi
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
- I-Form Research Center, Trinity College Dublin, Dublin, Ireland
| | - Michelle Philippa Browne
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
- Helmholtz-Zentrum Berlin fur Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
19
|
Cheng W, Xu Y, Yang C, Su H, Liu Q. Monitoring surface dynamics of electrodes during electrocatalysis using in situ synchrotron FTIR spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:340-346. [PMID: 36891847 PMCID: PMC10000798 DOI: 10.1107/s1600577523000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Monitoring the surface dynamics of catalysts under working conditions is important for a deep understanding of the underlying electrochemical mechanisms towards efficient energy conversion and storage. Fourier transform infrared (FTIR) spectroscopy with high surface sensitivity has been considered as a powerful tool for detecting surface adsorbates, but it faces a great challenge when being adopted in surface dynamics investigations during electrocatalysis due to the complication and influence of aqueous environments. This work reports a well designed FTIR cell with tunable micrometre-scale water film over the surface of working electrodes and dual electrolyte/gas channels for in situ synchrotron FTIR tests. By coupling with a facile single-reflection infrared mode, a general in situ synchrotron radiation FTIR (SR-FTIR) spectroscopic method is developed for tracking the surface dynamics of catalysts during the electrocatalytic process. As an example, in situ formed key *OOH is clearly observed on the surface of commercial benchmark IrO2 catalysts during the electrochemical oxygen evolution process based on the developed in situ SR-FTIR spectroscopic method, which demonstrates its universality and feasibility in surface dynamics studies of electrocatalysts under working conditions.
Collapse
Affiliation(s)
- Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| |
Collapse
|
20
|
Chen R, Liu S, Zhang Y. A nanoelectrode-based study of water splitting electrocatalysts. MATERIALS HORIZONS 2023; 10:52-64. [PMID: 36485037 DOI: 10.1039/d2mh01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of low-cost and efficient catalytic materials for key reactions like water splitting, CO2 reduction and N2 reduction is crucial for fulfilling the growing energy consumption demands and the pursuit of renewable and sustainable energy. Conventional electrochemical measurements at the macroscale lack the potential to characterize single catalytic entities and nanoscale surface features on the surface of a catalytic material. Recently, promising results have been obtained using nanoelectrodes as ultra-small platforms for the study of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on innovative catalytic materials at the nanoscale. In this minireview, we summarize the recent progress in the nanoelectrode-based studies on the HER and OER on various nanostructured catalytic materials. These electrocatalysts can be generally categorized into two groups: 0-dimensional (0D) single atom/molecule/cluster/nanoparticles and 2-dimensional (2D) nanomaterials. Controlled growth as well as the electrochemical characterization of single isolated atoms, molecules, clusters and nanoparticles has been achieved on nanoelectrodes. Moreover, nanoelectrodes greatly enhanced the spatial resolution of scanning probe techniques, which enable studies at the surface features of 2D nanomaterials, including surface defects, edges and nanofacets at the boundary of a phase. Nanoelectrode-based studies on the catalytic materials can provide new insights into the reaction mechanisms and catalytic properties, which will facilitate the pursuit of sustainable energy and help to solve CO2 release issues.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
21
|
Krivina RA, Zlatar M, Stovall TN, Lindquist GA, Eascalera-López D, Cook AK, Hutchison JE, Cherevko S, Boettcher SW. Oxygen Evolution Electrocatalysis in Acids: Atomic Tuning of the Stability Number for Submonolayer IrO x on Conductive Oxides from Molecular Precursors. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Raina A. Krivina
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - T. Nathan Stovall
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A. Lindquist
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Daniel Eascalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James E. Hutchison
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Shannon W. Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
22
|
Gao J, Liu Y, Liu B, Huang KW. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. ACS NANO 2022; 16:17761-17777. [PMID: 36355040 DOI: 10.1021/acsnano.2c08519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The water oxidation reaction (or oxygen evolution reaction, OER) plays a critical role in green hydrogen production via water splitting, electrochemical CO2 reduction, and nitrogen fixation. The four-electron and four-proton transfer OER process involves multiple reaction intermediates and elementary steps that lead to sluggish kinetics; therefore, a high overpotential is necessary to drive the reaction. Among the different water-splitting electrolyzers, the proton exchange membrane type electrolyzer has greater advantages, but its anode catalysts are limited to iridium-based materials. The iridium catalyst has been extensively studied in recent years due to its balanced activity and stability for acidic OER, and many exciting signs of progress have been made. In this review, the surface and bulk Pourbaix diagrams of iridium species in an aqueous solution are introduced. The iridium-based catalysts, including metallic or oxides, amorphous or crystalline, single crystals, atomically dispersed or nanostructured, and iridium compounds for OER, are then elaborated. The latest progress of active sites, reaction intermediates, reaction kinetics, and elementary steps is summarized. Finally, future research directions regarding iridium catalysts for acidic OER are discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Yan Liu
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore637459
| | - Kuo-Wei Huang
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
- KAUST Catalysis Center and Division of Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
- Agency for Science, Technology, and Research, Institute of Materials Research and Engineering, Singapore138634
| |
Collapse
|
23
|
Frei H. Time-Resolved Vibrational and Electronic Spectroscopy for Understanding How Charges Drive Metal Oxide Catalysts for Water Oxidation. J Phys Chem Lett 2022; 13:7953-7964. [PMID: 35981106 DOI: 10.1021/acs.jpclett.2c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporally resolved spectroscopy is a powerful approach for gaining detailed mechanistic understanding of water oxidation at robust Earth-abundant metal oxide catalysts for guiding efficiency improvement of solar fuel conversion systems. Beyond detecting and structurally identifying surface intermediates by vibrational and accompanying optical spectroscopy, knowledge of how charges, sequentially delivered to the metal oxide surface, drive the four-electron water oxidation cycle is critical for enhancing catalytic efficiency. Key issues addressed in this Perspective are the experimental requirements for establishing the kinetic relevancy of observed surface species and the discovery of the rate-boosting role of encounters of two or more one-electron surface hole charges, often in the form of randomly hopping metal oxo or oxyl moieties, for accessing very low-barrier O-O bond-forming pathways. Recent spectroscopic breakthroughs of metal oxide photo- and electrocatalysts inspire future research poised to take advantage of new highly sensitive spectroscopic tools and of methods for fast catalysis triggering.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Nanostructured Iridium Oxide: State of the Art. INORGANICS 2022. [DOI: 10.3390/inorganics10080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iridium Oxide (IrO2) is a metal oxide with a rutile crystalline structure, analogous to the TiO2 rutile polymorph. Unlike other oxides of transition metals, IrO2 shows a metallic type conductivity and displays a low surface work function. IrO2 is also characterized by a high chemical stability. These highly desirable properties make IrO2 a rightful candidate for specific applications. Furthermore, IrO2 can be synthesized in the form of a wide variety of nanostructures ranging from nanopowder, nanosheets, nanotubes, nanorods, nanowires, and nanoporous thin films. IrO2 nanostructuration, which allows its attractive intrinsic properties to be enhanced, can therefore be exploited according to the pursued application. Indeed, IrO2 nanostructures have shown utility in fields that span from electrocatalysis, electrochromic devices, sensors, fuel cell and supercapacitors. After a brief description of the IrO2 structure and properties, the present review will describe the main employed synthetic methodologies that are followed to prepare selectively the various types of nanostructures, highlighting in each case the advantages brought by the nanostructuration illustrating their performances and applications.
Collapse
|
25
|
Geppert J, Röse P, Czioska S, Escalera-López D, Boubnov A, Saraçi E, Cherevko S, Grunwaldt JD, Krewer U. Microkinetic Analysis of the Oxygen Evolution Performance at Different Stages of Iridium Oxide Degradation. J Am Chem Soc 2022; 144:13205-13217. [PMID: 35850525 PMCID: PMC9335572 DOI: 10.1021/jacs.2c03561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
The microkinetics
of the electrocatalytic oxygen evolution reaction
substantially determines the performance in proton-exchange membrane
water electrolysis. State-of-the-art nanoparticulated rutile IrO2 electrocatalysts present an excellent trade-off between activity
and stability due to the efficient formation of intermediate surface
species. To reveal and analyze the interaction of individual surface
processes, a detailed dynamic microkinetic model approach is established
and validated using cyclic voltammetry. We show that the interaction
of three different processes, which are the adsorption of water, one
potential-driven deprotonation step, and the detachment of oxygen,
limits the overall reaction turnover. During the reaction, the active
IrO2 surface is covered mainly by *O, *OOH, and *OO adsorbed
species with a share dependent on the applied potential and of 44,
28, and 20% at an overpotential of 350 mV, respectively. In contrast
to state-of-the-art calculations of ideal catalyst surfaces, this
novel model-based methodology allows for experimental identification
of the microkinetics as well as thermodynamic energy values of real
pristine and degraded nanoparticles. We show that the loss in electrocatalytic
activity during degradation is correlated to an increase in the activation
energy of deprotonation processes, whereas reaction energies were
marginally affected. As the effect of electrolyte-related parameters
does not cause such a decrease, the model-based analysis demonstrates
that material changes trigger the performance loss. These insights
into the degradation of IrO2 and its effect on the surface
processes provide the basis for a deeper understanding of degrading
active sites for the optimization of the oxygen evolution performance.
Collapse
Affiliation(s)
- Janis Geppert
- Institute for Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, Adenauerring 20b, Karlsruhe 76131, Germany
| | - Philipp Röse
- Institute for Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, Adenauerring 20b, Karlsruhe 76131, Germany
| | - Steffen Czioska
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany
| | - Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
| | - Alexey Boubnov
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany.,Institute of Catalysis Reasearch and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Erisa Saraçi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany.,Institute of Catalysis Reasearch and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany.,Institute of Catalysis Reasearch and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ulrike Krewer
- Institute for Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, Adenauerring 20b, Karlsruhe 76131, Germany
| |
Collapse
|
26
|
Foucher AC, Yang S, Rosen DJ, Lee JD, Huang R, Jiang Z, Barrera FG, Chen K, Hollyer GG, Friend CM, Gorte RJ, Murray CB, Stach EA. Synthesis and Characterization of Core-Shell Cu-Ru, Cu-Rh, and Cu-Ir Nanoparticles. J Am Chem Soc 2022; 144:7919-7928. [PMID: 35471010 DOI: 10.1021/jacs.2c02538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Optimizing the use of expensive precious metals is critical to developing sustainable and low-cost processes for heterogeneous catalysis or electrochemistry. Here, we report a synthesis method that yields core-shell Cu-Ru, Cu-Rh, and Cu-Ir nanoparticles with the platinum-group metals segregated on the surface. The synthesis of Cu-Ru, Cu-Rh, and Cu-Ir particles allows maximization of the surface area of these metals and improves catalytic performance. Furthermore, the Cu core can be selectively etched to obtain nanoshells of the platinum-group metal components, leading to a further increase in the active surface area. Characterization of the samples was performed with X-ray absorption spectroscopy, X-ray powder diffraction, and ex situ and in situ transmission electron microscopy. CO oxidation was used as a reference reaction: the three core-shell particles and derivatives exhibited promising catalyst performance and stability after redox cycling. These results suggest that this synthesis approach may optimize the use of platinum-group metals in catalytic applications.
Collapse
Affiliation(s)
- Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renjing Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhiqiao Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Francisco G Barrera
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelly Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George G Hollyer
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Raymond J Gorte
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
27
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202114437. [PMID: 34942052 PMCID: PMC9305877 DOI: 10.1002/anie.202114437] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.
Collapse
Affiliation(s)
- Anja Lončar
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Nejc Hodnik
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
28
|
Saruyama M, Pelicano CM, Teranishi T. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem Sci 2022; 13:2824-2840. [PMID: 35382478 PMCID: PMC8905826 DOI: 10.1039/d1sc06015e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.
Collapse
Affiliation(s)
- Masaki Saruyama
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | | | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| |
Collapse
|
29
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter‐relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anja Lončar
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Nejc Hodnik
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| |
Collapse
|
30
|
Fornaciari JC, Weng LC, Alia SM, Zhan C, Pham TA, Bell AT, Ogitsu T, Danilovic N, Weber AZ. Mechanistic understanding of pH effects on the oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Singh H, Liyanage W, Nath M. Carbon nanotube Encapsulated Metal selenide Nanostructures for Efficient Electrocatalytic Oxygen Evolution Reaction. Chem Commun (Camb) 2022; 58:8360-8363. [DOI: 10.1039/d2cc03026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel selenide nanowires were grown inside carbon nanotubes through in situ encapsulation via one-step chemical vapor deposition. These NiSe2@CNT nanohybrids showed excellent electrocatalytic activity for water splitting with low overpotential...
Collapse
|
32
|
Qi Y, Yang Z, Peng S, Dong Y, Wang M, Bao XQ, Li H, Xiong D. CoTe 2–NiTe 2 heterojunction directly grown on CoNi alloy foam for efficient oxygen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00902h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One-step fabrication of a self-supported CoTe2–NiTe2 heterojunction electrocatalyst directly grown on CoNi foam for efficient and durable oxygen evolution reactions.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zhi Yang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Shuai Peng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Youcong Dong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xiao-Qing Bao
- State Key Laboratory of Optical Technologies on Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P.R. China
| | - Hong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
33
|
Yang X, Zheng Z, Hu J, Qu J, Ma D, Li J, Guo C, Li CM. Observation of 4 th-order water oxidation kinetics by time-resolved photovoltage spectroscopy. iScience 2021; 24:103500. [PMID: 34934920 DOI: 10.1016/j.isci.2021.103500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Artificial photo-driven water oxidation has been proposed over half a century through a four-charge involved multiple-step oxygen evolution process. However, the knowledge of the intrinsic activity, such as the rate-law of the water oxidation reactions, has been inadequately studied. Up to date, the highest order reported is the third one under photoelectrochemical condition. In this work, we identified the fourth-order charge decay reactions on hematite by using a time-resolved surface photovoltage probe technique. A theoretical turnover frequency (TOF) > 100 nm-2·s-1 can be expected for O2 molecules when the hole density >0.1 nm-2. This work demonstrates a facile and robust method to investigate the high-order reaction kinetics. More excitingly, this research built the bridge between the rate-law, rate-determining step, and energy barrier of intermediates.
Collapse
Affiliation(s)
- Xiaogang Yang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.,Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000, P R China
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000, P R China
| | - Jundie Hu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, PR China
| | - Jingsha Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.,Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou 215009, PR China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.,Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou 215009, PR China.,Institute of Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
34
|
Bozal-Ginesta C, Rao RR, Mesa CA, Liu X, Hillman SAJ, Stephens IEL, Durrant JR. Redox-State Kinetics in Water-Oxidation IrO x Electrocatalysts Measured by Operando Spectroelectrochemistry. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Carlota Bozal-Ginesta
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Reshma R. Rao
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Camilo A. Mesa
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Xinyi Liu
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Sam A. J. Hillman
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Ifan E. L. Stephens
- Department of Materials, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - James R. Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
35
|
First-Principles Study of Pt-Based Bifunctional Oxygen Evolution & Reduction Electrocatalyst: Interplay of Strain and Ligand Effects. ENERGIES 2021. [DOI: 10.3390/en14227814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) of Pt-based Pt3M/Pt nanoalloy catalysts (where M represents a 3d transition metal) for bifunctional electrocatalysts using spin-polarized density functional theory calculations. First, the stability of the Pt3M/Pt catalyst was investigated by calculating the bulk formation energy and surface separation energy. Using the calculated adsorption energies for the OER/ORR intermediates in the modeled catalysts, we predicted the OER/ORR overpotentials and potential limiting steps for each catalyst. The origins of the enhanced catalytic reactivity in Pt3M/Pt catalysts caused by strain and ligand effects are explained separately. In addition, compared to Pt(111), the OER and ORR activities in a Pt3Ni/Ptskin catalyst with a Pt skin layer were increased by 13.7% and 18.4%, respectively, due to the strain and ligand effects. It was confirmed that compressive strain and ligand effects are key factors in improving the catalytic performance of OER/ORR bifunctional catalysts.
Collapse
|
36
|
Seo H, Park S, Cho KH, Choi S, Ko C, Randriamahazaka H, Nam KT. Complex Impedance Analysis on Charge Accumulation Step of Mn 3O 4 Nanoparticles during Water Oxidation. ACS OMEGA 2021; 6:18404-18413. [PMID: 34308071 PMCID: PMC8296608 DOI: 10.1021/acsomega.1c02397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The development of efficient water-oxidizing electrocatalysts is a key issue for achieving high performance in the overall water electrolysis technique. However, the complexity of multiple electron transfer processes and large activation energies have been regarded as major bottlenecks for efficient water electrolysis. Thus, complete electrochemical processes, including electron transport, charge accumulation, and chemical bond formation/dissociation, need to be analyzed for establishing a design rule for film-type electrocatalysts. In light of this, complex capacitance analysis is an effective tool for investigating the charge accumulation and dissipation processes of film-type electrocatalysts. Here, we conduct complex capacitance analysis for the Mn3O4 nanocatalyst, which exhibits superb catalytic activity for water oxidation under neutral conditions. Charge was accumulated on the catalyst surface by the change in Mn valence between Mn(II) and Mn(IV) prior to the rate-determining O-O bond forming step. Furthermore, we newly propose the dissipation ratio (D) for understanding the energy balance between charge accumulation and charge consumption for chemical O-O bond formation. From this analysis, we reveal the potential- and thickness-dependent contribution of the charge accumulation process on the overall catalytic efficiency. We think that an understanding of complex capacitance analysis could be an effective methodology for investigating the charge accumulation process on the surface of general film-type electrocatalysts.
Collapse
Affiliation(s)
- Hongmin Seo
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Sunghak Park
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
- Nano
System Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Kang Hee Cho
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Seungwoo Choi
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Changwan Ko
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Hyacinthe Randriamahazaka
- ITODYS,
UMR 7086 CNRS, SIELE Group, Université Paris Diderot, Paris 75013, France
- Chemistry,
Université Paris Diderot, Paris 75205, France
| | - Ki Tae Nam
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
- Nano
System Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Over H. Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Over
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|
38
|
The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat Commun 2021; 12:3935. [PMID: 34168129 PMCID: PMC8225786 DOI: 10.1038/s41467-021-24181-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Combining high activity and stability, iridium oxide remains the gold standard material for the oxygen evolution reaction in acidic medium for green hydrogen production. The reasons for the higher electroactivity of amorphous iridium oxides compared to their crystalline counterpart is still the matter of an intense debate in the literature and, a comprehensive understanding is needed to optimize its use and allow for the development of water electrolysis. By producing iridium-based mixed oxides using aerosol, we are able to decouple the electronic processes from the structural transformation, i.e. Ir oxidation from IrO2 crystallization, occurring upon calcination. Full characterization using in situ and ex situ X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy allows to unambiguously attribute their high electrochemical activity to structural features and rules out the iridium oxidation state as a critical parameter. This study indicates that short-range ordering, corresponding to sub-2nm crystal size for our samples, drives the activity independently of the initial oxidation state and composition of the calcined iridium oxides. The origins of the superior catalytic activity of poorly crystallized Ir-based oxide material for the OER in acid is still under debate. Here, authors synthesize porous IrMo oxides to deconvolute the effect of Ir oxidation state from short-range ordering and show the latter to be a key factor.
Collapse
|