1
|
Amalfitano N, Patel N, Haddi ML, Benabid H, Pazzola M, Vacca GM, Tagliapietra F, Schiavon S, Bittante G. Detailed mineral profile of milk, whey, and cheese from cows, buffaloes, goats, ewes, and dromedary camels, and efficiency of recovery of minerals in their cheese. J Dairy Sci 2024; 107:8887-8907. [PMID: 38969004 DOI: 10.3168/jds.2023-24624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
Milk and dairy products are important in the human diet not only for the macronutrients, such as proteins and fats, that they provide, but also for the supply of essential micronutrients, such as minerals. Minerals are present in milk in soluble form in the aqueous phase and in colloidal form associated with the macronutrients of the milk. These 2 forms affect the nutritional functions of the minerals and their contribution to the technological properties of milk during cheese making. The aim of the present work was to study and compare the detailed mineral profiles of dairy foods (milk, whey, and cheese) obtained from cows, buffaloes, goats, ewes and dromedary camels, and to analyze the recovery in the curd of the individual minerals according to a model cheese-making procedure applied to the milk of these 5 dairy species. The detailed mineral profile of the milk samples was obtained by inductively coupled plasma-optical emission spectroscopy. We divided the 21 minerals identified in the 3 different matrices into essential macro- and microminerals, and environmental microminerals, and calculated the recovery of the individual minerals in the cheeses. The complete mineral profiles and the recoveries in the cheeses were then analyzed using a linear mixed model with Species, Food, and their interaction included as fixed effects, and Sample within Species as a random effect. The mineral profiles of each food matrix were then analyzed separately with a general linear model in which only the fixed effect of Species was included. The results showed that the species could be divided into 2 groups: those producing a more diluted milk characterized by a higher content of soluble minerals (in particular, K), and those with a more concentrated milk with a higher colloidal mineral content in the skim of the milk (such as Ca and P). The recoveries of the minerals in the curd were in line with the initial content in the milk, and also highlighted the fact that the influence of the brine was not limited to the Na content but to its whole mineral makeup. These results provide valuable information for the evaluation of the nutritional and technological properties of milk, and for the uses made of the byproducts of cheese making from the milk of different species.
Collapse
Affiliation(s)
- Nicolò Amalfitano
- DAFNAE - Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy.
| | - Nageshvar Patel
- DAFNAE - Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Mohamed-Laid Haddi
- Laboratoire de Mycologie, Biotechnologie et Activité Microbienne, Université des Frères Mentouri, Constantine 25000, Algeria
| | - Hamida Benabid
- Institut de Nutrition, Alimentation et Technologies Agro-Alimentaires, Université des Frères Mentouri, Constantine 25000, Algeria
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | | - Franco Tagliapietra
- DAFNAE - Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Stefano Schiavon
- DAFNAE - Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Giovanni Bittante
- DAFNAE - Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| |
Collapse
|
2
|
Seyiti S, Kelimu A, Yusufu G. Bactrian Camel Milk: Chemical Composition, Bioactivities, Processing Techniques, and Economic Potential in China. Molecules 2024; 29:4680. [PMID: 39407609 PMCID: PMC11478162 DOI: 10.3390/molecules29194680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Bactrian camel (BC) milk has gained increasing attention due to its unique nutritional profile and potential bioactivities. This comprehensive review explores the chemical composition, bioactivities, processing techniques, and economic potential of BC milk in China. The distinctive chemical composition of BC milk, including protein, lipid, carbohydrate, vitamin, and mineral content, is discussed, emphasizing its differences from other mammalian milk. The review highlights the various bioactivities of BC milk, such as anti-inflammatory, antidiabetic, lipid-lowering, and anticancer properties, as well as its modulatory effects on intestinal microbiota. The technological properties of BC milk, focusing on its heat stability, coagulation behavior, and potential for product development, are examined. The review also addresses current processing techniques and their impact on milk quality. Finally, the economic potential and future perspectives of BC milk in China are evaluated. This review provides valuable insights into the multifaceted aspects of BC milk, serving as a foundation for future research and development in this emerging field. The motivation for this review stems from the growing interest in BC milk as a functional food and the need for a comprehensive understanding of its properties, applications, and market potential to guide future research and industry development.
Collapse
Affiliation(s)
- Shamila Seyiti
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Gulinaer Yusufu
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| |
Collapse
|
3
|
Huang Y, Mintah BK, Dabbour M, Liu S, Guo T, Xu H, Dai C, Chen X, Ma H, He R. Comparative analysis of the nutritional composition and volatile compounds in male and female adults, nymphs, and molts of Eupolyphaga sinensis Walker. J Food Sci 2024; 89:6378-6393. [PMID: 39245923 DOI: 10.1111/1750-3841.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
ABSTRAC Female adult Eupolyphaga sinensis Walker (FAESW) has traditionally been a food source in Southeast Asian countries such as China and India, due to its rich nutritional content. However, the nutritional value of male adults (MAESW) and its molts (MESW) has hardly been reported. Therefore, this study aims to explore the potential application of MAESW and MESW in food by investigating and comparing their nutritional composition (i.e., protein, amino acids, fatty acids, and essential elements) with traditional sources of nutrition. The protein content of MAESW and MESW was 66.10 ± 0.49% and 59.86 ± 6.07%, respectively, and the highest energy content (462.26 ± 1.28 kcal/100 g) was observed for MAESW. Eight essential amino acids were determined, of which the males and MESW were found to have higher contents than those of FAESW (p < 0.05). Oleic and linoleic acid contents were higher in the adults than nymphs. Moreover, MESW was predominant in calcium (6770.84 mg/kg), whereas MAESW was rich in iron (556.12 mg/kg). Likened to chicken, the protein, amino acid, fatty acid, and mineral contents of ESW were higher. The volatiles of ESW were related to hexaldehyde, benzaldehyde, acetic acid, and butyric acid. This study provides a better understanding of the chemical composition of ESWs during their growth cycle and helps optimize information on edible insects, promoting their use as a potential food source for humans. PRACTICAL APPLICATION As a kind of edible insect, the utilization of adult male Eupolyphaga sinensis Walker (ESW) and its molt is very low at present. Therefore, this study examined the nutrients and volatile substances of ESW (at different growth stages) and molt, which provided a theoretical basis for the subsequent development and utilization of ESW.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, Accra, Ghana
- Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Shuixin Liu
- Xinxing Tuyuan Specialized Cooperatives of Huangtang Town, Danyang, China
| | - Tao Guo
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Messina L, Licata P, Bruno F, Litrenta F, Costa GL, Ferrantelli V, Peycheva K, Panayotova V, Fazio F, Bruschetta G, Tabbì M, Nava V. Occurrence and health risk assessment of mineral composition and aflatoxin M1 in cow milk samples from different areas of Sicily, Italy. J Trace Elem Med Biol 2024; 85:127478. [PMID: 38870651 DOI: 10.1016/j.jtemb.2024.127478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
This study aimed to determine 16 mineral elements (Cd, Pb, As, Na, Mg, Al, Ca, K, Cr, Mn, Fe, Ni, Cu, Zn and Se) using inductively coupled plasma mass spectrometry (ICP-MS) and a direct mercury analyzer (DMA-80) for Hg evaluation. Aflatoxin M1 was determined by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) in cow milk samples. This research considered 180 milk samples, 20 by province (Palermo, Catania, Messina), collected for a period of three years (2020-2022) to assess the potential risks for consumer, the safety status and nutritional quality related to mineral intake by consuming of milk. All samples showed a Pb concentration below the limit reported by European Regulation 915/2023. Cadmium and Hg concentrations were below the Limit Of Quantification (LOQ) in all samples analyzed. The milk samples analyzed proved to be a good source of Ca (up to 44.5 % of the dietary reference values), with well percentages also for Na (up to 7.6 %), K (up to 23.1 %) and Mg (up to 11.1 %). Regarding trace elements, the results reported that chromium requires attention; its value was always higher than 168.8 % in all samples analyzed. Levels of arsenic and lead were up to 20.2 % and up 7.1 % respectively. Aflatoxin M1 concentrations were below the limit of detection (< 0,009 mcg/kg) in all milk analyzed. Therefore, further studies are needed to safeguard consumer health, the quality of the product and to assess the state of animal health.
Collapse
Affiliation(s)
- Laura Messina
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| | - Patrizia Licata
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| | - Fabio Bruno
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy.
| | - Federica Litrenta
- Department of Biomedical and Dental Sciences and of Morphological and Functional Imagines (BIOMORF), University of Messina, Messina 98122, Italy
| | - Giovanna Lucrezia Costa
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| | | | - Katya Peycheva
- Department of Chemistry, Medical University of Varna, Varna 9002, Bulgaria
| | | | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| | - Marco Tabbì
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| | - Vincenzo Nava
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, Messina 98168, Italy
| |
Collapse
|
5
|
Pan J, Yu Z, Dai J, Jiang H, Shi C, Du Q, Zhu W, Bari L, Fan R, Wang J, Yang Y, Han R. Effect of processing methods on the distribution of mineral elements in goat milk fractions. J Dairy Sci 2024; 107:5449-5459. [PMID: 38490559 DOI: 10.3168/jds.2024-24520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/17/2024] [Indexed: 03/17/2024]
Abstract
Milk and dairy products are excellent sources of mineral elements, including Ca, P, Mg, Na, K, and Zn. The purpose of this study was to determine the effect of nonthermal (homogenization) and thermal (heat treatment) treatments on the distribution of mineral elements in 4 milk fractions: fat, casein, whey protein, and aqueous phase. The study results revealed that the distribution of mineral elements (such as Mg and Fe) in fat fractions is extremely low, whereas significant mineral elements such as Ca, Zn, Fe, and Cu are mostly dispersed in casein fractions. For nontreated goat milk, Mo is the only element identified in the whey protein fraction, whereas K and Na are mostly found in the aqueous phase. Mineral element concentrations in fat (K, Zn, and so on) and casein fractions (Fe, Mo, and so on) increased dramatically after homogenization. Homogenization greatly decreased the concentration of mineral elements in the whey protein fraction (Ca, Na, and so on) and aqueous phase (Fe, Cu, and so on). After heat treatment, the element content in the fat fraction and casein fraction increased greatly when compared with raw milk, such as Cu and Mg in the fat fraction, Na and Cu in the whey protein fraction, the concentration of components such as Mg and Na in casein fraction increased considerably. In contrast, after homogenization, Zn in the aqueous phase decreased substantially, whereas Fe increased significantly. Therefore, both homogenization and heat treatment have an effect on the mineral element distribution in goat milk fractions.
Collapse
Affiliation(s)
- Junyu Pan
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Zhongna Yu
- Haidu College, Qingdao Agricultural University, Yantai, China
| | - Jiayin Dai
- Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Hongning Jiang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Cuiping Shi
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Qijing Du
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Wanting Zhu
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Latiful Bari
- Food and Agriculture Research Division, Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rongbo Fan
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jun Wang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongwei Han
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| |
Collapse
|
6
|
Kerdoun MA, Djafer R. Toxic metal levels in raw camel milk sold in the northern Algerian Sahara. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:153-160. [PMID: 38538249 DOI: 10.1080/19393210.2024.2326917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/02/2024] [Indexed: 06/09/2024]
Abstract
The consumption of camel milk is gaining popularity in Algeria. This study aimed to determine the concentrations of Lead (Pb), Cadmium (Cd), Nickel (Ni) and Mercury (Hg) in camel milk sold in Southeast Algeria and assess the potential health risks associated with its consumption. 120 samples of camel milk were collected from 10 farms located near the roads in the south of Algeria. Metals were measured using an atomic absorption spectrophotometer with a graphite furnace and Target Hazard Quotients (THQs) were calculated. The mean concentrations were 0.026 ± 0.013 mg/kg, 0.001 ± 0.0002 mg/kg, 0.017 ± 0.002 mg/kg and 0.0005 ± 0.0002 mg/kg for Pb, Cd, Ni and Hg. The THQ was higher for children, suggesting health risks associated with consumption of camel milk for this age group (p < .001). The primary contribution of this study is the establishment of a database on toxic metal levels in camel milk, which can be valuable to manage possible risk associated with metals in milk.
Collapse
Affiliation(s)
- Mohamed Amine Kerdoun
- Department of Pharmacy, Faculty of Medical Sciences, Kasdi Merbah University, Ouargla, Algeria
- Laboratory of Biopharmacy and Pharmatechnology, Faculty of Medical Sciences, Ferhat Abbas University, Setif, Algeria
| | - Rachid Djafer
- Toxicology Service and Poison Control Center, Ibn-Sina Hospital, Annaba University Hospital, Annaba, Algeria
- Department of Pharmacy, Faculty of Medical Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
7
|
Pan J, Yu Z, Jiang H, Shi C, Du Q, Fan R, Wang J, Bari L, Yang Y, Han R. Effect of lactation on the distribution of mineral elements in goat milk. J Dairy Sci 2024; 107:2774-2784. [PMID: 37949398 DOI: 10.3168/jds.2023-23877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The distribution of mineral elements in milk is crucial for their absorption and utilization, however, there has been limited attention given to the status of mineral elements in goat milk. In this study, goat milk was collected at 4 lactation periods (1-3, 90, 150, 240 d) and separated into 4 fractions (fat, casein, whey, and aqueous phase). The concentrations of Mg, Ca, Na, K, Zn, Fe, Cu, Mn, Co, Ni, Mo, and Cr in 4 fractions were analyzed using an inductively coupled plasma emission spectrometer. Our findings reveal that Ca, Zn, Fe, Cu, Mn, and Cr exhibit the highest levels in casein, while Mo demonstrates the highest content in whey. Additionally, Mg, Na, K, and Ni display the highest concentrations in the aqueous phase. Specifically, the contents of Ca, Cu and Fe in casein decrease from 1-3 to 150 d of lactation but increase from 150 to 240 d of lactation. Furthermore, the content of Mg in the aqueous phase decreases from 1-3 to 90 d of lactation but increases from 90 to 240 d of lactation. The content of Na and K in the aqueous phase decreases from 1-3 to 150 d of lactation. Notably, the content of Mo in whey increases from 1-3 to 150 d of lactation and decreases from 150 to 240 d. Our research contributes to the advancement of understanding the bioavailability of mineral elements in goat milk.
Collapse
Affiliation(s)
- Junyu Pan
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Zhongna Yu
- Haidu College, Qingdao Agricultural University, Laiyang, 265200, Shandong, China
| | - Hongning Jiang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Cuiping Shi
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Qijing Du
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongbo Fan
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jun Wang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Latiful Bari
- Food and Agriculture Research Division, Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Yongxin Yang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong, China
| | - Rongwei Han
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong, China.
| |
Collapse
|
8
|
Kavasi N, Sahoo SK. Measurement of 90Sr and 87Sr/ 86Sr isotope ratio in Japanese cow milk sample using thermal ionization mass spectrometry. Food Chem 2024; 434:137421. [PMID: 37713756 DOI: 10.1016/j.foodchem.2023.137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
The pure beta emitter 90Sr (T1/2 = 28.8y) is a typical contaminant released by nuclear accidents and nuclear explosions. In the event of a nuclear disaster, it is crucial to identify radioactive pollutants quickly, to expedite the public's awareness of radiation exposure. In this work, a rapid 90Sr analysis protocol using thermal ionization mass spectrometry (TIMS) was developed for milk samples. With the improved sample preparation, Sr separation, and a newly developed TIMS method, 18 milk samples can be analyzed in less than 30 h and only 1 mL of cow milk is required for the complete analysis. The minimum detectable activity concentration of 90Sr is affected by the stable Sr concentration therefore, it is around 500 mBq·kg-1 (∼100ag·g-1). Additionally, 87Sr/86Sr isotope ratios (0.71518(9)-0.74132(4)) were determined for the first time in Japanese cow milk samples.
Collapse
Affiliation(s)
- Norbert Kavasi
- Fukushima Environmental Research Project, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Environmental Sciences, Jožef Stefan Institute, 39 Jamova, Ljubljana 1000, Slovenia
| | - Sarata K Sahoo
- Fukushima Environmental Research Project, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
9
|
Sasaki Y, Lyu X, Kawashima T, Zhang Y, Ohshiro K, Okabe K, Tsuchiya K, Minami T. Nanoarchitectonics of highly dispersed polythiophene on paper for accurate quantitative detection of metal ions. RSC Adv 2024; 14:5159-5166. [PMID: 38332791 PMCID: PMC10851342 DOI: 10.1039/d3ra08429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
π-Conjugated polymers such as polythiophene provide intramolecular wire effects upon analyte capture, which contribute to sensitive detection in chemical sensing. However, inherent aggregation-induced quenching causes difficulty in fluorescent chemical sensing in the solid state. Herein, we propose a solid-state fluorescent chemosensor array device made of a paper substrate (PCSAD) for the qualitative and quantitative detection of metal ions. A polythiophene derivative modified by dipicolylamine moieties (1poly), which shows optical changes upon the addition of target metal ions (i.e., Cu2+, Cd2+, Ni2+, Co2+, Pb2+, Zn2+, and Hg2+), was highly dispersed on the paper substrate using office apparatus. In this regard, morphological observation of the PCSAD after printing of 1poly suggested the contribution of the fiber structures of the paper substrate to the homogeneous dispersion of 1poly ink to suppress aggregation-induced quenching. The optical changes in the PCSAD upon the addition of metal ions was rapidly recorded using a smartphone, which was further applied to imaging analysis and pattern recognition techniques for high-throughput sensing. Indeed, the printed PCSAD embedded with 1poly achieved the accurate detection of metal ions at ppm levels contained in river water. The limit of detection of the PCSAD-based sensing system using a smartphone (48 ppb for Cu2+ ions) is comparable to that of a solution-based sensing system using a stationary spectrophotometer (16 ppb for Cu2+ ions). Therefore, the methodology based on a combination of a paper-based sensor array and a π-conjugated polymer will be a promising approach for solid-state fluorescent chemosensors.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Takayuki Kawashima
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yijing Zhang
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kiyosumi Okabe
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
10
|
Zakaria AM, Amin YA, Zakaria HM, Farrag F, Fericean L, Banatean-Dunea I, Abdo M, Hafez A, Mohamed RH. Impact of grazing around industrial areas on milk heavy metals contamination and reproductive ovarian hormones of she-camel with assessment of some technological processes on reduction of toxic residue concentrations. BMC Vet Res 2024; 20:34. [PMID: 38297295 PMCID: PMC10829237 DOI: 10.1186/s12917-024-03882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Heavy metals are one of the most toxic chemical pollutants of the environment. Their hazards not restricted to human but extend to animal productivity and reproductively. The present study aimed to assess the impact of grazing around industrial areas on the levels of copper (Cu) and aluminum (Al) residues in milk samples collected from dromedary she-camels and studying their effects on some ovarian hormones. In addition, the study aimed to investigate methods of removal of the toxic concentrations of these heavy metals in milk by applying different technological processes. Blood and milk samples were collected from 30 dromedary she-camels, 15 grazing in non-industrial areas (group A) and 15 grazing in industrial areas (group B). Detection of the levels of these heavy metals in milk was done. Ovarian hormones investigation on the blood was performed. Different technological processes such as boiling, skimming and fermentation were applied to all contaminated samples to reduce the toxic concentrations of these heavy metals. Results revealed that all examined milk samples in both groups contained Cu, while 40% of group A and 100 % of group B contained Al residues with different concentrations. The levels of Cu and Al residues in samples of group A not exceeded the maximum residual limit (MRL) set by World Health Organization (WHO) while 60% and 100% of milk samples in group B contained Cu and Al residues exceeded MRL, respectively. Technological processes induce variant changes in the levels of these metals in milk. Heat treatment of milk in Al vats leads to leaching of Al from containers to the milk causing significant increase in Al load, while Cu level was not significantly affected. Boiling in stainless-steel containers decreased the levels of Al and Cu but in non-significant levels. Regarding skimming process, small amount of Cu and Al escaped into the skimmed milk while greater amount were recovered in the cream. Fermentation by probiotic bacteria showed that milk fermentation has non-significant effect on Cu and Al levels. Investigation of ovarian hormones (estrogen and progesterone) revealed presence of a signification reduction in the levels of these hormones in group B compared to group A. In addition, a negative correlation was found between these heavy metals and ovarian hormones concentrations in the blood. It is concluded that grazing of dromedary camels around industrial areas induce heavy metals toxicity represented by excretion of these metals in milk and significant reduction on ovarian function showed by reduction of estrogen and progesterone levels. Technological processes such as skimming decreased the levels of Al and Cu residues in milk.
Collapse
Affiliation(s)
- Asem Mohammed Zakaria
- Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt.
| | - Yahia A Amin
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Haydi Mohamed Zakaria
- Department of Clinical Research and Health Development, Menoufia Directorate of Health Affairs, Ministry of Health and population, 32511 Shebin El-Kom, Menoufia, Egypt
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary medicine, Kafr-elsheikh University, Kafr-elsheikh, Egypt
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Delta University for Science and Technology, 7730103, Dakahlia, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645, Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645, Timisoara, Romania
| | - Mohamed Abdo
- Department of Animal histology and anatomy, school of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat city, Egypt
| | - Ahmed Hafez
- Department of Pharmacology, Faculty of veterinary medicine, Aswan University, Aswan, Egypt
| | - Ragab Hassan Mohamed
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| |
Collapse
|
11
|
Chen L, Hong T, Li Z, Shen G, Gu Y, Han J. A comparison of milk fat globule membranes and whey proteomes: New insight into variation nutrient differences between Buffalo, Cow, Goat, and Yak. Food Chem 2023; 429:136845. [PMID: 37453337 DOI: 10.1016/j.foodchem.2023.136845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
In this study, the whey and milk fat globule membrane (MFGM) proteomes of buffalo, cow, goat, and yak milk were analyzed using label-free proteomic technology. Totally, 1,292 MFGM proteins and 686 whey proteins were identified from these four species, and GO analysis revealed there were specific proteins with different functions in both whey (376) and MFGM (982) proteomes. The principal component analysis showed that ALB, TF, CSN1S1, and GLYCAM1 are characteristic markers of the milk for each of the four species. Furthermore, the conserved and differential in the expression of whey and MFGM proteins across the four species were identified by limma, and subsequent KEGG pathway analysis showed that immune-related proteins are both conserved and species-specific in the four species. These results provide a deepening of the understanding of the characteristics of proteins in whey and MFGMs from these four common dairy animals and new insight into developing dairy production.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tiannuo Hong
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ziqi Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guohui Shen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanting Gu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Juan Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Laboratory of Safety & Nutritional Function Risk Assessment for Agricultural Products of China Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Digital Agriculture and Rural Research Institute of CAAS (Zibo), Shan Dong 255022, China.
| |
Collapse
|
12
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Tárrega A, Heredia A, Andrés A. In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa. Molecules 2023; 28:7298. [PMID: 37959717 PMCID: PMC10649959 DOI: 10.3390/molecules28217298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The growing number of older adults necessitates tailored food options that accommodate the specific diseases and nutritional deficiencies linked with ageing. This study aims to investigate the influence of age-related digestive conditions in vitro on the phenolic profile, antioxidant activity, and bioaccessibility of minerals (Ca, Fe, and Mg) in two types of unfermented, fermented, and fermented dried quinoa and lentils. Solid-state fermentation, combined with drying at 70 °C, significantly boosted the total phenolic content in Castellana and Pardina lentils from 5.05 and 6.6 to 10.5 and 7.5 mg gallic acid/g dry weight, respectively, in the bioaccessible fraction following the standard digestion model, compared to the unfermented samples. The phenolic profile post-digestion revealed elevated levels of vanillic and caffeic acids in Castellana lentils, and vanillic acid in Pardina lentils, while caffeic acids in Castellana lentils were not detected in the bioaccessible fraction. The highest antioxidant potency composite index was observed in digested fermented dried Castellana lentils, with white quinoa samples exhibiting potency above 80%. Mineral bioaccessibility was greater in fermented and fermented dried samples compared to unfermented ones. Finally, the digestive changes that occur with ageing did not significantly affect mineral bioaccessibility, but compromised the phenolic profile and antioxidant activity.
Collapse
Affiliation(s)
- Janaina Sánchez-García
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Amparo Tárrega
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980 Valencia, Spain;
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| |
Collapse
|
13
|
Duan H, Zhou S, Guo J, Yan W. HS-GC-IMS Analysis of Volatile Organic Compounds in Different Varieties and Harvesting Times of Rhizoma gastrodiae (Tian Ma) in Yunnan Province. Molecules 2023; 28:6705. [PMID: 37764481 PMCID: PMC10536806 DOI: 10.3390/molecules28186705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) coupled with principal component analysis (PCA) was used to investigate the differences in volatile organic compounds (VOCs) in four different varieties of Yunnan Huang Tian Ma (containing both winter and spring harvesting times), Yunnan Hong Tian Ma, Yunnan Wu Tian Ma, and Yunnan Lv Tian Ma. The results showed that the flavor substances of different varieties and different harvesting times of Rhizoma gastrodiae were mainly composed of aldehydes, alcohols, ketones, heterocycles, esters, acids, alkenes, hydrocarbons, amines, phenols, ethers, and nitrile. Among them, the contents of the aldehydes, alcohols, ketones, and heterocyclic compounds are significantly higher than those of other substances. The results of cluster analysis and fingerprint similarity analysis based on principal component analysis and Euclidean distance showed that there were some differences between different varieties of Yunnan Rhizoma gastrodiae and different harvesting times. Among them, Yunnan Lv Tian Ma and Wu Tian Ma contained the richest volatile components. Winter may be the best harvesting season for Tian Ma. At the same time, we speculate that the special odor contained in Tian Ma should be related to the aldehydes it is rich in, especially benzene acetaldehyde, Benzaldehyde, Heptanal, Hexanal, Pentanal, and butanal, which are aldehydes that contain a strong and special odor and are formed by the combination of these aldehydes.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
14
|
Duan H, Zhou Y, Wang D, Yan W. Differences in Volatile Organic Compounds in Rhizoma gastrodiae (Tian Ma) of Different Origins Determined by HS-GC-IMS. Molecules 2023; 28:4883. [PMID: 37446545 DOI: 10.3390/molecules28134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and principal component analysis (PCA) were used to compare the differences in volatile organic compounds (VOCs) of Rhizoma gastrodiae (Tian Ma) from six different origins in Yunnan, Sichuan, Shaanxi, Anhui, Hubei, and Guizhou. A total of 161 signal peaks were identified, and 84 compounds were characterized, including 23 aldehydes, 19 alcohols, 12 ketones, 8 heterocyclic compounds, 7 esters, 4 phenols, 4 acids, 4 ethers, 2 amines, and 1 alkane. The results of cluster analysis and fingerprint similarity analysis based on principal component analysis and Euclidean distance indicated that there were significant differences between the volatile components of Rhizoma gastrodiae from different origins. This study demonstrated that HS-GC-IMS is simple, rapid, accurate, and has a small sample size and can achieve rapid analysis of the differences in volatile compounds between samples of different origins of Rhizoma gastrodiae.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
15
|
Tavakoli B, Meghdadi S, Salarvand Z, Eskandari K, Amiri A, Amirnasr M. A naphthalenecarboxamide based fluorescent sensor for selective detection of Fe3+ and CN‾: Live cell imaging and INHIBIT logic gate operation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Toxic metals and essential elements contents in fruit juices and other non-alcoholic beverages from local markets in New Orleans, Louisiana. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Development of a pH-induced dispersive solid-phase extraction method using folic acid combined with dispersive liquid-liquid microextraction: application in the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples. ANAL SCI 2023; 39:23-31. [PMID: 36227555 DOI: 10.1007/s44211-022-00194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023]
Abstract
In this study, a new pH-induced dispersive solid-phase extraction method using folic acid has been proposed for the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples. For this purpose, at first, a specified amount of folic acid was dissolved in the sample solution containing the studied ions at pH 8.5. Then, by decreasing pH of the solution, solubility of folic acid reduced and its fine particles containing the analytes were produced. They were separated and dissolved in dimethylformamide. For more preconcentration, the developed procedure was combined with a dispersive liquid-liquid microextraction procedure. Finally, the extracted and enriched analytes were determined by flame atomic absorption spectrometry. The effect of important parameters on the extraction efficiency of the method such as pH, folic acid amount, the amount of complexing agent, dimethylformamide volume, ionic strength, and centrifugation conditions were studied. Under optimized conditions, the developed method showed linear ranges of 0.20-40 and 0.25-40 µg L-1 for Pb(II) and Cu(II) ions, respectively. Limits of detection of Pb(II) and Cu(II) were 0.07 and 0.08 µg L-1, respectively. The relative standard deviations (intra- and inter-day precisions) were between 3.8 and 5.4%. Accuracy of the proposed method was studied by determination of the analytes concentrations in a certified reference material; SPS-WW2 Batch 108. Efficiency of the proposed procedure was evaluated by analyzing Pb(II) and Cu(II) ions in various water and fruit juice samples.
Collapse
|
18
|
Yan M, Niu C, Li X, Wang F, Jiang S, Li K, Yao Z. Heavy metal levels in milk and dairy products and health risk assessment: A systematic review of studies in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158161. [PMID: 35988597 DOI: 10.1016/j.scitotenv.2022.158161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have indicated that heavy metal levels in milk vary partly depending on environmental metal concentrations. Given the increasing consumption of milk in China, it is essential to pay attention to milk safety. We performed a systematic review of relevant published studies to evaluate the heavy metal levels in milk and dairy products and the associated health risks, discuss environmental sources of heavy metals, and propose future research directions. A literature search was implemented in the Web of Science Core Collection and PubMed using multiple keywords such as "metal," "milk," "dairy products," and "China". A total of 16 published studies that analyzed metal levels in milk and dairy products in 20 provincial administrative regions were included. Most studies detected toxic heavy metals in milk and dairy products samples, including mercury, lead, cadmium, chromium, and arsenic. The lead concentration in milk from these studies did not exceed the Chinese standard for milk. However, three studies detected relatively high lead levels in both commercial and raw milk, exceeding the European Commission standard. The polluted environment surrounding the farm, feed, and packaging materials are likely sources of metals in milk and dairy products. The hazard index for the 11 analyzed metal elements in milk and dairy products was lower than 1, indicating negligible non-carcinogenic health risks from exposure to these metals. Children are at a higher risk than adults. This review illustrates that research in this field is limited to China. More research should be conducted in the future, such as evaluating the contribution of each environmental source of metal in milk and dairy products.
Collapse
Affiliation(s)
- Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
19
|
Soares S, Moraes LMB, Rocha FR, Virgilio A. Sample preparation and spectrometric methods for elemental analysis of milk and dairy products – A review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Macro Minerals and Trace Elements in Milk of Dairy Buffaloes and Cows Reared in Mediterranean Areas. BEVERAGES 2022. [DOI: 10.3390/beverages8030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim of this study was to evaluate the differences in Ca, P, K, Na, Mg, Zn, Fe, Cu, Mn, Se, Mo, Co, Li, B, Ti, Rb, and Sr concentrations in milk from buffaloes and cows reared in the same farm in Mediterranean areas and fed diets including the same ingredients. Individual milk samples were obtained from 32 Mediterranean buffaloes and 29 Italian Friesian cows and samples of milk, dietary ingredients and drinking water were analyzed for the investigated chemical elements by inductively coupled plasma-mass spectrometry. Data about milk element concentrations were processed by one-way analysis of variance. Buffalo milk contains higher concentrations of Ca, P, Mg, Zn, Fe, Cu, B, Ti, and Sr, and lower concentrations of K, Na, Mo, Li, and Rb compared to cow milk, whereas milk from both species contains similar concentrations of Mn, Se, and Co. The concentrations of the investigated elements in the diet were similar for both species and the differences observed between buffalo and cow milk were not dependent on environmental factors.
Collapse
|
21
|
Affiliation(s)
- Gaukhar Konuspayeva
- Department of biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
- Kazakh Research Institute of Livestock and Fodder Production, 050035, Almaty, Kazakhstan
| | - Bernard Faye
- Department of biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
- UMR SELMET, CIRAD-ES, Campus international de Baillarguet, Montpellier, France
| | | |
Collapse
|
22
|
Chen GL, Lin B, Zheng FJ, Yu WH, Fang XC, Shi Q, Hu YF, Verma KK. Comparison of Different Drying Methods for Asparagus [ Asparagus cochinchinensis (Lour.) Merr.] Root Volatile Compounds as Revealed Using Gas Chromatography Ion Mobility Spectrometry. Front Nutr 2022; 9:868209. [PMID: 35662938 PMCID: PMC9159512 DOI: 10.3389/fnut.2022.868209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Asparagus [Asparagus cochinchinensis (Lour.) Merr.] is a traditional herbal medicine plant commonly used to nourish yin, moisten dryness, and clear fire cough symptoms. Drying is an excellent option to conserve food materials, i.e., grains, fruits, vegetables, and herbs, reducing the raw materials volume and weight. This study aims to evaluate different drying approaches that could increase the value of asparagus, particularly as an ingredient in fast foods or as nutraceutical byproducts. The volatile components of asparagus roots were analyzed by using headspace-gas chromatography-ion mobility spectroscopy under different drying conditions, i.e., natural drying (ND) at ambient air temperature in the dark, well-ventilated room, temperature range 28-32°C, blast or oven drying at 50°C, heat pump or hot-air drying at temperature 50°C and air velocity at 1.5 ms-1 and vacuum freeze-drying at the temperature of -45°C and vacuum pressure of 10-30 Pa for 24 h. The findings revealed that the various drying processes had multiple effects on the color, odor index, and volatile compounds of the asparagus roots. As a result of the investigations, multiple characteristics of components, therefore, exploitation and comparison of various flavors; a total of 22 compounds were identified, such as alcohols, ketones, aldehydes, acids, esters, heterocyclic, and terpene. The present findings may help understand the flavor of the processed asparagus roots and find a better option for drying and processing.
Collapse
Affiliation(s)
- Gan-Lin Chen
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Bo Lin
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Feng-Jin Zheng
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Wei-Hua Yu
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Chun Fang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Qian Shi
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yi-Feng Hu
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
23
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
24
|
GAHROUI MRAEISI, HOJJATOLESLAMY M, KIANI H, MOLAVI H. Feasibility study and optimization of infant formula production using a mixture of camel milk and cow milk. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.56720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Hossein KIANI
- Islamic Azad University, Iran; University of Tehran, Iran
| | | |
Collapse
|
25
|
Compare the nutritional status of essential minerals in milk of different cattle and humans: Estimated daily intake for children. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
ICP-MS based analysis of mineral elements composition during fruit development in Capsicum germplasm. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Feng D, Wang J, He Y, Ji X, Tang H, Dong Y, Yan W. HS-GC-IMS detection of volatile organic compounds in Acacia honey powders under vacuum belt drying at different temperatures. Food Sci Nutr 2021; 9:4085-4093. [PMID: 34401060 PMCID: PMC8358364 DOI: 10.1002/fsn3.2364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022] Open
Abstract
Honey is a commodity of great nutritional value, but deep-processed honey products are uncommon. Herein, we used vacuum belt dryer to dry Acacia honey at 60°C, 70°C, and 80°C, prepared it into powder, and analyzed its volatile compound differences. We established HS-GC-IMS method to detect the volatile organic compounds (VOCs) of these three Acacia honey powders (AHPs). In total, 77 peaks were detected, and 23 volatile compounds were identified, including eight aldehydes, six ketones, three furans, one alcohol, one phenol, one lactone, one ester, one acid, and one nitrile. Moreover, principal component analysis (PCA) and fingerprint similarity analysis based on the Euclidean distance distinguished the three heating temperature treatments. Clearly, it was concluded that there are significant differences in volatile substances at different tested temperatures, and when the AHP was incubated at 80°C, more volatile compounds were detected.
Collapse
Affiliation(s)
- Duo Feng
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Jing Wang
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yue He
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Xiao‐jiao Ji
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Hui Tang
- Beijing Tongrentang bee products (Jiangshan) Co., LtdJiangshanChina
| | - Yong‐mei Dong
- Beijing Tongrentang bee products (Jiangshan) Co., LtdJiangshanChina
| | - Wen‐jie Yan
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| |
Collapse
|
28
|
Analysis of Volatile Organic Compounds by HS-GC-IMS in Powdered Yak Milk Processed under Different Sterilization Conditions. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5536645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS) was used to detect the volatile organic compounds (VOCs) of yak milk powders (YMPs) under ultra-high-pressure sterilization (UHPS) and thermization (TH) methods. The analyses led to the identification of several characteristic of compounds, therefore, exploitation and comparison of the different flavors. A total of 46 peaks were detected, and 17 compounds were identified, including 7 aldehydes, 5 ketones, 3 acids, 1 terpene, and 1 ester. Furthermore, principal component analysis (PCA) and fingerprint similarity analysis based on Euclidean distance compared the YMPs and found that the YMPs had certain differences, which can distinguish the YMPs with different sterilization methods. In conclusion, different sterilization methods possibly affect the flavor of YMPs, and UHPS is bettedslfr than TH. Also, aldehydes were mainly be detected in UHPS groups, whereas the ketones and acids mostly appeared in TH groups. Most importantly, UHPS can retain the original flavor of yak milk to a greater extent.
Collapse
|
29
|
Sun J, He Y, Yu C, Wang N, Tian L. Elemental Analysis of Xinjiang Rose Hips by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Chemometric Analysis. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1925904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jing Sun
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuan He
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chao Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ning Wang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
30
|
Zhao J, Xu Z. Capillary electrophoresis with dual C 4D/UV detection for simultaneously determining major metal cations and whey proteins in milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:801-808. [PMID: 33496699 DOI: 10.1039/d0ay02092c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A reliable and simple CE method with dual C4D and UV detection modes for simultaneous determination of major metal cations and whey proteins in milk samples was developed. Sample pretreatment comprised dilution, acidification to pH 4.55 with 10 mM AcOH and centrifugation. The complete separation of metal cations K+, Ca2+, Na+, and Mg2+ and whey proteins α-Lac, and β-Lg could be achieved respectively within 10 min and 20 min in a simple BGE composed of 1.0 M AcOH, 12 mM l-His and 2 mM 18-crown-6 with pH 2.74 at a voltage/current of +15 kV/12.5 μA. The samples were injected hydrodynamically by a pressure of 50 mbar for 5 s, the excitation voltage and excitation frequency of the C4D detector were 80 V and 1000 kHz, respectively and the detection wavelength of UV detection was set at 200 nm. In cation analysis, the range of the detection limit was 0.05-0.10 mg L-1 for C4D detection and 0.10-0.50 mg L-1 for UV detection, respectively, and the relative standard deviations (RSD%, n = 5) of intraday and interday analysis were 0.37-0.55% and 0.46-0.79% for the relative migration time, and 2.51-4.12% and 3.65-4.91% for the peak area, respectively. In whey protein analysis, the detection limits of β-Lg and α-Lac analysis were 5 mg L-1 and 3 mg L-1, respectively and the relative standard deviations (RSD%, n = 5) of intraday and interday analysis were 0.29-0.31% and 0.43-0.48% for the migration time and 2.89-3.25% and 3.29-4.18% for the peak area, respectively. The content of four major metal cations and two whey proteins in various types of milk samples was obtained. The results indicated that the content of metal cations varied little in milk samples of different brands and prices, while the content of whey proteins, as thermosensitive active proteins, varied greatly among different heat-treated milk samples.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | | |
Collapse
|
31
|
Wu J, Lu G, Huang X. Fabrication of monolith-based solid-phase microextraction for effective extraction of total chromium in milk and tea samples prior to HPLC/DAD analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
A novel AIE “on-off-on” fluorescence sensor for highly selective and sensitive sequential detection of Fe3+ and HSO3− in foods. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Md Noh MF, Gunasegavan RDN, Mustafa Khalid N, Balasubramaniam V, Mustar S, Abd Rashed A. Recent Techniques in Nutrient Analysis for Food Composition Database. Molecules 2020; 25:E4567. [PMID: 33036314 PMCID: PMC7582643 DOI: 10.3390/molecules25194567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
Food composition database (FCD) provides the nutritional composition of foods. Reliable and up-to date FCD is important in many aspects of nutrition, dietetics, health, food science, biodiversity, plant breeding, food industry, trade and food regulation. FCD has been used extensively in nutrition labelling, nutritional analysis, research, regulation, national food and nutrition policy. The choice of method for the analysis of samples for FCD often depends on detection capability, along with ease of use, speed of analysis and low cost. Sample preparation is the most critical stage in analytical method development. Samples can be prepared using numerous techniques; however it should be applicable for a wide range of analytes and sample matrices. There are quite a number of significant improvements on sample preparation techniques in various food matrices for specific analytes highlighted in the literatures. Improvements on the technology used for the analysis of samples by specific instrumentation could provide an alternative to the analyst to choose for their laboratory requirement. This review provides the reader with an overview of recent techniques that can be used for sample preparation and instrumentation for food analysis which can provide wide options to the analysts in providing data to their FCD.
Collapse
Affiliation(s)
- Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia; (R.D.-N.G.); (N.M.K.); (V.B.); (S.M.); (A.A.R.)
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Monllor P, Romero G, Atzori AS, Sandoval-Castro CA, Ayala-Burgos AJ, Roca A, Sendra E, Díaz JR. Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products. Foods 2020; 9:E700. [PMID: 32492779 PMCID: PMC7353654 DOI: 10.3390/foods9060700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
In the Mediterranean region, artichoke and broccoli are major crops with a high amount of by-products that can be used as alternative feedstuffs for ruminants, lowering feed costs and enhancing milk sustainability while reducing the environmental impact of dairy production. However, nutritional quality of milk needs to be assured under these production conditions and an optimal inclusion ratio of silages should be determined. This work aimed to evaluate the effect of three inclusion levels (25%, 40%, and 60%) of these silages (artichoke plant, AP, and broccoli by-product, BB) in goat diets on milk yield, composition, and mineral and fatty profiles. Treatments with 60% inclusion of AP and BB presented the lowest milk yield. No differences were found on the milk mineral profile. Inclusion of AP in the animals' diet improved the milk lipid profile from the point of view of human health (AI, TI) compared to BB due to a lower saturated fatty acid content (C12:0, C14:0, and C16:0) and a higher concentration of polyunsaturated fatty acids (PUFA), especially vaccenic acid (C18:1 trans11) and rumenic acid (CLA cis9, trans11), without any differences with the control treatment.
Collapse
Affiliation(s)
- Paula Monllor
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain; (P.M.); (G.R.); (A.R.); (E.S.)
| | - Gema Romero
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain; (P.M.); (G.R.); (A.R.); (E.S.)
| | - Alberto S. Atzori
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy;
| | - Carlos A. Sandoval-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida 97100, Mexico; (C.A.S.-C.); (A.J.A.-B.)
| | - Armín J. Ayala-Burgos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida 97100, Mexico; (C.A.S.-C.); (A.J.A.-B.)
| | - Amparo Roca
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain; (P.M.); (G.R.); (A.R.); (E.S.)
| | - Esther Sendra
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain; (P.M.); (G.R.); (A.R.); (E.S.)
| | - José Ramón Díaz
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain; (P.M.); (G.R.); (A.R.); (E.S.)
| |
Collapse
|