1
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
2
|
Handa M, Almalki WH, Shukla R, Afzal O, Altamimi ASA, Beg S, Rahman M. Active pharmaceutical ingredients (APIs) in ionic liquids: An effective approach for API physiochemical parameter optimization. Drug Discov Today 2022; 27:2415-2424. [PMID: 35697283 DOI: 10.1016/j.drudis.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Ionic liquids (ILs) are widely used as solvents, co-solvents and permeation enhancers in the biomedical and pharmaceutical fields. There are many advantages to using active pharmaceutical ingredients (APIs) in the production of ILs for drug delivery, including the ability to tailor solubility, improve thermal stability, increase dissolution, regulate drug release, improve API permeability, and modulate cytotoxicity on tumor cells. Such an approach has shown significant potential as a tool for drug delivery. As a result, APIs converted into ILs are used as active components in solutions, emulsions, and even nanoparticles (NPs). In this review, we explore the use and physiochemical characteristics of APIs via ILs, including improvements of their physicochemical properties in preformulation and formulation development.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| |
Collapse
|
3
|
Wojcieszak M, Kaczmarek DK, Krzyźlak K, Siarkiewicz A, Klejdysz T, Materna K. Surface properties of dicationic ionic liquids and correlation with biological activity. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The surface activity of dicationic ionic liquids is described in this paper. The basic interfacial parameters including critical micelle concentration (CMC), surface tension at the CMC (γ
CMC), the adsorption efficiency (pC20), surface excess (Γmax), the minimum surface occupied by a single molecule (A
min), and Gibbs energy (ΔG
0
ads) were investigated and compared. Basically, we wanted to extend our previous study on dicationic ionic liquids with bis-ammonium cation. Knowing that, the compounds obtained are effective in limiting the feeding of adult and larvae confused flour beetle (T. confusum), it was decided to correlate the deterrent activity with the surface properties of analyzed dicationic ionic liquids. Accordingly, it was found that the deterrent activity of the studied compounds increases with increasing wetting ability.
Collapse
Affiliation(s)
- Marta Wojcieszak
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | | | - Klaudia Krzyźlak
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | - Amelia Siarkiewicz
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | - Tomasz Klejdysz
- Institute of Plant Protection, National Research Institute , Poznan , Poland
| | - Katarzyna Materna
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| |
Collapse
|
4
|
Al-Sodies S, Rezki N, Albelwi FF, Messali M, Aouad MR, Bardaweel SK, Hagar M. Novel Dipyridinium Lipophile-Based Ionic Liquids Tethering Hydrazone Linkage: Design, Synthesis and Antitumorigenic Study. Int J Mol Sci 2021; 22:10487. [PMID: 34638826 PMCID: PMC8508903 DOI: 10.3390/ijms221910487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Novel dicationic pyridinium ionic liquids tethering amphiphilic long alkyl side chains and fluorinated counter anions have been successfully synthesized by means of the quaternization of the dipyridinium hydrazone through its alkylation with different alkyl halides. The resulting halogenated di-ionic liquids underwent a metathesis reaction in order to incorporate some fluorinated counter anions in their structures. The structures of all the resulting di-ionic liquids were characterized by several spectroscopic experiments. The antitumorigenic activities of the investigated compounds were further studied against three different human lung cancer cell lines. Compared to the standard chemotherapeutic agent, cisplatin, the synthesized di-ionic liquids exerted equal, even more active, moderate, or weak anticancer activities against the various lung cancer cell lines under investigation. The observed anticancer activity appears to be enhanced by increasing the length of the aliphatic side chains. Moreover, dicationic pyridinium bearing a nine carbon chain as counter cation and hexafluoro phosphate and/or tetrafluoro bororate as counter anion were selected for further evaluation and demonstrated effective and significant antimetastatic effects and suppressed the colonization ability of the lung cancer cells, suggesting a therapeutic potential for the synthesized compounds in lung cancer treatment.
Collapse
Affiliation(s)
- Salsabeel Al-Sodies
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (S.A.-S.); (F.F.A.); (M.M.); (M.R.A.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (S.A.-S.); (F.F.A.); (M.M.); (M.R.A.)
| | - Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (S.A.-S.); (F.F.A.); (M.M.); (M.R.A.)
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (S.A.-S.); (F.F.A.); (M.M.); (M.R.A.)
| | - Mohamed R. Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (S.A.-S.); (F.F.A.); (M.M.); (M.R.A.)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| |
Collapse
|
5
|
Ciarka K, Olszewski R, Praczyk T, Pernak J. Synthesis and characterization of herbicidal ionic liquids based on (4-chloro-2-methylphenoxy)acetate and phenoxyethylammonium. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractTen ionic liquids containing the (4-chloro-2-methylphenoxy)acetate (MCPA) anion and domiphen derived phenoxyethylammonium cation were synthesized. The obtained compounds differed in terms of the substitution of the phenoxyethylammonium group in the ring (the presence of a methyl group in the meta or para positions and the presence of chlorine in the para position) as well as the length of the alkyl chain (from hexyl to tetradecyl). The basic physicochemical properties of the obtained ionic liquids (solubility and thermal stability) were characterized and their structures were confirmed. The herbicidal activity of the compounds was tested under greenhouse conditions using cornflower (Centaurea cyanus L.) as the test plant.
Collapse
|
6
|
Turguła A, Graś M, Gabryelczyk A, Lota G, Pernak J. Long-Chain Ionic Liquids Based on Monoquaternary DABCO Cations and TFSI Anions: Towards Stable Electrolytes for Electrochemical Capacitors. Chempluschem 2020; 85:2679-2688. [PMID: 33326698 DOI: 10.1002/cplu.202000680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Indexed: 02/02/2023]
Abstract
The desirable properties of ionic liquids (ILs) enable their use in various branches of chemistry, through a wide range of applications, e. g. as organic electrolytes. In the present study, an efficient two-step method was developed for the synthesis of long-chain ionic liquids with alkyl derivatives of DABCO as cations and bis(trifluoromethane)sulfonimide as anions. ILs obtained with high yields (≥91 %) were solids with melting points that increased with the rise in the number of carbon atoms of the alkyl substituent in the bicyclic cation. The structure of the compounds was confirmed by spectroscopic methods and elemental analysis. All compounds were soluble in the main solvents except water and hexane. The solubility in organic solvents such as acetonitrile allowed the use of synthesized ILs in electrochemical capacitors. Electrochemical tests revealed that the ILs enhanced the conductivity of organic electrolytes. This phenomenon improved the cyclability and reduced the internal resistance of the electrochemical capacitors.
Collapse
Affiliation(s)
- Anna Turguła
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| | - Małgorzata Graś
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| | - Agnieszka Gabryelczyk
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| | - Grzegorz Lota
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| | - Juliusz Pernak
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| |
Collapse
|
7
|
Hassanshahi N, Hu G, Li J. Application of Ionic Liquids for Chemical Demulsification: A Review. Molecules 2020; 25:E4915. [PMID: 33114253 PMCID: PMC7660632 DOI: 10.3390/molecules25214915] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
In recent years, ionic liquids have received increasing interests as an effective demulsifier due to their characteristics of non-flammability, thermal stability, recyclability, and low vapor pressure. In this study, emulsion formation and types, chemical demulsification system, the application of ionic liquids as a chemical demulsifier, and key factors affecting their performance were comprehensively reviewed. Future challenges and opportunities of ionic liquids application for chemical demulsification were also discussed. The review indicted that the demulsification performance was affected by the type, molecular weight, and concentration of ionic liquids. Moreover, other factors, including the salinity of aqueous phase, temperature, and oil types, could affect the demulsification process. It can be concluded that ionic liquids can be used as a suitable substitute for commercial demulsifiers, but future efforts should be required to develop non-toxic and less expensive ionic liquids with low viscosity, and the demulsification efficiency could be improved through the application of ionic liquids with other methods such as organic solvents.
Collapse
Affiliation(s)
- Nahid Hassanshahi
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Guangji Hu
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Jianbing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| |
Collapse
|
8
|
Wilms W, Woźniak-Karczewska M, Syguda A, Niemczak M, Ławniczak Ł, Pernak J, Rogers RD, Chrzanowski Ł. Herbicidal Ionic Liquids: A Promising Future for Old Herbicides? Review on Synthesis, Toxicity, Biodegradation, and Efficacy Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10456-10488. [PMID: 32786821 PMCID: PMC7530898 DOI: 10.1021/acs.jafc.0c02894] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
The transformation of agrochemicals into herbicidal ionic liquids (HILs) has been suggested as a solution to problems associated with commercial forms of herbicides. The aim of this review was to summarize the latest progress in the field of HILs, including their synthesis as well as physicochemical and biological properties, and to address the areas that require further research in order to ensure their safe commercialization (e.g., data regarding biodegradability, toxicity, and environmental fate). The first part of the review provides an in-depth summary of the current state of knowledge regarding HILs, particularly the anions and cations used for their synthesis. The second part highlights the employed synthesis methods and elucidates their respective advantages and limitations. The third section is focused on the characterization of HILs with emphasis on the methods and factors that are significant in terms of their practical application. Subsequently, the issues associated with the biodegradation and toxic effects of HILs are discussed based on the relevant literature reports. All sections include comprehensively tabulated data in order to enable rapid comparison of utilized approaches. Finally, all the findings are critically analyzed in terms of crucial disadvantages (especially the lack of standardization), which allowed us to establish future recommendations and basic guidelines that are presented in the last section.
Collapse
Affiliation(s)
- Wiktoria Wilms
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | | | - Anna Syguda
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | - Michał Niemczak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Łukasz Ławniczak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | - Juliusz Pernak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | - Robin D. Rogers
- 525
Solutions, Inc., PO Box 2206, Tuscaloosa, Alabama 35403, United States
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Łukasz Chrzanowski
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|