1
|
Noor Armylisas AH, Hoong SS, Tuan Ismail TNM, Chan CH. Efficient biodiesel production by sulfonated carbon catalyst derived from waste glycerine pitch via single-step carbonisation and sulfonation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:34-43. [PMID: 39173470 DOI: 10.1016/j.wasman.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Glycerine pitch is a highly alkaline residue from the oleochemical industry that contains glycerol and contaminants, such as water, soap, salt and ash. In this study, acidic heterogeneous glycerol-based carbon catalysts were synthesised for biodiesel production via single-step partial carbonisation and sulfonation using pure glycerol and glycerine pitch, producing products labelled as SGC and SGPC, respectively. Carbon materials were obtained by heating glycerol and concentrated sulfuric acid (1:3) at 200℃ for 1 h. The produced SGC and SGPC displayed high densities of sulfonic group (-SO3H), i.e. 1.49 and 1.00 mmol·g-1, respectively, alongside carboxylic (-COOH) and phenolic (-OH) acid. In the catalytic evaluation, excellent oleic acid conversions of 96.0 ± 0.4 % and 92.4 ± 0.5 % were achieved using SGC and SGPC, respectively, under optimised reaction conditions: 1:10 M ratio of oleic acid to methanol, 5 % (w/w) catalyst, 64℃ and 5 h. SGPC was found to be recyclable with 68.5 % conversion after the 6th cycle, which was attributed to the loss of -SO3H and catalyst deactivation by the deposition of oleic acid on its surface. Remarkably, despite the impurities present in the glycerine pitch, the obtained results demonstrated that the reactivity of SGPC is comparable to SGC and superior to that of commercial solid acid catalysts, which demonstrated that the presence of impurities appears to have minimal impact on the production of carbon materials and their properties.
Collapse
Affiliation(s)
- A H Noor Armylisas
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - S S Hoong
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - T N M Tuan Ismail
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - C H Chan
- Process Engineering and Design (PED) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Suminar DR, Pribadi CZ, Fitriana QR, Andrijanto E, Permana MD, Eddy DR, Rahayu I. Corncob waste derived carbon with sulfonic acid group: An efficient heterogeneous catalyst for production of ethyl levulinate as biodiesel additives. Heliyon 2024; 10:e37687. [PMID: 39309960 PMCID: PMC11416285 DOI: 10.1016/j.heliyon.2024.e37687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Alkyl levulinate is a biomass-based chemical compound used as a fuel additive. This research aims to produce ethyl levulinate from levulinic acid and ethanol using esterification with the assistance of a heterogeneous sulfonated carbon catalyst. The carbon sulfonate catalyst is obtained from corncob waste that has undergone carbonization at 300 °C and sulfonation using sulfuric acid at a temperature of 150 °C for 8 h. The catalyst is used for esterification with predetermined operating variables using Box-Behnken Design (BBD) on the response surface methodology (RSM). The result shows significant variables for ethyl levulinate esterification are catalyst loading and esterification time. The FTIR analysis indicates the presence of S=O bonds in the sulfonated carbon catalyst. The XRD and SEM analysis shows that the sulfonated carbon catalyst is in amorphous and mesoporous form. Catalyst reusability demonstrates that the corncob-derived carbon sulfonate catalyst can be used up to 3 times. The optimum condition for esterification is 9 h of reaction, 10 % catalyst loading, and a molar ratio of levulinic acid to ethanol of 1:10, which has 83.15 % conversion. These results present the optimum parameter conditions for an efficient heterogeneous catalyst from corncob for producing ethyl levulinate.
Collapse
Affiliation(s)
- Dian Ratna Suminar
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Qonita Rahmah Fitriana
- Department of Chemical Engineering, Politeknik Negeri Bandung, Bandung Barat, 40559, Indonesia
| | - Eko Andrijanto
- Department of Chemical Engineering, Politeknik Negeri Bandung, Bandung Barat, 40559, Indonesia
| | - Muhamad Diki Permana
- Special Educational Program for Green Energy Conversion Science and Technology, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, 4008511, Japan
- Center for Crystal Science and Technology, University of Yamanashi, Kofu, 400-8511, Japan
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Iman Rahayu
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Kowalska-Kuś J, Malaika A, Held A, Jankowska A, Janiszewska E, Zieliński M, Nowińska K, Kowalak S, Końska K, Wróblewski K. Synthesis of Solketal Catalyzed by Acid-Modified Pyrolytic Carbon Black from Waste Tires. Molecules 2024; 29:4102. [PMID: 39274951 PMCID: PMC11397316 DOI: 10.3390/molecules29174102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Solketal, a widely used glycerol-derived solvent, can be efficiently synthesized through heterogeneous catalysis, thus avoiding the significant product losses typically encountered with aqueous work-up in homogeneous catalysis. This study explores the catalytic synthesis of solketal using solid acid catalysts derived from recovered carbon blacks (rCBs), which are obtained through the pyrolysis of end-of-life tires. This was further converted into solid acid catalysts through the introduction of acidic functional groups using concentrated H2SO4 or 4-benzenediazonium sulfonate (BDS) as sulfonating agents. Additionally, post-pyrolytic rCB treated with glucose and subsequently sulfonated with sulfuric acid was also prepared. Comprehensive characterization of the initial and modified rCBs was performed using techniques such as elemental analysis, powder X-ray diffraction, thermogravimetric analysis, a back titration method, and both scanning and transmission electron microscopy, along with X-ray photoelectron spectroscopy. The catalytic performance of these samples was evaluated through the batch mode glycerol acetalization to produce solketal. The modified rCBs exhibited substantial catalytic activity, achieving high glycerol conversions (approximately 90%) and high solketal selectivity (around 95%) within 30 min at 40 °C. This notable activity was attributed to the presence of -SO3H groups on the surface of the functionalized rCBs. Reusability tests indicated that only rCBs modified with glucose demonstrated acceptable catalytic stability in subsequent acetalization cycles. The findings underscore the potential of utilizing end-of-life tires to produce effective acid catalysts for glycerol valorization processes.
Collapse
Affiliation(s)
- Jolanta Kowalska-Kuś
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Anna Malaika
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Held
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aldona Jankowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Ewa Janiszewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Krystyna Nowińska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Stanisław Kowalak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | | |
Collapse
|
4
|
Poddar K, Sarkar D, Sarkar A. Norfloxacin adsorption by torrefied coco peat biochar as a novel adsorbent in a circular economy framework. ENVIRONMENTAL RESEARCH 2024; 251:118711. [PMID: 38499225 DOI: 10.1016/j.envres.2024.118711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The current study reported torrefied coco-peat biochar treated at 200 °C, as a novel adsorbent exhibiting phenomenal norfloxacin (NFX) adsorption efficiency. The CHNS analysis confirmed the carbon abundance in the biochar (36.45%), however, XRF analysis indicated a significant presence of K2O (27.73%) and chlorine (7.49%). The XRD and Raman spectral analysis confirmed the amorphous structure of the biochar. Multilayer topology was evident in the SEM micrograph of biochar contributing to its large effective surface area. Additionally, the mesoporous structure of the adsorbent was verified by BET. The adsorption mechanism was predicted to be non-ionic since the zeta potential of both adsorbent and adsorbate was found negative. The process parameters were optimized at 30 °C, pH 6.9, dosage 7 g/L, antibiotic load 494.25 mg/L, and time of 89 min for a maximum of 99.52% adsorption of NFX using Central Composite Design, Analysis of Variance, and Response Surface Methodology. The adsorption process was exothermic, and spontaneous obeying the pseudo-second-order kinetics, while the bulk process was confined to surface adsorption. Isotherm study of NFX adsorption revealed the process to be a favorable, monolayer, and homogeneous adsorption. The NFX molecules were desorbed with an efficiency of 89.19% using 80% ethanol and upon recrystallization, 87.76% of the initial NFX was recovered as crude crystal. Moreover, the NFX removal efficiency was consistent across various water systems, tap water (99.02%), seawater (99.56%), river water (98.92%), pond water (98.26%), and distilled water (99.17%). The techno-economic analysis identified bulk expense as the biochar preparation ($0.82/kg) and the process will be profitable having recovered NFX sold at $6/kg instead of the present retail price ($71/kg). Thus, the study successfully demonstrated a zero-waste, self-sustainable, and revenue-generating water treatment process implementing the circular economy framework.
Collapse
Affiliation(s)
- Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, Chinnathambi A, Mathimani T. Synthesis and utilization of biomass-derived sulfonated heterogeneous catalyst-BT-SO 3H for microalgal biodiesel production. ENVIRONMENTAL RESEARCH 2024; 245:118025. [PMID: 38151153 DOI: 10.1016/j.envres.2023.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
Collapse
Affiliation(s)
- Supongsenla Ao
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Da Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | - Le Tg Thuy
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Thangavel Mathimani
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
6
|
di Bitonto L, Scelsi E, Errico M, Reynel-Ávila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Corazza ML, Shigueyuki Kanda LR, Hájek M, Stateva RP, Pastore C. A Network of Processes for Biorefining Burdock Seeds and Roots. Molecules 2024; 29:937. [PMID: 38474449 DOI: 10.3390/molecules29050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
In this work, a novel sustainable approach was proposed for the integral valorisation of Arctium lappa (burdock) seeds and roots. Firstly, a preliminary recovery of bioactive compounds, including unsaturated fatty acids, was performed. Then, simple sugars (i.e., fructose and sucrose) and phenolic compounds were extracted by using compressed fluids (supercritical CO2 and propane). Consequently, a complete characterisation of raw biomass and extraction residues was carried out to determine the starting chemical composition in terms of residual lipids, proteins, hemicellulose, cellulose, lignin, and ash content. Subsequently, three alternative ways to utilise extraction residues were proposed and successfully tested: (i) enzymatic hydrolysis operated by Cellulases (Thricoderma resei) of raw and residual biomass to glucose, (ii) direct ethanolysis to produce ethyl levulinate; and (iii) pyrolysis to obtain biochar to be used as supports for the synthesis of sulfonated magnetic iron-carbon catalysts (Fe-SMCC) to be applied in the dehydration of fructose for the synthesis of 5-hydroxymethylfurfural (5-HMF). The development of these advanced approaches enabled the full utilisation of this resource through the production of fine chemicals and value-added compounds in line with the principles of the circular economy.
Collapse
Affiliation(s)
- Luigi di Bitonto
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5, 70132 Bari, Italy
| | - Enrico Scelsi
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5, 70132 Bari, Italy
| | - Massimiliano Errico
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hilda Elizabeth Reynel-Ávila
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
- Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Didilia Ileana Mendoza-Castillo
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
- Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Adrián Bonilla-Petriciolet
- Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Marcos Lucio Corazza
- Department of Chemical Engineering, Universidade Federal do Paraná (UFPR), P.O. Box 19011, Curitiba 81531-980, PR, Brazil
| | - Luis Ricardo Shigueyuki Kanda
- Department of Chemical Engineering, Universidade Federal do Paraná (UFPR), P.O. Box 19011, Curitiba 81531-980, PR, Brazil
| | - Martin Hájek
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Roumiana P Stateva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 103, 1113 Sofia, Bulgaria
| | - Carlo Pastore
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5, 70132 Bari, Italy
| |
Collapse
|
7
|
Ribeiro TS, Gonçalves MA, da Rocha Filho GN, da Conceição LRV. Functionalized Biochar from the Amazonian Residual Biomass Murici Seed: An Effective and Low-Cost Basic Heterogeneous Catalyst for Biodiesel Synthesis. Molecules 2023; 28:7980. [PMID: 38138472 PMCID: PMC10746047 DOI: 10.3390/molecules28247980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study presents the synthesis of a basic heterogeneous catalyst based on sodium functionalized biochar. The murici biochar (BCAM) support used in the process was obtained through the pyrolysis of the murici seed (Byrsonimia crassifolia), followed by impregnation of the active phase in amounts that made it possible to obtain concentrations of 6, 9, 12, 15 and 18% of sodium in the final composition of the catalyst. The best-performing 15Na/BCAM catalyst was characterized by Elemental Composition (CHNS), Thermogravimetric Analysis (TG/DTG), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Energy Dispersion X-ray Spectroscopy (EDS). The catalyst 15Na/BCAM was applied under optimal reaction conditions: temperature of 75 °C, reaction time of 1.5 h, catalyst concentration of 5% (w/w) and MeOH:oil molar ratio of 20:1, resulting in a biodiesel with ester content of 97.20% ± 0.31 in the first reaction cycle, and maintenance of catalytic activity for five reaction cycles with ester content above 65%. Furthermore, the study demonstrated an effective catalyst regeneration process, with the synthesized biodiesels maintaining ester content above 75% for another five reaction cycles. Thus, the data indicate a promising alternative to low-cost residual raw materials for the synthesis of basic heterogeneous catalysts.
Collapse
Affiliation(s)
| | | | | | - Leyvison Rafael Vieira da Conceição
- Laboratory of Catalysis and Oleochemical, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (T.S.R.); (M.A.G.); (G.N.d.R.F.)
| |
Collapse
|
8
|
Valentini F, Cerza E, Campana F, Marrocchi A, Vaccaro L. Efficient synthesis and investigation of waste-derived adsorbent for water purification. Exploring the impact of surface functionalization on methylene blue dye removal. BIORESOURCE TECHNOLOGY 2023; 390:129847. [PMID: 37838020 DOI: 10.1016/j.biortech.2023.129847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
In pursuit of sustainable water management, the preparation of adsorbent materials via waste upcycling for water purification practices plays a decisive role. The sulphonated biochar, PiNe-SO3H, employed to target the methylene blue dye adsorption, was successfully synthesized via a mild, step-economical chemical carbonization-functionalization reaction. The presence of SO3H groups on the PiNe-SO3H surface played a critical role in significantly enhancing the adsorption capacity. The observed MB dye uptake was predominantly attributed to chemisorption processes as evidenced by the results from kinetics, thermodynamics, and isotherms. To further confirm the role of -SO3H in the adsorption mechanism, a comparison was made with other PiNe materials lacking sulphonic groups, highlighting the superior adsorption capacity of PiNe-SO3H. Additionally, a fast and efficient regeneration process was proposed to develop a truly waste minimized protocol, enabling the recovery of up to 94 % of the ethanolic mixture used during this step.
Collapse
Affiliation(s)
- Federica Valentini
- Laboratory of Green S.O.C. - Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Elisa Cerza
- Laboratory of Green S.O.C. - Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Filippo Campana
- Laboratory of Green S.O.C. - Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Assunta Marrocchi
- Laboratory of Green S.O.C. - Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luigi Vaccaro
- Laboratory of Green S.O.C. - Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
9
|
Yuan X, Cao Y, Li J, Patel AK, Dong CD, Jin X, Gu C, Yip ACK, Tsang DCW, Ok YS. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv 2023; 67:108181. [PMID: 37268152 DOI: 10.1016/j.biotechadv.2023.108181] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
The sustainable utilization of biochar produced from biomass waste could substantially promote the development of carbon neutrality and a circular economy. Due to their cost-effectiveness, multiple functionalities, tailorable porous structure, and thermal stability, biochar-based catalysts play a vital role in sustainable biorefineries and environmental protection, contributing to a positive, planet-level impact. This review provides an overview of emerging synthesis routes for multifunctional biochar-based catalysts. It discusses recent advances in biorefinery and pollutant degradation in air, soil, and water, providing deeper and more comprehensive information of the catalysts, such as physicochemical properties and surface chemistry. The catalytic performance and deactivation mechanisms under different catalytic systems were critically reviewed, providing new insights into developing efficient and practical biochar-based catalysts for large-scale use in various applications. Machine learning (ML)-based predictions and inverse design have addressed the innovation of biochar-based catalysts with high-performance applications, as ML efficiently predicts the properties and performance of biochar, interprets the underlying mechanisms and complicated relationships, and guides biochar synthesis. Finally, environmental benefit and economic feasibility assessments are proposed for science-based guidelines for industries and policymakers. With concerted effort, upgrading biomass waste into high-performance catalysts for biorefinery and environmental protection could reduce environmental pollution, increase energy safety, and achieve sustainable biomass management, all of which are beneficial for attaining several of the United Nations Sustainable Development Goals (UN SDGs) and Environmental, Social and Governance (ESG).
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Poddar K, Sarkar D, Sahu JR, Patil PB, Pal SK, Sarkar A. Techno-economic assessment of doxycycline recovery using rice straw biochar: A circular economic execution. CHEMOSPHERE 2023; 338:139504. [PMID: 37453520 DOI: 10.1016/j.chemosphere.2023.139504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The non-scientific disposal of antibiotics has resulted in massive contamination of the bioactive molecules in the aquatic ecosystem. The presence of antibiotics in the effluents limits the biodegradation of micropollutants by affecting the micro-ecological balance. Hence this study aims to remove doxycycline antibiotics from wastewater using biochar. Elemental analysis of the biochar revealed C, Si and N as most abundant content while BET analysis confirmed the mesoporous nature of the adsorbent. The XRD and Raman spectra confirmed amorphic sp2 carbon dominant structure in the biochar. The adsorption mechanism was predicted, correlating the charge distribution and FTIR analysis. The effects of different process parameters were studied using CCD, ANOVA, and RSM. Moreover, the different kinetic models revealed that the pseudo-second-order kinetics model was the best fit and film layer diffusion was the dominant contributor. The isotherm study indicated the high adsorption capacity of the biochar and its non-ionic nature. Thermodynamics study established the spontaneity and exothermic nature. The results suggested no significant change in antibiotic removal efficiency across different system (pond water (97.13%), river water (98.11%), seawater (96.84%), tap water (99.13%), and distilled water (99.74%)). For the desorption of the antibiotic from the biochar surface, 90% ethanol was the most efficient (98.9%), and upon recrystallization by solvent evaporation, 98.7% of the antibiotic of the initial load was recovered. Hence, the implementation of this described process would enable resource recovery along with water treatment, which is not possible with existing approaches. The cost analysis of the whole process revealed that biochar preparation was the bulk expense and the process would be self-sustainable even if the price of the recovered antibiotic would be set at less than half ($41/kg) of the current market price ($94/kg) of the API. Thus, the process endorses a successful circular economy approach toward societal and economic sustainability.
Collapse
Affiliation(s)
- Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Jyotsna Rani Sahu
- Department of Botany and Biotechnology, Ravenshaw University, Odisha, 753003, India.
| | - Pritam Bajirao Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Sumit Kumar Pal
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Yadav G, Yadav N, Ahmaruzzaman M. Advances in biomass derived low-cost carbon catalyst for biodiesel production: preparation methods, reaction conditions, and mechanisms. RSC Adv 2023; 13:23197-23210. [PMID: 37545599 PMCID: PMC10398831 DOI: 10.1039/d3ra03561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Biodiesel is a less hazardous, environmentally friendly biofuel that has been extensively investigated in modern years to ensure that we lessen our dependency on fossil fuels and mitigate climate change. While fossil fuel substitutes like biodiesel may help transition to a less polluted world, industrial-scale manufacturing still relies highly on chemical catalysis. However, heterogeneous solid catalysts result in less activity for biodiesel production due to their deactivation effects, porosity, surface area, material stability, and lower reactivity under moderate conditions. The "sulfonated carbons" are metal-free solid protonic acids distinguished by their distinctive carbon structure and Brønsted acidity (H0 = 8-11). Heterogeneous sulfonated catalysts derived from waste biomass were a significant focus of the most advanced biodiesel processing techniques for simple and low-cost manufacturing processes. This study discusses the advantages and disadvantages of various catalysts, biomass sources and properties, synthesis of catalysts, and factors influencing the insertion of active sulfonic sites on biomass surfaces. Additionally, transesterification and esterification reaction mechanisms and kinetics are discussed. At last, future directions are provided for young, dynamic researchers.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Nidhi Yadav
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
12
|
Zhao C, Xu Q, Gu Y, Nie X, Shan R. Review of Advances in the Utilization of Biochar-Derived Catalysts for Biodiesel Production. ACS OMEGA 2023; 8:8190-8200. [PMID: 36910936 PMCID: PMC9996642 DOI: 10.1021/acsomega.2c07909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Biochar, obtained from the thermal decomposition of different biomass sources, can be used in various scientific technologies by virtue of its distinguishing performance. Recent developments in advanced biochar synthesis methods have led to continuous growth in the literature related to bulk biochar products and synthesized biochar substrates. This review specifically summarizes the current advanced methods for the synthesis of functional biochar catalysts and applications in (trans)esterification. Herein, first the method and design of synthesized biochar substrate catalysts are briefly introduced. Second, the applications of these synthesized biochar substrate catalysts upon (trans)esterification are comprehensively discussed. Finally, the current research status and the future perspectives of the synthesized biochar substrate catalyst are presented. It is expected that this summary will provide perspectives and instructions for future work on synthesized biochar catalysts for biodiesel products.
Collapse
Affiliation(s)
- Che Zhao
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Qinyao Xu
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Ying Gu
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Xingjin Nie
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese
Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
SO 3H-functionalized carbon fibers for the catalytic transformation of glycerol to glycerol tert-butyl ethers. Sci Rep 2023; 13:565. [PMID: 36631517 PMCID: PMC9834229 DOI: 10.1038/s41598-023-27432-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Carbon fibers (CFs) of high quality were produced from hydrocarbons such as isobutane or ethylene using the catalytic chemical vapor deposition method (CCVD) and Ni catalyst. The as-prepared samples were functionalized with acidic groups using concentrated sulfuric acid or 4-benzenediazonium sulfonate (BDS) generated in situ from sulfanilic acid and sodium nitrite. The morphological features of the materials were confirmed by transmission electron microscopy, whereas their physicochemical properties were characterized by means of elemental and textural analyses, thermogravimetric (TG) method, Raman spectroscopy, potentiometric back titration, and X-ray diffraction analysis. The obtained CFs were used as catalysts in glycerol etherification with tert-butyl alcohol at 110 °C under autogenous pressure. The BDS-modified CFs were particularly effective in the reaction, showing high glycerol conversions (of about 45-55% after 6 h) and substantial yields of mono- and di-glycerol ethers. It was found that the chemistry of the sample surface was crucial for the process. The high concentration of -SO3H groups decorating CFs boosted the formation of di- and tri-tert-butyl glycerol ethers. Surface oxygen functionalities also had a positive effect on the reaction, however, their impact on the catalytic performances of CFs was significantly weaker compared to that shown by -SO3H groups and it was probably due to the adsorption of reagents on the catalyst surface.
Collapse
|
14
|
Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future. Catalysts 2022. [DOI: 10.3390/catal13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biomass-derived carbons are emerging materials with a wide range of catalytic properties, such as large surface area and porosity, which make them ideal candidates to be used as heterogeneous catalysts and catalytic supports. Their unique physical and chemical properties, such as their tunable surface, chemical inertness, and hydrophobicity, along with being environmentally friendly and cost effective, give them an edge over other catalysts. The biomass-derived carbon materials are compatible with a wide range of reactions including organic transformations, electrocatalytic reactions, and photocatalytic reactions. This review discusses the uses of materials produced from biomass in the realm of heterogeneous catalysis, highlighting the different types of carbon materials derived from biomass that are potential catalysts, and the importance and unique properties of heterogeneous catalysts with different preparation methods are summarized. Furthermore, this review article presents the relevant work carried out in recent years where unique biomass-derived materials are used as heterogeneous catalysts and their contribution to the field of catalysis. The challenges and potential prospects of heterogeneous catalysis are also discussed.
Collapse
|
15
|
Yadav G, Yadav N, Ahmaruzzaman M. Microwave-assisted synthesis of biodiesel by a green carbon-based heterogeneous catalyst derived from areca nut husk by one-pot hydrothermal carbonization. Sci Rep 2022; 12:21455. [PMID: 36509869 PMCID: PMC9744914 DOI: 10.1038/s41598-022-25877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, we have synthesized a solid acid catalyst by areca nut husk using low temperature hydrothermal carbonization method. The fabricated catalyst has enhanced sulfonic actives sites (3.12%) and high acid density (1.88 mmol g-1) due to -SO3H, which are used significantly for effective biodiesel synthesis at low temperatures. The chemical composition and morphology of the catalyst is determined by various techniques, such as Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Scanning electron microscope (SEM), Energy disruptive spectroscopy (EDS), Mapping, Thermogravimetric analysis (TGA), CHNS analyzer, Transmission electron microscopy (TEM), particle size analyzer, and X-ray photoelectron spectroscopy (XPS). Acid-base back titration method was used to determine the acid density of the synthesized material. In the presence of the as-fabricated catalyst, the conversion of oleic acid (OA) to methyl oleate reached 96.4% in 60 min under optimized conditions (1:25 Oleic acid: methanol ratio, 80 °C, 60 min, 9 wt% catalyst dosage) and observed low activation energy of 45.377 kJ mol-1. The presence of the porous structure and sulfonic groups of the catalyst contributes to the high activity of the catalyst. The biodiesel synthesis was confirmed by gas-chromatography mass spectrometer (GC-MS) and Nuclear magnetic resonance (NMR). The reusability of the catalyst was examined up to four consecutive cycles, yielding a high 85% transformation of OA to methyl oleate on the fourth catalytic cycle.
Collapse
Affiliation(s)
- Gaurav Yadav
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Nidhi Yadav
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Md. Ahmaruzzaman
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| |
Collapse
|
16
|
de Oliveira ADN, Ferreira IM, Jimenez DEQ, da Silva LS, da Costa AAF, Lima ETL, Costa FF, da Luz PTS, Rocha Filho GND, Osman SM, Luque R, Nascimento LASD. Mining waste valorisation to catalytically active mesoporous materials for the esterification of fatty acid palm oil waste. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Kinetic and thermodynamic study on the esterification of oleic acid over SO 3H-functionalized eucalyptus tree bark biochar catalyst. Sci Rep 2022; 12:8653. [PMID: 35606402 PMCID: PMC9126883 DOI: 10.1038/s41598-022-12539-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Herein, esterification of oleic acid (OA) over tosylic acid functionalized eucalyptus bark biochar (TsOH-MBC) to synthesize fatty acid methyl ester (FAME) was investigated. The TsOH-MBC catalyst was prepared via pyrolysis-activation-sulfonation process at various impregnation ratios and was characterized by SEM, FTIR, EDX, XRD, BET, TGA and acid site density techniques. The catalytic performance of the sulfonated biochar catalyst was described in terms of acidity and FAME yield. 6 g of sulfonic acid loaded on 10 g of MBC (6TsOH-MBC) appeared to be most appropriate combination to achieve a highly active catalyst for the esterification of OA with 96.28% conversion to FAME at 80 °C for 5 h with catalyst loading of 4.0 wt% and 8:1 methanol/OA molar ratio. The catalytic reaction kinetic data were very well described by the second-order model, with a rate coefficient of 0.223 mL mol−1 h−1 at 80 °C and activation energy of 81.77 kJ mol−1. The thermodynamic parameters such as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H$$\end{document}ΔH, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta S$$\end{document}ΔS and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta G$$\end{document}ΔG were determined to be 78.94 kJ mol−1, 135.3 J mol−1 K−1 and 33.03 kJ mol−1, respectively. This research provided an environmentally friendly procedure for FAME production that could be replicated on a commercial scale.
Collapse
|
18
|
Yusuff AS, Thompson-Yusuff KA, Porwal J. Sulfonated biochar catalyst derived from eucalyptus tree shed bark: synthesis, characterization and its evaluation in oleic acid esterification. RSC Adv 2022; 12:10237-10248. [PMID: 35424967 PMCID: PMC8972392 DOI: 10.1039/d1ra09179d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, fatty acid (oleic acid, OA) was upgraded to fatty acid methyl ester (FAME) via esterification reaction using sulfonated biochar obtained from eucalyptus tree shed bark as solid acid catalyst. Under the optimal esterification conditions (i.e., at 65 °C for 2 h using a methanol/OA molar ratio of 10 : 1 with a catalyst dosage of 4 wt%), the FAME yield was 97.05 ± 0.28% when a solid acid catalyst prepared by loading 6 g of p-Toluenesulfonic acid (p-TSA) on 2 g of activated biochar (p-TSA3/ABC) was used. The remarkable performance of the p-TSA3/ABC could be attributed to its high acidity (468.8 μmol g-1) and dominance of the SO3H acid site on the catalyst surface. Experimental findings showed that the p-TSA3/ABC was relatively stable due to its highly functionalized structure. The catalyst was recycled for five successive cycles and exhibited no dramatic decrease in catalytic activity.
Collapse
Affiliation(s)
- Adeyinka S Yusuff
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti Nigeria
| | - Kudirat A Thompson-Yusuff
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Lagos State University Epe Campus Epe Nigeria
| | - Jyoti Porwal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum Dehradun India
| |
Collapse
|
19
|
Sripada S, Kastner JR. Catalytic Esterification Using Solid Acid Carbon Catalysts Synthesized by Sustainable Hydrothermal and Plasma Sulfonation Techniques. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarada Sripada
- Riverbend North Research Lab, Biochemical Engineering, College of Engineering, The University of Georgia, 110 Riverbend Road, Athens, Georgia 30602, United States
| | - James R. Kastner
- Riverbend North Research Lab, Biochemical Engineering, College of Engineering, The University of Georgia, 110 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Maafa IM. Biodiesel Synthesis from High Free-Fatty-Acid Chicken Fat using a Scrap-Tire Derived Solid Acid Catalyst and KOH. Polymers (Basel) 2022; 14:643. [PMID: 35160632 PMCID: PMC8839443 DOI: 10.3390/polym14030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022] Open
Abstract
A heterogeneous solid acid catalyst was synthesized using tire polymer waste (TPW) for the esterification of waste chicken fat (CF) enriched with fatty acids. The TPW was carbonized and functionalized with concentrated sulfuric acid under various sulfonation conditions to obtain a sulfonated tire polymer char (TPC-SO3H) catalyst. The TPC-SO3H catalyst was further characterized via acid-base titration (to ascertain the total concentration of acid), X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and Brunauer-Emmett-Teller (BET) analysis. The esterification reaction conditions of extracted chicken fat with methanol and the viability of catalyst reuse were also investigated. The composition of the free fatty acid (FFA) decreased to below 1% under optimum reaction conditions of 5% TPC-SO3H catalyst, the methanol-to-CF molar-ratio of 15:1, and a reaction time of 120 min at 70 °C. The catalyst preserved its conversion efficiency above 90%, even after three cycles. The results demonstrate that the catalyst is applicable and efficient in the esterification of raw materials containing various fatty acid compositions since different carbonized materials have distinct abilities to combine acid groups. Furthermore, after de-acidification of CF-FFA by the as-prepared TPC-SO3H catalyst, the neutral CF was transesterified completely to biodiesel and characterized via Fourier Transform Infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy and physicochemical analysis. This work unveils a promising technique for utilizing tire waste generated in large quantities for the development of a novel heterogeneous acid catalyst for biodiesel production.
Collapse
Affiliation(s)
- Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
21
|
Dong YD, Zhang LQ, Zhou P, Liu Y, Lin H, Zhong GJ, Yao G, Li ZM, Lai B. Natural cellulose supported carbon nanotubes and Fe 3O 4 NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: An enhanced non-radical oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127054. [PMID: 34481389 DOI: 10.1016/j.jhazmat.2021.127054] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Currently, many catalysts are inconvenient to separate from water, and the solvents used in the preparation process are not environmentally friendly, resulting in low recovery efficiency and secondary pollution. In this study, the magnetic and porous regenerated cellulose/carbon nanotubes/Fe3O4 nanoparticles (RC/CNTs/Fe3O4 NPs) composites were synthesized for activation of peroxydisulfate (PDS) in a green alkaline-urea system. The RC/CNTs/Fe3O4 NPs-PDS system achieved 100% removal of bisphenol A compared with CNTs (~64.6%), RC (~0%) or Fe3O4 NPs (~0%), which was closely related to the introduction of defects and functional groups, nitrogen doping and conductive networks. Interestingly, the strong interaction between CNTs and the sheath-like protective layer formed by urea on the cellulose surface promotes the introduction of nitrogen into the composites at the preparation temperature of 70 °C. Moreover, the mechanism of the system was found to be a typical non-radical pathway. Fortunately, there is no leaching of iron ions in the system, and the effects of the actual waterbody, initial pH, and different anions are negligible. The recycling and separation experiments revealed the practicality and superiority of the composite. This work provides a feasible and sustainable strategy for the application of natural cellulose-supported catalysts.
Collapse
Affiliation(s)
- Yu-Dan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Liang-Qing Zhang
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China.
| |
Collapse
|
22
|
do Nascimento LG, Dias IM, de Souza GBM, Mourão LC, Pereira MB, Viana JCV, Lião LM, de Oliveira GR, Alonso CG. Sulfonated carbons from agro-industrial residues: simple and efficient catalysts for the Biginelli reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj04686a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An eco-friendly catalyst prepared from rice husk was used to synthesize dihydropyrimidinones (DHPMs) and achieved a yield of 92%.
Collapse
Affiliation(s)
| | - Isabela Milhomem Dias
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Guilherme Botelho Meireles de Souza
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
- Chemical Engineering Department, State University of Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | | | - Mariana Bisinotto Pereira
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
- Chemical Engineering Department, State University of Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | - Júlio Cezár Vieira Viana
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
- Federal University of Tocantins, CEP 77404-970, Gurupi, Tocantins, Brazil
| | - Luciano Morais Lião
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
23
|
Vidal JL, Wyper OM, MacQuarrie SL, Kerton FM. Ring‐Closing Metathesis of Aliphatic Ethers and Esterification of Terpene Alcohols Catalyzed by Functionalized Biochar. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juliana L. Vidal
- Department of Chemistry Memorial University of Newfoundland 283 Prince Philip Drive St. John's NL A1B 3X7 Canada
| | - Olivia M. Wyper
- Department of Chemistry Memorial University of Newfoundland 283 Prince Philip Drive St. John's NL A1B 3X7 Canada
| | - Stephanie L. MacQuarrie
- Department of Chemistry Memorial University of Newfoundland 283 Prince Philip Drive St. John's NL A1B 3X7 Canada
- Department of Chemistry Cape Breton University 1250 Grand Lake Road Sydney NS B1P 6L2 Canada
| | - Francesca M. Kerton
- Department of Chemistry Memorial University of Newfoundland 283 Prince Philip Drive St. John's NL A1B 3X7 Canada
| |
Collapse
|
24
|
|
25
|
Abstract
Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.
Collapse
|
26
|
Ibiapina A, Gualberto LDS, Dias BB, Freitas BCB, Martins GADS, Melo Filho AA. Essential and fixed oils from Amazonian fruits: proprieties and applications. Crit Rev Food Sci Nutr 2021; 62:8842-8854. [PMID: 34137326 DOI: 10.1080/10408398.2021.1935702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Amazon biome is rich in oilseed plant species, which have essential physical-chemical, nutritional and pharmacological properties, in addition to potential economic value for different biotechnological and industrial applications. In the extraction of fixed oils, some Amazon fruit that are oleaginous matrices are acquiring more prominence, such as tucumã (Astrocaryum vulgare), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), Brazil nut (Bertholletia excelsa), pracaxi (Pentaclethra macroloba), patawa (Oenocarpus bataua), among others. These oilseed fruits have natural antioxidants, essential fatty acids, and good oxidative stability. The essential oils from these oilseed species have antibiotic and anti-inflammatory properties, in addition to the presence of natural antioxidants, such as carotenoids and tocopherols. Thus, Amazonian oilseed species are valuable resources. For these properties to be preserved during fruit processing, the process of extracting the oil is critical. More studies are needed on their properties and applications, seeking to add commercial value, and the optimization of oils and fats processing to obtain quality products. Therefore, this article aims to present Amazonian fruits' potential to obtain fixed and essential oils and possible application in the food industry.
Collapse
Affiliation(s)
- Andréia Ibiapina
- Laboratory of Kinetics and Process Modeling, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - Bianca Barros Dias
- Laboratory of Kinetics and Process Modeling, Federal University of Tocantins, Palmas, TO, Brazil
| | | | | | | |
Collapse
|
27
|
Lopes SQ, Holanda FH, Jimenez DEQ, do Nascimento LAS, Oliveira AN, Ferreira IM. Use of Oxone® as a Potential Catalyst in Biodiesel Production from Palm Fatty Acid Distillate (PFAD). Catal Letters 2021. [DOI: 10.1007/s10562-021-03698-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Godina D, Meile K, Zhurinsh A. Obtaining lignocellulosic biomass-based catalysts and their catalytic activity in cellobiose hydrolysis and acetic acid esterification reactions. RSC Adv 2021; 11:18259-18269. [PMID: 35480927 PMCID: PMC9033398 DOI: 10.1039/d1ra02824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Global challenges prompt the world to modify its strategies and shift from a fossil-fuel-based economy to a bio-resource-based one with the production of renewable biomass chemicals. Different processes exist that allow the transformation of raw biomass into desirable bio-based products and/or energy. In this work different biochars that were obtained as a by-product from birch chip fast pyrolysis and carbonization were used as is or chemically/physically treated. These sulfonated carbon catalysts were compared to a commercially available sulfonated styrene-divinylbenzene macroreticular resin (Dowex 50W X8). Characterisation (water content and pH value, FTIR, base titration, element analysis and N2 desorption) was done to evaluate the obtained sulfonated biocarbon catalysts. Catalytic activity was tested using cellobiose (CB) hydrolysis and acetic acid esterification. For the catalytic CB hydrolysis, we tested the reaction temperature, time and CB and catalyst mass ratios. The determined optimal conditions were 120 °C and 24 h, with CB and catalyst mass ratio 1 : 5. The highest glucose yield was observed for biochar obtained from the birch chip fast pyrolysis process (BC_Py-H2SO4) - 92% within 24 h for 120 °C. Comparably high glucose yield was observed for biochar that was obtained in birch chip carbonization (BC_Carbon-H2SO4) - 86% within 24 h for 120 °C.
Collapse
Affiliation(s)
- Daniela Godina
- Latvian State Institute of Wood Chemistry Dzerbenes 27 Riga LV-1006 Latvia
- University of Latvia, Faculty of Chemistry Jelgavas 1 Riga LV-1004 Latvia
| | - Kristine Meile
- Latvian State Institute of Wood Chemistry Dzerbenes 27 Riga LV-1006 Latvia
| | - Aivars Zhurinsh
- Latvian State Institute of Wood Chemistry Dzerbenes 27 Riga LV-1006 Latvia
| |
Collapse
|
29
|
An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil. Catalysts 2021. [DOI: 10.3390/catal11050604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The distillate from the deodorization of palm oil (DDPO) is an agro-industrial residue, approximately 84% of which consists of free fatty acids (FFAs), which can be used for the production of fatty acid ethyl esters (FAEE). A catalyst (10HPMo/AlSiM) obtained from a waste material, Amazon flint kaolin, was applied in the esterification of the DDPO, reaching a conversion index of 94%, capable of maintaining satisfactory activity (>75%) after four consecutive cycles. Flint kaolin is therefore proven to be an efficient option in the search for new heterogeneous low-cost catalysts obtained from industrial by-products, contributing to the reduction of environmental impact and adding value to widely available wastes that would otherwise be discarded directly into the environment. Based on the catalytic results, esterification of DDPO using 10HPMo/AlSiM can be a cheaper alternative for the production of sustainable fuels.
Collapse
|
30
|
Zavarize DG, de Oliveira JD. Brazilian açaí berry seeds: an abundant waste applied in the synthesis of carbon-based acid catalysts for transesterification of low free fatty acid waste cooking oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21285-21302. [PMID: 33411290 DOI: 10.1007/s11356-020-12054-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Residues of açaí seeds (Euterpe oleracea Mart.) were a novel source for the synthesis of the acid heterogeneous catalyst applied in the conversion of low free fatty acid waste cooking oil (WCO) to biodiesel. Yield of activated carbon (AC) and catalyst (CAT), as well as density of SO3H groups and total acidity, was analyzed in an entirely random designed experiment using multiple linear regression, one-way ANOVA, and Tukey's post hoc test. Time, temperature, dosage of KOH, and ratio of H2SO4/AC were the predictor variables with 3 levels each, at a significance level of α = .05. A significant yield variation portion of AC was explained by the experimental factors (R2 = .891, F (3, 23) = 62.9, p < .0001), as did the yield of CAT (R2 = .960, F (3, 23) = 185.7, p < .0001), density of SO3H (R2 = .969, F (3, 23) = 242.2, p < .0001), and total acidity (R2 = .973, F (3, 23) = 280.6, p < .0001). Levels of time (p = .001) and KOH dosage (p = .006) were significant to the yield of AC, and temperature levels were not influent on density of SO3H (p = .731) or total acidity (p = .762). CAT showed a SBET of 249 m2 g-1, Vpore of 0.104 cm3 g-1, low crystallinity, high thermal stability, and a mesoporous amorphous structure. Optimized catalytic tests resulted in 89% conversion of WCO and 11 cycles of reuse, better than pure H2SO4 or pure KOH (p < .0001) and also better than many biomass-derived catalysts reported in the literature.
Collapse
Affiliation(s)
- Danilo Gualberto Zavarize
- Department of Agricultural Sciences, State University of Maranhão, São Luis, 65055-310, Brazil.
- Center of Social Sciences, Health and Technology, Federal University of Maranhão, Imperatriz, State of Maranhão, 65915-240, Brazil.
| | - Jorge Diniz de Oliveira
- Technological, Natural and Exact Sciences Center, State University of the Tocantina Region of Maranhão, Imperatriz, 65900-470, Brazil
| |
Collapse
|
31
|
Gluba Ł, Rafalska-Przysucha A, Szewczak K, Łukowski M, Szlązak R, Vitková J, Kobyłecki R, Bis Z, Wichliński M, Zarzycki R, Kacprzak A, Usowicz B. Effect of Fine Size-Fractionated Sunflower Husk Biochar on Water Retention Properties of Arable Sandy Soil. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1335. [PMID: 33801976 PMCID: PMC7999494 DOI: 10.3390/ma14061335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
Biochar application has been reported to improve the physical, chemical, and hydrological properties of soil. However, the information about the size fraction composition of the applied biochar as a factor that may have an impact on the properties of soil-biochar mixtures is often underappreciated. Our research shows how sunflower husk biochar (pyrolyzed at 650 °C) can modify the water retention characteristics of arable sandy soil depending on the biochar dose (up to 9.52 wt.%) and particle size (<50 µm, 50-100 µm, 100-250 µm). For comparison, we used soil samples mixed with biochar passed through 2 mm sieve and an unamended reference. The addition of sieved biochar to the soil caused a 30% increase in the available water content (AWC) in comparing to the soil without biochar. However, the most notable improvement (doubling the reference AWC value from 0.078 m3 m-3 to 0.157 m3 m-3) was observed at the lowest doses of biochar (0.95 and 2.24 wt.%) and for the finest size fractions (below 100 µm). The water retention effects on sandy soil are explained as the interplay between the dose, the size of biochar particles, and the porous properties of biochar fractions.
Collapse
Affiliation(s)
- Łukasz Gluba
- Institute of Agrophysics, Polish Academy of Sciences 4, 20-290 Lublin, Poland; (A.R.-P.); (K.S.); (M.Ł.); (R.S.); (B.U.)
| | - Anna Rafalska-Przysucha
- Institute of Agrophysics, Polish Academy of Sciences 4, 20-290 Lublin, Poland; (A.R.-P.); (K.S.); (M.Ł.); (R.S.); (B.U.)
| | - Kamil Szewczak
- Institute of Agrophysics, Polish Academy of Sciences 4, 20-290 Lublin, Poland; (A.R.-P.); (K.S.); (M.Ł.); (R.S.); (B.U.)
| | - Mateusz Łukowski
- Institute of Agrophysics, Polish Academy of Sciences 4, 20-290 Lublin, Poland; (A.R.-P.); (K.S.); (M.Ł.); (R.S.); (B.U.)
| | - Radosław Szlązak
- Institute of Agrophysics, Polish Academy of Sciences 4, 20-290 Lublin, Poland; (A.R.-P.); (K.S.); (M.Ł.); (R.S.); (B.U.)
| | - Justína Vitková
- Institute of Hydrology of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia;
| | - Rafał Kobyłecki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, 42-201 Częstochowa, Poland; (R.K.); (Z.B.); (M.W.); (R.Z.); (A.K.)
| | - Zbigniew Bis
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, 42-201 Częstochowa, Poland; (R.K.); (Z.B.); (M.W.); (R.Z.); (A.K.)
| | - Michał Wichliński
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, 42-201 Częstochowa, Poland; (R.K.); (Z.B.); (M.W.); (R.Z.); (A.K.)
| | - Robert Zarzycki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, 42-201 Częstochowa, Poland; (R.K.); (Z.B.); (M.W.); (R.Z.); (A.K.)
| | - Andrzej Kacprzak
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, 42-201 Częstochowa, Poland; (R.K.); (Z.B.); (M.W.); (R.Z.); (A.K.)
| | - Bogusław Usowicz
- Institute of Agrophysics, Polish Academy of Sciences 4, 20-290 Lublin, Poland; (A.R.-P.); (K.S.); (M.Ł.); (R.S.); (B.U.)
| |
Collapse
|
32
|
Cao M, Peng L, Xie Q, Xing K, Lu M, Ji J. Sulfonated Sargassum horneri carbon as solid acid catalyst to produce biodiesel via esterification. BIORESOURCE TECHNOLOGY 2021; 324:124614. [PMID: 33434876 DOI: 10.1016/j.biortech.2020.124614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
A solid acid catalyst prepared by sulfonated Sargassum horneri carbon was utilized for the esterification reaction of oleic acid and methanol. The formed amorphous carbon layers during carbonization and the access of sulfonic acid groups during sulfonation can catalyze the esterification reaction for biodiesel preparation efficiently. The catalyst was characterized by various methods to investigate its physical and chemical properties. With carbonization at 300 °C for 2 h followed by sulfonation at 90 °C for 5 h, the catalyst reached acid density of 1.40 mmol/g. The catalyst dosage, methanol/oleic acid (molar ratio), reaction temperature, and reaction time were optimized to 10 wt%, 15:1, 70 °C, and 3 h, respectively. Under the optimal condition, the conversion of oleic acid reached 96.4%. Additionally, the catalyst was regenerated after four cycles, with the conversion of oleic acid still reaching 95.4%.
Collapse
Affiliation(s)
- Minghe Cao
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Libo Peng
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Qinglong Xie
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Kainan Xing
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Meizhen Lu
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Jianbing Ji
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
33
|
Zhang Q, Lei D, Luo Q, Yang X, Wu Y, Wang J, Zhang Y. MOF-derived zirconia-supported Keggin heteropoly acid nanoporous hybrids as a reusable catalyst for methyl oleate production. RSC Adv 2021; 11:8117-8123. [PMID: 35423329 PMCID: PMC8695087 DOI: 10.1039/d1ra00546d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, a series of nanoporous HSiW@ZrO2 hybrids were synthesized using a zirconium metal-organic framework UiO-66 as a precursor towards biodiesel production. The structural and morphological properties of the obtained hybrids were characterized by the wide-angle XRD, FTIR, SEM, TEM, N2 adsorption/desorption, and NH3-TPD methods. Moreover, their catalytic activity in terms of calcination temperature during preparation was investigated, and the HSiW@ZrO2 hybrids calcinated at 300 °C exhibited the highest activity and the oleic acid (OA) conversion of 94.0% owing to the presence of the relatively high surface area, appropriate pore size and strong acidity. It was also revealed that the hybrids maintained as high as 82.0% even after nine cycles. Intriguingly, the nanoporous catalysts were found to exhibit excellent catalytic activity towards the esterification of the high acid value of Jatropha curcas oil.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University Anshun 561000 Guizhou China
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University Anshun 561000 Guizhou China
| | - Dandan Lei
- School of Chemistry and Chemical Engineering, Anshun University Anshun 561000 Guizhou China
| | - Qizhi Luo
- School of Chemistry and Chemical Engineering, Anshun University Anshun 561000 Guizhou China
| | - Xianju Yang
- School of Chemistry and Chemical Engineering, Anshun University Anshun 561000 Guizhou China
| | - Yaping Wu
- School of Chemistry and Chemical Engineering, Anshun University Anshun 561000 Guizhou China
| | - Jialu Wang
- School of Resource and Environmental Engineering, Anshun University Anshun 561000 Guizhou China
| | - Yutao Zhang
- School of Chemistry and Chemical Engineering, Anshun University Anshun 561000 Guizhou China
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University Anshun 561000 Guizhou China
| |
Collapse
|
34
|
Lima APD, Vieira AT, Aud BN, Batista ACF, de Morais LC, Faria AMD, Assunção RMND, Pasquini D. Esterification of oleic acid employing sulfonated polystyrene and polysulfone membranes as catalysts. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20210067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Du Y, Shao L, Qi C. Sulfonated and cross‐linked polystyrene ultrafine fibers for the esterification of palmitic acid for biodiesel production. J Appl Polym Sci 2020. [DOI: 10.1002/app.50169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| |
Collapse
|