1
|
Khan NA, Jahan Z, Iqbal N, Niazi MB, Mehek R. Synergistic electrochemical performance of textile sludge based activated carbon with reduced graphene oxide as electrode for supercapacitor application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:274-283. [PMID: 39577204 DOI: 10.1016/j.wasman.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The procedure for disposing of textile waste sludge requires sustainable solutions due to numerous environmental issues associated with its disposal. The majority of textile manufacturers incinerate the waste sludge to meet their heating demands, which is harmful to the environment. It can also be used in soil amendment, biodegradable products, construction material and water treatment process as absorbent to remove the heavy metals etc. In this study we use the heavy metal containing textile waste sludge as a precursor for the fabrication of functional electrode material for supercapacitor applications. In this process the organic content within the textile sludge waste is treated at 900 °C and transformed into activated carbon, a vital component of supercapacitors electrodes. Through a series of pyrolysis and activation processes, it is further converted into porous activated carbon (AC) with a wide surface area and appropriate electrochemical properties. To enhance the overall conductivity of the electrode material for supercapacitor applications, the carbon content of the material is increased by loading of reduced graphene oxide (rGO) up to 4 wt%. It resulted in a significant increase in the surface area up to 128.68 m2/g. The effective conversion and relevance of the obtained material for supercapacitor applications is further reinforced by the excellent electrochemical performance of rGO@AC-900 °C which generated a specific capacitance of 362F/g with 4 wt% loading which is higher than the specific capacity achieved with lower rGO loading i.e., 83.2 F/g and 182.5 F/g for AC-900 °C and 2 wt% rGO@AC-900 °C, respectively. The 4 wt% rGO@AC900°C also represented improved stability with up to 82 % charge retention after 5000 charge-discharge cycles. The excellent EDLC behavior of 4 wt% rGO@AC900°C is also evident from the impedance data. The electrode material with 4 wt% rGO loading showed lower value of RCT i.e., 4.16 Ω as compared to 12.08 Ω with 2 wt% rGO loading. This novel approach offers a sustainable alternative for the handling of hazardous textile waste sludge through conversion into a potential electrode material for environmentally friendly energy storage devices.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- School of Chemical and Material Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Zaib Jahan
- School of Chemical and Material Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Naseem Iqbal
- US Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Bilal Niazi
- School of Chemical and Material Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Rimsha Mehek
- US Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Villanueva-Martínez N, Alegre C, Martínez-Visús I, Lázaro M. Bifunctional oxygen electrocatalysts based on non-critical raw materials: Carbon nanostructures and iron-doped manganese oxide nanowires. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
4
|
Mehek R, Iqbal N, Noor T, Ghazi ZA, Umair M. Metal-organic framework derived vanadium oxide supported nanoporous carbon structure as a bifunctional electrocatalyst for potential application in metal air batteries. RSC Adv 2022; 13:652-664. [PMID: 36605659 PMCID: PMC9780743 DOI: 10.1039/d2ra06688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
High-efficiency, sustainable, non-precious metal-based electrocatalysts with bifunctional catalytic activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are essential for metal-air batteries. In this research, a bifunctional electrocatalyst is developed by synthesizing a novel nanoporous vanadium oxide/carbon composite (NVC-900) through pyrolysis of a highly efficient vanadium metal-organic framework, MIL-101 (V). The fabrication process was conveniently carried out by pyrolyzing the synthesized MIL-101 (V) at 900 °C, producing vanadium oxide nanoparticles embedded in the extensively distributed pores of the carbon network. The evenly distributed nanopores substantially improve the performance of the efficient electrocatalyst for both the oxygen reduction reaction and oxygen evolution reactions (ORR/OER) by increasing surface area and facilitating access to stable catalytic active sites. The unique structure was characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). For oxygen reduction reaction (ORR), the electrocatalyst established a promising limiting current density (J L) of 5.2 mA cm-2 at 1600 rpm at an onset potential of 1.18 V and a half-wave potential of 0.82 V, and for OER, a current density of 10 mA cm-2 was delivered at a potential of 1.48 V. In comparison to 10% Pt/C, the synthesized bifunctional electrocatalyst being almost equally active towards bifunctional activity, showed much better long-term cyclic stability. The one-step thermal pyrolysis strategy to synthesize the nanoporous functional material and the proposed electrocatalytic material's long-term bifunctional activity and durability make it an ideal fit for next-generation portable green metal-air batteries.
Collapse
Affiliation(s)
- Rimsha Mehek
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| | - Naseem Iqbal
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan
| | - Zahid Ali Ghazi
- National Centre of Excellence in Physical Chemistry, University of Peshawar25120Pakistan
| | - Muhammad Umair
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| |
Collapse
|
5
|
Paul A, Radinović K, Hazra S, Mladenović D, Šljukić B, Khan RA, Guedes da Silva MFC, Pombeiro AJL. Electrocatalytic Behavior of an Amide Functionalized Mn(II) Coordination Polymer on ORR, OER and HER. Molecules 2022; 27:7323. [PMID: 36364154 PMCID: PMC9655238 DOI: 10.3390/molecules27217323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The new 3D coordination polymer (CP) [Mn(L)(HCOO)]n (Mn-CP) [L = 4-(pyridin-4-ylcarbamoyl)benzoate] was synthesised via a hydrothermal reaction using the pyridyl amide functionalized benzoic acid HL. It was characterized by elemental, FT-IR spectroscopy, single-crystal and powder X-ray diffraction (PXRD) analyses. Its structural features were disclosed by single-crystal X-ray diffraction analysis, which revealed a 3D structure with the monoclinic space group P21/c. Its performance as an electrocatalyst for oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER) reactions was tested in both acidic (0.5 M H2SO4) and alkaline (0.1 M KOH) media. A distinct reduction peak was observed at 0.53 V vs. RHE in 0.1 M KOH, which corresponds to the oxygen reduction, thus clearly demonstrating the material's activity for the ORR. Tafel analysis revealed a Tafel slope of 101 mV dec-1 with mixed kinetics of 2e- and 4e- pathways indicated by the Koutecky-Levich analysis. Conversely, the ORR peak was not present in 0.5 M H2SO4 indicating no activity of Mn-CP for this reaction in acidic media. In addition, Mn-CP demonstrated a noteworthy activity toward OER and HER in acidic media, in contrast to what was observed in 0.1 M KOH.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristina Radinović
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Susanta Hazra
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Dušan Mladenović
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Biljana Šljukić
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
- Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Maria Fátima C. Guedes da Silva
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
6
|
Copper-based non-precious metal catalysts derived from the in-situ and ex-situ loading of copper-bipyridine metal-organic framework on activated carbon for oxygen reduction reaction. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Song D, Hu C, Gao Z, Yang B, Li Q, Zhan X, Tong X, Tian J. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5837. [PMID: 36079218 PMCID: PMC9457521 DOI: 10.3390/ma15175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn-air battery has attracted extensive research in recent years due to the advantages of abundant resources, low price, high energy density, and high reduction potential. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of Zn-air battery during discharge and charge have complicated multi-electron transfer processes with slow reaction kinetics. It is important to develop efficient and stable oxygen electrocatalysts. At present, single-function catalysts such as Pt/C, RuO2, and IrO2 are regarded as the benchmark catalysts for ORR and OER, respectively. However, the large-scale application of Zn-air battery is limited by the few sources of the precious metal catalysts, as well as their high costs, and poor long-term stability. Therefore, designing bifunctional electrocatalysts with excellent activity and stability using resource-rich non-noble metals is the key to improving ORR/OER reaction kinetics and promoting the commercial application of the Zn-air battery. Metal-organic framework (MOF) is a kind of porous crystal material composed of metal ions/clusters connected by organic ligands, which has the characteristics of adjustable porosity, highly ordered pore structure, low crystal density, and large specific surface area. MOFs and their derivatives show remarkable performance in promoting oxygen reaction, and are a promising candidate material for oxygen electrocatalysts. Herein, this review summarizes the latest progress in advanced MOF-derived materials such as oxygen electrocatalysts in a Zn-air battery. Firstly, the composition and working principle of the Zn-air battery are introduced. Then, the related reaction mechanism of ORR/OER is briefly described. After that, the latest developments in ORR/OER electrocatalysts for Zn-air batteries are introduced in detail from two aspects: (i) non-precious metal catalysts (NPMC) derived from MOF materials, including single transition metals and bimetallic catalysts with Co, Fe, Mn, Cu, etc.; (ii) metal-free catalysts derived from MOF materials, including heteroatom-doped MOF materials and MOF/graphene oxide (GO) composite materials. At the end of the paper, we also put forward the challenges and prospects of designing bifunctional oxygen electrocatalysts with high activity and stability derived from MOF materials for Zn-air battery.
Collapse
Affiliation(s)
- Dongmei Song
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Changgang Hu
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Zijian Gao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Bo Yang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingxia Li
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Xin Tong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Juan Tian
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| |
Collapse
|
8
|
Abazari R, Amani-Ghadim AR, Slawin AMZ, Carpenter-Warren CL, Kirillov AM. Non-Calcined Layer-Pillared Mn 0.5Zn 0.5 Bimetallic-Organic Framework as a Promising Electrocatalyst for Oxygen Evolution Reaction. Inorg Chem 2022; 61:9514-9522. [PMID: 35699592 PMCID: PMC9775468 DOI: 10.1021/acs.inorgchem.2c00542] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrocatalytic generation of oxygen is of great significance for sustainable, clean, and efficient energy production. Multiple electron transfer in oxygen evolution reaction (OER) and its slow kinetics represent a serious hedge for efficient water splitting, requiring the design and development of advanced electrocatalysts with porous structures, high surface areas, abundant electroactive sites, and low overpotentials. These requisites are common for metal-organic frameworks (MOFs) and derived materials that are promising electrocatalysts for OER. The present work reports on the synthesis and full characterization of a heteroleptic 3D MOF, [Zn2(μ4-odba)2(μ-bpdh)]n·nDMF (Zn-MUM-1), assembled from 4,4'-oxydibenzoic acid and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (bpdh). Besides, a series of heterometallic MnZn-MUM-1 frameworks (abbreviated as Mn0.5Zn0.5-MUM-1, Mn0.66Zn0.33-MUM-1, and Mn0.33Zn0.66-MUM-1) was also prepared, characterized, and used for the fabrication of working electrodes based on Ni foam (NF), followed by their exploration in OER. These noble-metal-free and robust electrocatalysts are stable and do not require pyrolysis or calcination while exhibiting better electrocatalytic performance than the parent Zn-MUM-1/NF electrode. The experimental results show that the Mn0.5Zn0.5-MUM-1/NF electrocatalyst features the best OER activity with a low overpotential (253 mV at 10 mA cm-2) and Tafel slope (73 mV dec-1) as well as significant stability after 72 h or 6000 cycles. These excellent results are explained by a synergic effect of two different metals present in the Mn-Zn MOF as well as improved charge and ion transfer, conductivity, and stability characteristics. The present study thus widens the application of heterometallic MOFs as prospective and highly efficient electrocatalysts for OER.
Collapse
Affiliation(s)
- Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, Maragheh 55181-83111, Iran,
| | - Ali Reza Amani-Ghadim
- Applied
Chemistry Research Laboratory, Department of Chemistry, Faculty of
Sciences, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran,
| | - Alexandra M. Z. Slawin
- EaStCHEM,
School of Chemistry, University of St Andrews, St Andrews, Fife, Scotland KY16 9ST, U.K.
| | | | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal,
| |
Collapse
|
9
|
Ali A, Iqbal N, Noor T, Imtiaz U. Nanostructured Mn-doped Zn N C @reduced graphene oxide as high performing electrocatalyst for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Raza MA, Wahab A, Bhatti AHU, Ahmad A, Ahmad R, Iqbal N, Ali G. CoS2/MnS2 co-doped ZIF-derived nitrogen doped high surface area carbon-based electrode for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Ahmed M, Ahmad S, Nawaz T, Durrani MA, Ali A, Saher S, Khan MAZ, Egilmez M, Samreen A, Mustafa F. Performance evaluation of graphene oxide–MnO
2
nanocomposite for alkaline membrane fuel cell. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mushtaq Ahmed
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Pakistan
| | - Shahbaz Ahmad
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Pakistan
- Department of Physics American University of Sharjah Sharjah United Arab Emirates
| | - Tahir Nawaz
- U.S.‐Pakistan Center for Advanced Studies in Energy National University of Sciences and Technology Islamabad Pakistan
| | - M. Ali Durrani
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Pakistan
| | - Asghar Ali
- U.S.‐Pakistan Center for Advanced Studies in Energy National University of Sciences and Technology Islamabad Pakistan
| | - Saim Saher
- Ariston Energy Solutions Peshawar Pakistan
- Advanced Materials Laboratory Peshawar Pakistan
| | - Muhammad Alam Zaib Khan
- Department of Mechanical Engineering University of Engineering and Technology Peshawar Pakistan
| | - Mehmet Egilmez
- Department of Physics American University of Sharjah Sharjah United Arab Emirates
| | - Ayesha Samreen
- Department of Physics University of Peshawar Peshawar Pakistan
| | - Faisal Mustafa
- Department of Physics American University of Sharjah Sharjah United Arab Emirates
| |
Collapse
|
12
|
|
13
|
Hassan A, Liaquat R, Iqbal N, Ali G, Fan X, Hu Z, Anwar M, Ahmad A. Photo-electrochemical water splitting through graphene-based ZnS composites for H2 production. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Manganese Metal–Organic Framework: Chemical Stability, Photoluminescence Studies, and Biosensing Application. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Abstract
In this study, zeolitic imidazolate framework (ZIF-67) derived nano-porous carbon structures that were further hybridized with MnO2 were tested for oxygen reduction reaction (ORR) as cathode material for fuel cells. The prepared electrocatalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). Cyclic voltammetry was performed on these materials at different scan rates under dissolved oxygen in basic media (0.1 M KOH), inert and oxygen rich conditions to obtain their I–V curves. Electrochemical impedance spectroscopy (EIS) and Chronoamperometry was also performed to observe the materials’ impedance and stability. We report improved performance of hybridized catalyst for ORR based on cyclic voltammetry and EIS results, which show that it can be a potential candidate for fuel cell applications.
Collapse
|
16
|
Ahmad R, Khan UA, Iqbal N, Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv 2020; 10:43733-43750. [PMID: 35519688 PMCID: PMC9058430 DOI: 10.1039/d0ra08560j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/31/2023] Open
Abstract
The present analysis focuses on the synthetic methods used for the application of supercapacitors with various mysterious architectures derived from zeolitic imidazolate frameworks (ZIFs). ZIFs represent an emerging and unique class of metal–organic frameworks with structures similar to conventional aluminosilicate zeolites, consisting of imidazolate linkers and metal ions. Their intrinsic porous properties, robust functionalities, and excellent thermal and chemical stabilities have resulted in a wide range of potential applications for various ZIF materials. In this rapidly expanding area, energetic research activities have emerged in the past few years, ranging from synthesis approaches to attractive applications of ZIFs. In this analysis, the development of high-performance supercapacitor electrodes and recent strategies to produce them, including the synthesis of various heterostructures and nanostructures, are analyzed and summarized. This analysis goes via the ingenuity of modern science when it comes to these nanoarchitecture electrodes. Despite these significant achievements, it is still difficult to accurately monitor the morphologies of materials derived from metal–organic frameworks (MOFs) because the induction force during structural transformations at elevated temperatures is in high demand. It is also desirable to achieve the direct synthesis of highly functionalized nanosized materials derived from zeolitic imidazolate frameworks (ZIFs) and the growth of nanoporous structures based on ZIFs encoded in specific substrates for the construction of active materials with a high surface area suitable for electrochemical applications. The latest improvements in this field of supercapacitors with materials formed from ZIFs as electrodes using ZIFs as templates or precursors are discussed in this review. Also, the possibility of usable materials derived from ZIFs for both existing and emerging energy storage technologies is discussed. The present analysis focuses on the synthetic methods used for the application of supercapacitors with various mysterious architectures derived from zeolitic imidazolate frameworks (ZIFs).![]()
Collapse
Affiliation(s)
- Rabia Ahmad
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Usman Ali Khan
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Naseem Iqbal
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|