1
|
Wichert M, Guasch L, Franzini RM. Challenges and Prospects of DNA-Encoded Library Data Interpretation. Chem Rev 2024; 124:12551-12572. [PMID: 39508428 DOI: 10.1021/acs.chemrev.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
DNA-encoded library (DEL) technology is a powerful platform for the efficient identification of novel chemical matter in the early drug discovery process enabled by parallel screening of vast libraries of encoded small molecules through affinity selection and deep sequencing. While DEL selections provide rich data sets for computational drug discovery, the underlying technical factors influencing DEL data remain incompletely understood. This review systematically examines the key parameters affecting the chemical information in DEL data and their impact on hit triaging and machine learning integration. The need for rigorous data handling and interpretation is emphasized, with standardized methods being critical for the success of DEL-based approaches. Major challenges include the relationship between sequence counts and binding affinities, frequent hitters, and the influence of factors such as inhomogeneous library composition, DNA damage, and linkers on binding modes. Experimental artifacts, such as those caused by protein immobilization and screening matrix effects, further complicate data interpretation. Recent advancements in using machine learning to denoise DEL data and predict drug candidates are highlighted. This review offers practical guidance on adopting best practices for integrating robust methodologies, comprehensive data analysis, and computational tools to improve the accuracy and efficacy of DEL-driven hit discovery.
Collapse
Affiliation(s)
- Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Bos PH, Ranalli F, Flood E, Watts S, Inoyama D, Knight JL, Clark AJ, Placzeck A, Wang J, Gerasyuto AI, Silvergleid S, Yin W, Sun S, Abel R, Bhat S. AutoDesigner - Core Design, a De Novo Design Algorithm for Chemical Scaffolds: Application to the Design and Synthesis of Novel Selective Wee1 Inhibitors. J Chem Inf Model 2024; 64:7513-7524. [PMID: 39360587 DOI: 10.1021/acs.jcim.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The hit identification stage of a drug discovery program generally involves the design of novel chemical scaffolds with desired biological activity against the target(s) of interest. One common approach is scaffold hopping, which is the manual design of novel scaffolds based on known chemical matter. One major limitation of this approach is narrow chemical space exploration, which can lead to difficulties in maintaining or improving biological activity, selectivity, and favorable property space. Another limitation is the lack of preliminary structure-activity relationship (SAR) data around these designs, which could lead to selecting suboptimal scaffolds to advance lead optimization. To address these limitations, we propose AutoDesigner - Core Design (CoreDesign), a de novo scaffold design algorithm. Our approach is a cloud-integrated, de novo design algorithm for systematically exploring and refining chemical scaffolds against biological targets of interest. The algorithm designs, evaluates, and optimizes a vast range, from millions to billions, of molecules in silico, following defined project parameters encompassing structural novelty, physicochemical attributes, potency, and selectivity using active-learning FEP. To validate CoreDesign in a real-world drug discovery setting, we applied it to the design of novel, potent Wee1 inhibitors with improved selectivity over PLK1. Starting from a single known ligand and receptor structure, CoreDesign rapidly explored over 23 billion molecules to identify 1,342 novel chemical series with a mean of 4 compounds per scaffold. To rapidly analyze this large amount of data and prioritize chemical scaffolds for synthesis, we utilize t-Distributed Stochastic Neighbor Embedding (t-SNE) plots of in silico properties. The chemical space projections allowed us to rapidly identify a structurally novel 5-5 fused core meeting all the hit-identification requirements. Several compounds were synthesized and assayed from the scaffold, displaying good potency against Wee1 and excellent PLK1 selectivity. Our results suggest that CoreDesign can significantly speed up the hit-identification process and increase the probability of success of drug discovery campaigns by allowing teams to bring forward high-quality chemical scaffolds derisked by the availability of preliminary SAR.
Collapse
Affiliation(s)
- Pieter H Bos
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Fabio Ranalli
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Emelie Flood
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Shawn Watts
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Daigo Inoyama
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Jennifer L Knight
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Anthony J Clark
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Andrew Placzeck
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Jiashi Wang
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Aleksey I Gerasyuto
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Sarah Silvergleid
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Wu Yin
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Shaoxian Sun
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Sathesh Bhat
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| |
Collapse
|
4
|
Hosozawa T, Niwa M, Takeuchi H, Inohana T, Okumura K, Itoh S. High-yield and high-purity amide bond formation using DMTMM PF 6 for DNA-encoded libraries. Bioorg Med Chem Lett 2024; 110:129859. [PMID: 38955244 DOI: 10.1016/j.bmcl.2024.129859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
In this study, we report on the ability of DMTMM PF6 to improve the amidation reaction. The on-DNA amidation reaction using DMTMM PF6 demonstrates higher conversion rates than those using HATU or DMTMM Cl, particularly with challenging sterically hindered amines and carboxylic acids. The developed method enables the expansion of available building blocks and the efficient synthesis of high-purity DNA-encoded libraries.
Collapse
Affiliation(s)
- Takumi Hosozawa
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Masatoshi Niwa
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Hisayuki Takeuchi
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takehiko Inohana
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Kaori Okumura
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Shin Itoh
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan.
| |
Collapse
|
5
|
Chheda PR, Simmons N, Shi Z. Oxoammonium Salt-Mediated On-DNA Alcohol Oxidation for DEL Synthesis. Org Lett 2024; 26:6754-6759. [PMID: 39077878 DOI: 10.1021/acs.orglett.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
On-DNA carboxylic acids are important synthetic intermediates in the synthesis of DNA-encoded library (DEL) structures. Herein, we report an oxoammonium salt-mediated, room temperature, solution-phase oxidation of DNA-linked primary alcohols into carboxylic acids. This method exhibits a wide substrate scope, encompassing aliphatic, benzylic, and heterobenzylic alcohols, and is compatible with DEL encoding strategies. This advancement facilitates a DEL strategy to utilize unprotected alcohols as inert, masked carboxylic acids and enables access to noncommercial bifunctional carboxyl intermediates to enhance the accessible chemical diversity within DELs.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
6
|
Wang H, Chen T, Fan X, Li Y, Fang W, Zhang G, Li Y. Isothiocyanate intermediates facilitate divergent synthesis of N-heterocycles for DNA-encoded libraries. Chem Commun (Camb) 2024; 60:7638-7641. [PMID: 38963238 DOI: 10.1039/d4cc02547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The versatile reactivity of isothiocyanate intermediates enabled the diversity-oriented synthesis (DOS) of N-heterocycles in a DNA-compatible manner. We first reported a mild in situ conversion of DNA-conjugated amines to isothiocyanates. Subsequently, a set of diverse transformations was successfully developed to construct 2-thioxo-quinazolinones, 1,2,4-thiadiazoles, and 2-imino thiazolines. Finally, the feasibility of these approaches in constructing DELs was further demonstrated through enzymatic ligation and mock pool preparation. This study demonstrated the advantages of combining in situ conversion strategies with DOS, which effectively broadened the chemical and structural diversity of DELs.
Collapse
Affiliation(s)
- Huihong Wang
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, 404100 Chongqing, P. R. China.
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Teng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Xiaohong Fan
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, 404100 Chongqing, P. R. China.
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Wei Fang
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, 404100 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| |
Collapse
|
7
|
Puglioli S, Fabbri M, Comacchio C, Alvigini L, De Luca R, Oehler S, Gilardoni E, Bassi G, Cazzamalli S, Neri D, Favalli N. Permutational Encoding Strategy Accelerates HIT Validation from Single-Stranded DNA-Encoded Libraries. Bioconjug Chem 2024; 35:1033-1043. [PMID: 38963407 DOI: 10.1021/acs.bioconjchem.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including de novo discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.g., stereoisomers, regio-isomers, and peptide sequences). This approach was validated by synthesizing a mock 921,600-member 4-amino-proline single-stranded DEL ("DEL1"). While screening DEL1 against different targets, high-throughput sequencing results showed selective enrichment of the most potent stereoisomers, with enrichment factors that outperform conventional encoding strategies. The versatility of our methodology was additionally validated by encoding 24 scaffolds derived from different permutations of the amino acid sequence of a previously described cyclic peptide targeting Fibroblast Activation Protein (FAP-2286). The resulting library ("DEL2") was interrogated against human FAP, showing selective enrichment of five cyclic peptides. We observed a direct correlation between enrichment factors and on-DNA binding affinities. The presented encoding methodology accelerates drug discovery by facilitating library synthesis and streamlining HIT resynthesis while enhancing enrichment factors at the DEL sequencing level. This facilitates the identification of HIT candidates prior to medicinal chemistry and affinity maturation campaigns.
Collapse
Affiliation(s)
- Sara Puglioli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Mosè Fabbri
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Claudia Comacchio
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Laura Alvigini
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Roberto De Luca
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Sebastian Oehler
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Ettore Gilardoni
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Gabriele Bassi
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Samuele Cazzamalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
- Philogen S.p.A., Via Bellaria, 35, Sovicille, SI IT-53018, Italy
| | - Nicholas Favalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| |
Collapse
|
8
|
Douchez A, Poupart J, Yang G, Vaillancourt L, Marinier A. Squaramide Formation for DNA-Encoded Library Synthesis. Bioconjug Chem 2024; 35:963-970. [PMID: 38874002 DOI: 10.1021/acs.bioconjchem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
DNA-encoded libraries (DELs) can be considered as one of the most powerful tools for the discovery of small molecules of biological interest. However, the ability to access large DELs is contingent upon having chemical transformations that work in aqueous phase and generate minimal DNA alterations and the availability of building blocks compatible with on-DNA chemistry. In addition, accessing scaffolds of interest to medicinal chemists can be challenging in a DEL setting because of inherent limitations of DNA-supported chemistry. In this context, a squaramide formation reaction was developed by using a two-step process. The mild and high-yielding reaction tolerates a wide array of functional groups and was shown to be safe for DNA, thereby making this methodology ideal for DELs.
Collapse
Affiliation(s)
- Antoine Douchez
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Julien Poupart
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Gaoqiang Yang
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Louis Vaillancourt
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Anne Marinier
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
- Département de chimie, Faculté des Arts et Sciences, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
9
|
McCarthy KA, Marcotte DJ, Parelkar S, McKinnon CL, Trammell LE, Stangeland EL, Jetson RR. Discovery of Potent Isoindolinone Inhibitors that Target an Active Conformation of PARP1 Using DNA-Encoded Libraries. ChemMedChem 2024; 19:e202400093. [PMID: 38482564 DOI: 10.1002/cmdc.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Inhibition of poly (ADP-ribose) polymerase-1 (PARP1), a DNA repair enzyme, has proven to be a successful strategy for the treatment of various cancers. With the appropriate selection conditions and protein design, DNA-encoded library (DEL) technology provides a powerful avenue to identify small molecules with the desired mechanism of action towards a target of interest. However, DNA-binding proteins, such as PARP1, can be challenging targets for DEL screening due to non-specific protein-DNA interactions. To overcome this, we designed and screened a PARP1 catalytic domain construct without the autoinhibitory helical domain. This allowed us to interrogate an active, functionally-relevant form of the protein resulting in the discovery of novel isoindolinone PARP1 inhibitors with single-digit nanomolar potency. These inhibitors also demonstrated little to no PARP1-DNA trapping, a property that could be advantageous in the clinic.
Collapse
Affiliation(s)
- Kelly A McCarthy
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Douglas J Marcotte
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Sangram Parelkar
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Crystal L McKinnon
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Lindsay E Trammell
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Eric L Stangeland
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Rachael R Jetson
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| |
Collapse
|
10
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Chheda PR, Simmons N, Shi Z. Hydrophobic Surfactant-DNA Complex (Surf-DNA) Enables DNA-Encoded-Library-Compatible Decarboxylative Arylation under Anhydrous Conditions. Org Lett 2024; 26:4365-4370. [PMID: 38743933 DOI: 10.1021/acs.orglett.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
DNA-encoded libraries (DELs) are a key technology for identifying small-molecule hits in both the pharmaceutical industry and academia, but their chemical diversity is largely limited to water-compatible reactions to aid in the solubility and integrity of encoding DNA tags. To broaden the DEL chemical space, we present a workflow utilizing DNA-cationic surfactant complexation that enables dissolution and reactions on-DNA in anhydrous organic solvents. We demonstrate its utility by developing DEL-compatible photoredox decarboxylative C(sp2)-C(sp3) coupling under water-free conditions. The workflow is optimized for the 96-well format necessary for large-scale DEL productions, and it enables screening and optimization of DEL-compatible reactions in organic solvents.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
12
|
Stevens R, Thompson JDF, Fournier JCL, Burley GA, Battersby DJ, Miah AH. Innovative, combinatorial and high-throughput approaches to degrader synthesis. Chem Soc Rev 2024; 53:4838-4861. [PMID: 38596888 DOI: 10.1039/d3cs01127e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Targeted protein degraders such as PROTACs and molecular glues are a rapidly emerging therapeutic modality within industry and academia. Degraders possess unique mechanisms of action that lead to the removal of specific proteins by co-opting the cell's natural degradation mechanisms via induced proximity. Their optimisation thus far has often been largely empirical, requiring the synthesis and screening of a large number of analogues. In addition, the synthesis and development of degraders is often challenging, leading to lengthy optimisation campaigns to deliver candidate-quality compounds. This review highlights how the synthesis of degraders has evolved in recent years, in particular focusing on means of applying high-throughput chemistry and screening approaches to expedite these timelines, which we anticipate to be valuable in shaping the future of degrader optimisation campaigns.
Collapse
Affiliation(s)
- Rebecca Stevens
- Medicinal Chemistry, GSK, Stevenage, SG1 2NY, UK.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XQ, UK
| | | | | | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XQ, UK
| | | | - Afjal H Miah
- Medicinal Chemistry, GSK, Stevenage, SG1 2NY, UK.
| |
Collapse
|
13
|
Németh A, Kollár L, Németh K, Schlosser G, Minus A, Keserű GM. On-DNA Synthesis of Multisubstituted Indoles. Org Lett 2024; 26:2517-2522. [PMID: 38108153 PMCID: PMC11002923 DOI: 10.1021/acs.orglett.3c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The increasing role of the DNA-encoded library technology in early phase drug discovery represents a significant demand for DNA-compatible synthetic methods for therapeutically relevant heterocycles. Herein, we report the first on-DNA synthesis of multisubstituted indoles via a cascade reaction of Sonogashira coupling and intramolecular ring closure. Further functionalization by Suzuki coupling at the third position exploits a diverse chemical space. The high fidelity of the method also enabled the construction of an indole-based mock library.
Collapse
Affiliation(s)
- András
Gy. Németh
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Levente Kollár
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Krisztina Németh
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- Centre
for Structure Study, HUN-REN Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE
Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös University, Budapest H-1117, Hungary
| | - Annamária Minus
- Institute
of Enzymology, HUN-REN Research Centre for
Natural Sciences, H-1117 Budapest, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
14
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
15
|
Gruber F, McDonagh AW, Rose V, Hunter J, Guasch L, Martin RE, Geigle SN, Britton R. sp 3 -Rich Heterocycle Synthesis on DNA: Application to DNA-Encoded Library Production. Angew Chem Int Ed Engl 2024; 63:e202319836. [PMID: 38330151 DOI: 10.1002/anie.202319836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
DNA encoded library (DEL) synthesis represents a convenient means to produce, annotate and store large collections of compounds in a small volume. While DELs are well suited for drug discovery campaigns, the chemistry used in their production must be compatible with the DNA tag, which can limit compound class accessibility. As a result, most DELs are heavily populated with peptidomimetic and sp2 -rich molecules. Herein, we show that sp3 -rich mono- and bicyclic heterocycles can be made on DNA from ketochlorohydrin aldol products through a reductive amination and cyclization process. The resulting hydroxypyrrolidines possess structural features that are desirable for DELs and target a distinct region of pharmaceutically relevant chemical space.
Collapse
Affiliation(s)
- Felix Gruber
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Victoria Rose
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - James Hunter
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stefanie N Geigle
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
16
|
Taggart EL, Wolff EJ, Yanar P, Blobe JP, Shugrue CR. Development of an oxazole-based cleavable linker for peptides. Bioorg Med Chem 2024; 102:117663. [PMID: 38457910 DOI: 10.1016/j.bmc.2024.117663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions. Cleavage of these peptide-oxazole conjugates is demonstrated on a broad scope of peptides containing various natural and unnatural amino acids. These results represent the first example of a peptide-based linker that is cleaved through single-electron oxidation. The oxazole is also demonstrated to be a suitable linker for both the release of a peptide from a conjugated small molecule and the orthogonal release of cargo from a peptide containing multiple cleavable linkers. Oxazole linkers could serve as a promising tool for peptide screening platforms such as peptide-encoded libraries.
Collapse
Affiliation(s)
- Elizabeth L Taggart
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Evan J Wolff
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Pamira Yanar
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - John P Blobe
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Christopher R Shugrue
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States.
| |
Collapse
|
17
|
Zhang J, Liu J, Li X, Ju Y, Li Y, Zhang G, Li Y. Unexpected Cyclization Product Discovery from the Photoinduced Bioconjugation Chemistry between Tetrazole and Amine. J Am Chem Soc 2024; 146:2122-2131. [PMID: 38190443 DOI: 10.1021/jacs.3c11574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized N-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jinlu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yunzhu Ju
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
18
|
Osawa T, Obika S. Synthesis of Coumarin-Conjugated Oligonucleotides via Knoevenagel Condensation to Prepare an Oligonucleotide Library. Chem Pharm Bull (Tokyo) 2024; 72:143-148. [PMID: 38296555 DOI: 10.1248/cpb.c23-00295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
DNA-encoded libraries (DELs) are attracting attention as a screening tool in the early stages of drug discovery. In the development of DELs, drug candidate compounds are chemically synthesized on barcode DNA. Therefore, it is important to perform the synthesis under mild conditions so as to not damage the DNA. On the other hand, coumarins are gaining increasing research focus not only because they possess excellent fluorescence properties, but also because many medicines contain a coumarin skeleton. Among the various reactions developed for the synthesis of coumarins thus far, Knoevenagel condensation followed by intramolecular cyclization under mild conditions can yield coumarins. In this study, we developed a new synthetic method for preparing a coumarin-conjugated oligonucleotide library via Knoevenagel condensation. The results showed that coumarins substituted at the 5-, 6-, 7-, or 8-positions could be constructed on DNA to afford a total of 26 coumarin-conjugated DNAs. Moreover, this method was compatible with enzymatic ligation, demonstrating its utility in DEL synthesis. The developed strategy for the construction of coumarin scaffolds based on Knoevenagel condensation may contribute to the use of DELs in drug discovery and medicinal chemistry.
Collapse
Affiliation(s)
- Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
19
|
LegaardAndersson J, Christensen J, Kleine-Kohlbrecher D, Vacher Comet I, Fullerton Støier J, Antoku Y, Poljak V, Moretti L, Dolberg J, Jacso T, Jensby Nielsen S, Nørregaard-Madsen M, Franch T, Helin K, Cloos PAC. Discovery of NSD2-Degraders from Novel and Selective DEL Hits. Chembiochem 2023; 24:e202300515. [PMID: 37807669 DOI: 10.1002/cbic.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
NSD2 is a histone methyltransferase predominantly catalyzing di-methylation of histone H3 on lysine K36. Increased NSD2 activity due to mutations or fusion-events affecting the gene encoding NSD2 is considered an oncogenic event and a driver in various cancers, including multiple myelomas carrying t(4;14) chromosomal translocations and acute lymphoblastic leukemia's expressing the hyperactive NSD2 mutant E1099 K. Using DNA-encoded libraries, we have identified small molecule ligands that selectively and potently bind to the PWWP1 domain of NSD2, inhibit NSD2 binding to H3K36me2-bearing nucleosomes, but do not inhibit the methyltransferase activity. The ligands were subsequently converted to selective VHL1-recruiting NSD2 degraders and by using one of the most efficacious degraders in cell lines, we show that it leads to NSD2 degradation, decrease in K3 K36me2 levels and inhibition of cell proliferation.
Collapse
Affiliation(s)
- Jan LegaardAndersson
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Jesper Christensen
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Daniela Kleine-Kohlbrecher
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Itys Vacher Comet
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Bioorigin Aps, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Jonatan Fullerton Støier
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Bioorigin Aps, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Yasuko Antoku
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Visnja Poljak
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Loris Moretti
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Johannes Dolberg
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Tomas Jacso
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Søren Jensby Nielsen
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | | | - Thomas Franch
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Kristian Helin
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Institute of Cancer Research (ICR), 237 Fulham Road, London, SW3 6JB, UK
| | - Paul A C Cloos
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Bioorigin Aps, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
20
|
Sasaki T, Kasama T, Nokihara K. A novel cyclic peptide library immobilized on gel-type beads focusing on rapid construction and characterization for comprehensive drug discovery. Chem Biol Drug Des 2023; 102:1327-1335. [PMID: 37658589 DOI: 10.1111/cbdd.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Medium sized molecules such as peptides and macrocycles have recently drawn much attention as potent sources of medicinal lead compounds, whereas the possibility of obtaining a practical drug from them remains limited. The present paper describes a concept of discovering novel medicinal targets or binding modes as well as lead compounds by the one-peptide-on-one-bead (OPOB) technology for comprehensive screening. The difficulty and problems in conventional drug discovery methods that generally deal with one predetermined target are considered. The building blocks used for the present libraries were selected based on previous results in development of peptidic drugs. Each constituent has the common structure of cyclic form prepared by disulfide of cysteinyl residues or thioether linkages, additionally a methionine residue was inserted for the site-specific rapid cleavage by cyanogen bromide to liberate the immobilized peptides allowing reliable characterization by MALDI-TOF-MS/MS without LC-purification. Thus, a high throughput construction method for cyclic peptide libraries as well as characterization of single bead are proposed for drug discovery.
Collapse
|
21
|
Schneider L, Sauter B, Dagher K, Gillingham D. Recording Binding Information Directly into DNA-Encoded Libraries Using Terminal Deoxynucleotidyl Transferase. J Am Chem Soc 2023; 145:20874-20882. [PMID: 37704585 PMCID: PMC10540198 DOI: 10.1021/jacs.3c05961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/15/2023]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is an unusual DNA polymerase that adds untemplated dNTPs to 3'-ends of DNA. If a target protein is expressed as a TdT fusion and incubated with a DNA-encoded library (DEL) in the presence of dATP, the binders of the target induce proximity between TdT and the DNA, promoting the synthesis of a poly-adenine (polyA) tail. The polyA tail length is proportional to the binding affinity, effectively serving as a stable molecular record of binding events. The polyA tail is also a convenient handle to enrich binders with magnetic poly(dT)25 beads before sequencing. In a benchmarking system, we show that ligands spanning nanomolar to double-digit micromolar binding can be cleanly identified by TdT extension, whereas only the tightest binding ligands are identified by classical affinity selection. The method is simple to implement and can function on any DEL that bears a free 3'-end.
Collapse
Affiliation(s)
| | - Basilius Sauter
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| | - Koder Dagher
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Hudson L, Mason JW, Westphal MV, Richter MJR, Thielman JR, Hua BK, Gerry CJ, Xia G, Osswald HL, Knapp JM, Tan ZY, Kokkonda P, Tresco BIC, Liu S, Reidenbach AG, Lim KS, Poirier J, Capece J, Bonazzi S, Gampe CM, Smith NJ, Bradner JE, Coley CW, Clemons PA, Melillo B, Hon CSY, Ottl J, Dumelin CE, Schaefer JV, Faust AME, Berst F, Schreiber SL, Zécri FJ, Briner K. Diversity-oriented synthesis encoded by deoxyoligonucleotides. Nat Commun 2023; 14:4930. [PMID: 37582753 PMCID: PMC10427684 DOI: 10.1038/s41467-023-40575-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Diversity-oriented synthesis (DOS) is a powerful strategy to prepare molecules with underrepresented features in commercial screening collections, resulting in the elucidation of novel biological mechanisms. In parallel to the development of DOS, DNA-encoded libraries (DELs) have emerged as an effective, efficient screening strategy to identify protein binders. Despite recent advancements in this field, most DEL syntheses are limited by the presence of sensitive DNA-based constructs. Here, we describe the design, synthesis, and validation experiments performed for a 3.7 million-member DEL, generated using diverse skeleton architectures with varying exit vectors and derived from DOS, to achieve structural diversity beyond what is possible by varying appendages alone. We also show screening results for three diverse protein targets. We will make this DEL available to the academic scientific community to increase access to novel structural features and accelerate early-phase drug discovery.
Collapse
Affiliation(s)
- Liam Hudson
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremy W Mason
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Matthias V Westphal
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Matthieu J R Richter
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Jonathan R Thielman
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher J Gerry
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Guoqin Xia
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Heather L Osswald
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John M Knapp
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Zher Yin Tan
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ben I C Tresco
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Shuang Liu
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Katherine S Lim
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Jennifer Poirier
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - John Capece
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Simone Bonazzi
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Christian M Gampe
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Nichola J Smith
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - James E Bradner
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Connor W Coley
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, 02139, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - C Suk-Yee Hon
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Christoph E Dumelin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Jonas V Schaefer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Ann Marie E Faust
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Frédéric Berst
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Frédéric J Zécri
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Karin Briner
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Abstract
DNA-encoded libraries (DELs) are widely used in the discovery of drug candidates, and understanding their design principles is critical for accessing better libraries. Most DELs are combinatorial in nature and are synthesized by assembling sets of building blocks in specific topologies. In this study, different aspects of library topology were explored and their effect on DEL properties and chemical diversity was analyzed. We introduce a descriptor for DEL topological assignment (DELTA) and use it to examine the landscape of possible DEL topologies and their coverage in the literature. A generative topographic mapping analysis revealed that the impact of library topology on chemical space coverage is secondary to building block selection. Furthermore, it became apparent that the descriptor used to analyze chemical space dictates how structures cluster, with the effects of topology being apparent when using three-dimensional descriptors but not with common two-dimensional descriptors. This outcome points to potential challenges of attempts to predict DEL productivity based on chemical space analyses alone. While topology is rather inconsequential for defining the chemical space of encoded compounds, it greatly affects possible interactions with target proteins as illustrated in docking studies using NAD/NADP binding proteins as model receptors.
Collapse
Affiliation(s)
- William K Weigel
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
An Y, Lee J, Seo H, Bae S, Kang J, Lee J, Kim J, Nam MH, Song M, Hwang GT. Groebke-Blackburn-Bienaymé Reaction for DNA-Encoded Library Technology. Org Lett 2023; 25:4445-4450. [PMID: 37310879 DOI: 10.1021/acs.orglett.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-a]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.
Collapse
Affiliation(s)
- Yujin An
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Seri Bae
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jihee Kang
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
25
|
Wang Y, Fang X, Liao H, Zhang G, Li Y, Li Y. DNA-Compatible Synthesis of Thiazolidione Derivatives via Three-Component Annulation and Knoevenagel Condensation. Org Lett 2023; 25:4473-4477. [PMID: 37306473 DOI: 10.1021/acs.orglett.3c01482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thiazolidione, conferring drug-like properties, is an important heterocycle that widely exists in medicinally relevant molecules. In this work, by efficiently assembling various DNA-tagged primary amines, abundant aryl isothiocyanates, and ethyl bromoacetate, we present a DNA-compatible three-component annulation to generate a 2-iminothiazolidin-4-one scaffold, which was further decorated via Knoevenagel condensation by employing (hetero)aryl and alkyl aldehydes. These thiazolidione derivatives should find broad use in focused DNA-encoded library construction.
Collapse
Affiliation(s)
- Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
26
|
Talaty NN, Johnson RW, Sawicki J, Nacham O, Djuric SW. Recent Developments in Mass Spectrometry to Support Next-Generation Synthesis and Screening. ACS Med Chem Lett 2023; 14:711-718. [PMID: 37312853 PMCID: PMC10258828 DOI: 10.1021/acsmedchemlett.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
The complexity of new therapeutics continues to increase and the timeline for the discovery of these therapeutics continues to shrink. This creates demand for new analytical techniques to facilitate quicker discovery and development of novel drugs. Mass spectrometry is one of the most prolific analytical techniques that has been applied across the entire drug discovery pipeline. New mass spectrometers and the associated methods for sampling have been introduced at a rate that keeps pace with new chemistries, therapeutic types, and screening practices used by modern drug hunters. This microperspective covers application and implementation of new mass spectrometry workflows that enable current and future efforts in screening and synthesis for drug discovery.
Collapse
Affiliation(s)
- Nari N. Talaty
- Discovery
Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Robert W. Johnson
- Discovery
Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - James Sawicki
- Discovery
Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Omprakash Nacham
- Discovery
Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Stevan W. Djuric
- Discovery
Chemistry and Technology Consulting LLC, New Bern, North Carolina 28562, United States
| |
Collapse
|
27
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
28
|
Li L, Matsuo B, Levitre G, McClain EJ, Voight EA, Crane EA, Molander GA. Dearomative intermolecular [2 + 2] photocycloaddition for construction of C(sp 3)-rich heterospirocycles on-DNA. Chem Sci 2023; 14:2713-2720. [PMID: 36908969 PMCID: PMC9993886 DOI: 10.1039/d3sc00144j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
DNA-encoded library (DEL) screens have significantly impacted new lead compound identification efforts within drug discovery. An advantage of DELs compared to traditional screening methods is that an exponentially broader chemical space can be effectively screened using only nmol quantities of billions of DNA-tagged, drug-like molecules. The synthesis of DELs containing diverse, sp3-rich spirocycles, an important class of molecules in drug discovery, has not been previously reported. Herein, we demonstrate the synthesis of complex and novel spirocyclic cores via an on-DNA, visible light-mediated intermolecular [2 + 2] cycloaddition of olefins with heterocycles, including indoles, azaindoles, benzofurans, and coumarins. The DNA-tagged exo-methylenecyclobutane substrates were prepared from easily accessible alkyl iodides and styrene derivatives. Broad reactivity with many other DNA-conjugated alkene substrates was observed, including unactivated and activated alkenes, and the process is tolerant of various heterocycles. The cycloaddition was successfully scaled from 10 to 100 nmol without diminished yield, indicative of this reaction's suitability for DNA-encoded library production. Evaluation of DNA compatibility with the developed reaction in a mock-library format showed that the DNA barcode was maintained with high fidelity, with <1% mutated sequences and >99% amplifiable DNA from quantitative polymerase chain reaction (PCR) and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Longbo Li
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Guillaume Levitre
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Edward J McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA.,Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eric A Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA
| | - Erika A Crane
- Drug Hunter, Inc. 13203 SE 172nd Ave, Suite 166 PMB 2019 Happy Valley Oregon 97086 USA
| | - Gary A Molander
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
29
|
Mantell MA, Marcaurelle L, Ding Y. One Reaction Served Three Ways: The On-DNA Ugi 4C-3C Reaction for the Formation of Lactams. Org Lett 2023; 25:1241-1245. [PMID: 36802674 DOI: 10.1021/acs.orglett.2c04043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Developing new on-DNA reactions is paramount to the development of new encoded libraries in the pursuit of novel pharmaceutical lead compounds. Lactam-containing molecules have been shown to be effective in a wide range of therapeutic areas and therefore represent a promising target for further investigation by DNA-encoded library screening. In pursuit of this motif, we report a novel method for the introduction of lactam-containing structures onto a DNA headpiece through the Ugi four-center three-component reaction (4C-3CR). This novel method is successful in three different approaches to give unique on-DNA lactam structures: on-DNA aldehyde coupled with isonitriles and amino acids; on-DNA isonitrile coupled with aldehydes and amino acids; and on-DNA isonitrile coupled with amines and acid aldehydes.
Collapse
Affiliation(s)
- Mark A Mantell
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lisa Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
30
|
Krishna Sunkari Y, Kumar Siripuram V, Flajolet M. Diversity-Oriented Synthesis (DOS) of On-DNA Peptidomimetics from Acid-Derived Phosphonium Ylides. Chemistry 2023; 29:e202203037. [PMID: 36653313 DOI: 10.1002/chem.202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 01/20/2023]
Abstract
The DNA-encoded library (DEL) technology represents a revolutionary drug-discovery tool with unprecedented screening power originating from the association of combinatorial chemistry and DNA barcoding. The chemical diversity of DELs and its chemical space will be further expanded as new DNA-compatible reactions are introduced. This work introduces the use of DOS in the context of on-DNA peptidomimetics. Wittig olefination of aspartic acid-derived on-DNA Wittig ylide, combined with a broad substrate scope of aldehydes, led to formation of on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated ketones. The synthesis of on-DNA multi-peptidyl-ylides was performed by incorporating sequential amino acids onto a monomeric ylide. Di-, tri- and tetrameric peptidyl-ylides were validated for Wittig olefination and led to on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated-based peptidomimetics, an important class of intermediates. One on-DNA aryl Wittig ylide was also developed and applied to Wittig olefination for synthesis of on-DNA chalcone-based molecules. Furthermore, DOS was used successfully with electron-deficient peptidomimetics and led to the development of different heterocyclic cores containing on-DNA peptidomimetics.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
31
|
Matsuo B, Granados A, Levitre G, Molander GA. Photochemical Methods Applied to DNA Encoded Library (DEL) Synthesis. Acc Chem Res 2023; 56:385-401. [PMID: 36656960 PMCID: PMC10415088 DOI: 10.1021/acs.accounts.2c00778] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA-encoded library technology (DELT) is a new screening modality that allows efficient, cost-effective, and rapid identification of small molecules with potential biological activity. This emerging technique represents an enormous advancement that, in combination with other technologies such as high-throughput screening (HTS), fragment-based lead generation, and structure-based drug design, has the potential to transform how drug discovery is carried out. DELT is a hybrid technique in which chemically synthesized compounds are linked to unique genetic tags (or "barcodes") that contain readable information. In this way, millions to billions of building blocks (BBs) attached on-DNA via split-and-pool synthesis can be evaluated against a biological target in a single experiment. Polymerase chain reaction (PCR) amplification and next-generation sequencing (NGS) analysis of the unique sequence of oligonucleotides in the DNA tag are used to identify those ligands with high affinity for the target. This innovative fusion of genetic and chemical technologies was conceived in 1992 by Brenner and Lerner (Proc. Natl. Acad. Sci. 1992, 89, 5381-5383) and is under accelerated development with the implementation of new synthetic techniques and protocols that are compatible with DNA. In fact, reaction compatibility is a key parameter to increasing the chances of identification of a drug target ligand, and a central focus has been the development of new transformations and the transition to robust protocols for on-DNA synthesis. Because the sole use of the DNA tag is as an amplifiable identification barcode, its structural integrity during a new chemical process is mandatory. As such, the use of these sensitive, polyfunctional biological molecules as substrates typically requires aqueous solutions within defined pH and temperature ranges, which is considered a notable challenge in DEL synthesis.Using low-energy visible light as the driving force to promote chemical transformations represents an attractive alternative to classical synthetic methods, and it is an important and well-established synthetic tool for forging chemical bonds in a unique way via radical intermediates. Recent advances in the field of photocatalysis are extraordinary, and this powerful research arena is still under continuous development. Several applications taking advantage of the mild reaction conditions of photoinduced transformations have been directed toward DEL synthesis, allowing the expansion of chemical space available for the evaluation of new building blocks on-DNA. There are no doubts that visible-light-driven reactions have become one of the most powerful approaches for DELT, given the easy way they provide to construct new bonds and the challenges to achieve equal success via classical protocols.Key characteristics of photocatalytic synthesis include the short reaction times and efficiency, which translate into retention of DNA integrity. In this Account, we describe recent advances in the photoinduced diversification of building blocks prepared on-DNA, highlighting the amenability of the techniques employed for preserving the genetic structure of the molecules. We demonstrate with recent research from our group the applicability of photocatalysis to the field and include in the summary a table containing all the photoinduced methods reported to date for DELT, demonstrating their key aspects such as scope, applications, and DNA compatibilities. With this information, practitioners are provided with compelling reasons for developing/choosing photocatalytic methods for DELT applications.
Collapse
Affiliation(s)
- Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| |
Collapse
|
32
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Photoredox-Mediated Deoxygenative Alkylation of DNA-Tagged Alkenes with Activated Alcohols. Org Lett 2022; 24:9514-9519. [PMID: 36541781 DOI: 10.1021/acs.orglett.2c03994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA-encoded library (DEL) screens have become a key technology to find small molecule binders to biological targets for drug discovery applications. The development of new DNA-compatible chemistries to expand the accessible DEL chemical space is imperative to enhance screen success across broad target classes and modalities. Additionally, reactions that use commonly available building blocks as well as those that enable the fsp3 of library members to be increased would have high impact for accessing diverse drug-like structures. Herein, we report a DNA-compatible Giese-type addition of nonstabilized C-centered radicals generated by the deoxygenation of preactivated alcohols into on-DNA olefins. Although alcohols have been historically underused as a building block class within DEL synthesis, their activation to a xanthate enables Csp3-Csp3 coupling to furnish sp3-rich products. This reaction is compatible with multiple classes of functional groups, does not damage the DNA tag, and is suitable for use in DEL productions.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
33
|
Osawa T, Ren Q, Obika S. Development of Phosphoramidite Reagents for the Synthesis of Base-Labile Oligonucleotides Modified with a Linear Aminoalkyl and Amino-PEG Linker at the 3'-End. Molecules 2022; 27:molecules27238501. [PMID: 36500594 PMCID: PMC9736658 DOI: 10.3390/molecules27238501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotides with an amino linker at the 3'-end are useful for the preparation of conjugated oligonucleotides. However, chemically modified nucleosides, which are unstable under basic conditions, cannot be incorporated into oligonucleotides using the conventional method entailing the preparation of oligonucleotides bearing a 3'-amino linker. Therefore, we designed Fmoc-protected phosphoramidites for the synthesis of base-labile oligonucleotides modified with a 3'-amino linker. The resultant phosphoramidites were then successfully incorporated into oligonucleotides bearing a 3'-amino linker. Various basic solutions were investigated for protecting group removal. All the protecting groups were removed by treating the oligonucleotides with 40% aqueous methylamine at room temperature for 2 h. Thus, the deprotection time and temperature were significantly reduced compared to the conventional conditions (28% NH3 aq., 55 °C, 17 h). In addition, the oligonucleotide protecting groups could be removed using a mild base (e.g., 50 mM potassium carbonate methanol solution). Furthermore, base-labile oligonucleotides bearing an amino linker at the 3'-end were successfully synthesized using the developed phosphoramidite reagents, highlighting the utility of our strategy.
Collapse
Affiliation(s)
- Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Osaka 565-0871, Japan
| | - Qin Ren
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 1-3, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 1-3, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Osaka 567-0085, Japan
- Correspondence: ; Tel.: +81-6-6879-8200
| |
Collapse
|
34
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
35
|
Li X, Zhang J, Liu C, Sun J, Li Y, Zhang G, Li Y. Aryl diazonium intermediates enable mild DNA-compatible C-C bond formation for medicinally relevant combinatorial library synthesis. Chem Sci 2022; 13:13100-13109. [PMID: 36425486 PMCID: PMC9667928 DOI: 10.1039/d2sc04482j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 08/24/2023] Open
Abstract
Forging carbon-carbon (C-C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki-Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C-C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium's DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein-ligand interactions in pharmaceutical research.
Collapse
Affiliation(s)
- Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
36
|
Zwillinger M, Fischer L, Sályi G, Szabó S, Csékei M, Huc I, Kotschy A. Isotope Ratio Encoding of Sequence-Defined Oligomers. J Am Chem Soc 2022; 144:19078-19088. [PMID: 36206533 DOI: 10.1021/jacs.2c08135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Information storage at the molecular level commonly entails encoding in the form of ordered sequences of different monomers and subsequent fragmentation and tandem mass spectrometry analysis to read this information. Recent approaches also include the use of mixtures of distinct molecules noncovalently bonded to one another. Here, we present an alternate isotope ratio encoding approach utilizing deuterium-labeled monomers to produce hundreds of oligomers endowed with unique isotope distribution patterns. Mass spectrometric recognition of these patterns then allowed us to directly readout encoded information with high fidelity. Specifically, we show that all 256 tetramers composed of four different monomers of identical constitution can be distinguished by their mass fingerprint using mono-, di-, tri-, and tetradeuterated building blocks. The method is robust to experimental errors and does not require the most sophisticated mass spectrometry instrumentation. Such isotope ratio-encoded oligomers may serve as tags that carry information, but the method mainly opens up the capability to write information, for example, about molecular identity, directly into a pure compound via its isotopologue distribution obviating the need for additional tagging and avoiding the use of mixtures of different molecules.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, H-1053 Budapest, Hungary
| | - Lucile Fischer
- CBMN UMR5248, University of Bordeaux-CNRS-IPB, F-33600 Pessac, France
| | - Gergő Sályi
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| | - Soma Szabó
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| | - Márton Csékei
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-University, D-81377 Munich, Germany
| | - András Kotschy
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| |
Collapse
|
37
|
Sun Z, Zhang J, Zhang H, Cao H, Xiao L, Yang K, Hu YJ. DNA Compatible Oxidization and Amidation of Terminal Alkynes. Bioconjug Chem 2022; 33:1585-1594. [PMID: 36001094 DOI: 10.1021/acs.bioconjchem.2c00340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through a modified Kinugasa reaction, a novel method of amidation on terminal oligo alkyne conjugates by copper-promoted oxidation with nitrones has been developed. Unprotected bifunctional carboxylic acid-amine reagents can be transformed directly to the respective amide products under these edited Kinugasa reaction conditions. 3-Cycle DNA-encoded libraries (DELs) can be built in three steps of chemical conversion.
Collapse
Affiliation(s)
- Zhaomei Sun
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Jie Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Huanqing Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Hongli Cao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Lingqian Xiao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| |
Collapse
|
38
|
Luo A, Zhang Z, Zeng F, Wang X, Zhao X, Yang K, Hu YJ. Kinugasa Reaction for DNA-Encoded β-Lactam Library Synthesis. Org Lett 2022; 24:5756-5761. [PMID: 35916753 DOI: 10.1021/acs.orglett.2c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Lactam antibiotics are one of the most important antibacterial drug classes worldwide. This work will present the first prototype on-DNA β-lactam combinatorial library with novel structures and chemical space properties that would be significant for phenotypic screening to identify the next generation of antibiotics to combat the pervasive problem of bacterial resistance.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Ziqi Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Fanming Zeng
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Xiuming Wang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Xue Zhao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Kexin Yang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| |
Collapse
|
39
|
Sun J, Nie Q, Fang X, He Z, Zhang G, Li Y, Li Y. Vinyl azide as a synthon for DNA-compatible divergent transformations into N-heterocycles. Org Biomol Chem 2022; 20:5045-5049. [PMID: 35703385 DOI: 10.1039/d2ob00862a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inspired by diversity-oriented synthesis, we have developed a series of DNA-compatible transformations utilizing on-DNA vinyl azide as a synthon to forge divergent N-heterocyclic scaffolds. Polysubstituted imidazoles and isoquinolines were efficiently obtained with moderate-to-excellent conversions. Besides, the "one-pot" strategy to prepare in-house on-DNA vinyl azides afforded synthons readily. Results from substrate scope exploration and enzymatic ligation further demonstrate the feasibility of these N-heterocycle syntheses in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Zhiwei He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
40
|
Siripuram VK, Sunkari YK, Nguyen TL, Flajolet M. DNA-Compatible Suzuki-Miyaura Cross-Coupling Reaction of Aryl Iodides With (Hetero)Aryl Boronic Acids for DNA-Encoded Libraries. Front Chem 2022; 10:894603. [PMID: 35774858 PMCID: PMC9237475 DOI: 10.3389/fchem.2022.894603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
An efficient method for the C-C bond formation via water soluble Na2PdCl4/sSPhos mediated Suzuki-Miyaura cross-coupling reaction of DNA-conjugated aryl iodide with (het)aryl boronic acids has been developed. This reaction proceeds at 37°C in water and acetonitrile (4:1) system. We also demonstrated that numerous aromatic and heteroaromatic boronic acids of different electronic natures, and harboring various functional groups, were highly compatible providing the desired coupling products in good to excellent yields. This DNA-compatible Suzuki-Miyaura cross-coupling reaction has strong potential to construct DNA-Encoded Libraries (DELs) in the context of drug discovery.
Collapse
Affiliation(s)
| | | | | | - Marc Flajolet
- *Correspondence: Vijay Kumar Siripuram, ; Marc Flajolet,
| |
Collapse
|
41
|
Bajusz D, Keserű GM. Maximizing the integration of virtual and experimental screening in hit discovery. Expert Opin Drug Discov 2022; 17:629-640. [PMID: 35671403 DOI: 10.1080/17460441.2022.2085685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Experimental and virtual screening contributes to the discovery of more than 50% of clinical candidates. Considering the similar concept and goals, early-phase drug discovery would benefit from the effective integration of these approaches. AREAS COVERED After reviewing the recent trends in both experimental and virtual screening, the authors discuss different integration strategies from parallel, focused, sequential, and iterative screening. Strategic considerations are demonstrated in a number of real-life case studies. EXPERT OPINION Experimental and virtual screening are complementary approaches that should be integrated in lead discovery settings. Virtual screening can access extremely large synthetically feasible chemical space that can be effectively searched on GPU clusters or cloud architectures. Experimental screening provides reliable datasets by quantitative HTS applications, and DNA-encoded libraries (DEL) have enlarged the chemical space covered by these technologies. These developments, together with the use of artificial intelligence methods, represent new options for their efficient integration. The case studies discussed here demonstrate the benefits of complementary strategies, such as focused and iterative screening.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
42
|
Fang X, Wang Y, He P, Liao H, Zhang G, Li Y, Li Y. Visible Light-Promoted Divergent Benzoheterocyclization from Aldehydes for DNA-Encoded Chemical Libraries. Org Lett 2022; 24:3291-3296. [PMID: 35467894 DOI: 10.1021/acs.orglett.2c01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Benzoheterocyclics have been widely adopted as drug-like core scaffolds that can be incorporated into DNA-encoded chemical library technology for high-throughput hit discovery. Here, we present a visible light-promoted divergent synthesis of on-DNA benzoheterocycles from aldehydes. Four types of DNA-conjugated benzoheterocyclics were obtained under mild conditions with a broad substrate scope. A cross substrate scope study, together with enzymatic ligation and subsequent chemical diversifications, were conducted, demonstrating the feasibility of this approach in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Pengyang He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
43
|
Cai K, Ran Y, Sun W, Gao S, Li J, Wan J, Liu G. Palladium-Mediated Hydroamination of DNA-Conjugated Aryl Alkenes. Front Chem 2022; 10:851674. [PMID: 35480389 PMCID: PMC9035600 DOI: 10.3389/fchem.2022.851674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
C-N bond formation is one of the most commonly used reactions in medicinal chemistry. Herein, we report an efficient Pd-promoted hydroamination reaction between DNA-conjugated aryl alkenes and a wide scope of aliphatic amines. The described reactions are demonstrated in good to excellent conversions to furnish C (sp3)–N bonds on DNA. This DNA-compatible transformation has strong potentials for the application into DNA-encoded library synthesis.
Collapse
Affiliation(s)
| | | | - Wenbo Sun
- *Correspondence: Guansai Liu, ; Wenbo Sun, ; Sen Gao,
| | - Sen Gao
- *Correspondence: Guansai Liu, ; Wenbo Sun, ; Sen Gao,
| | | | | | - Guansai Liu
- *Correspondence: Guansai Liu, ; Wenbo Sun, ; Sen Gao,
| |
Collapse
|
44
|
Shen Y, Yang G, Huang W, Shaginian A, Lin Q, Wan J, Li J, Deng Y, Liu G. Photoredox Deaminative Alkylation in DNA-Encoded Library Synthesis. Org Lett 2022; 24:2650-2654. [PMID: 35362987 DOI: 10.1021/acs.orglett.2c00697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report an on-DNA photoredox-mediated deaminative alkylation method for diversifying DNA-tagged acrylamide substrate with amine-derived radicals. The radicals can be conveniently generated from sterically hindered primary amines, and the deaminative alkylation can tolerate a broad array of radical precursors. Furthermore, the methodology is applicable to Boc-protected diamines, free amino acids, and aryl halides, which bear functional groups enabling additional rounds of diversification. The method is believed to offer a high potential for constructing DNA-encoded libraries, as was demonstrated by the production of a mock library in a 2 × 3 matrix format and confirmation of DNA stability by UPLC-MS and qPCR experiments.
Collapse
Affiliation(s)
- Yurong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Wei Huang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Qian Lin
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| |
Collapse
|
45
|
Li Y, Zhao G, Fan X, Li Y, Zhang G. Switchable DNA-Encoded Chemical Library: Interconversion between Double- and Single-Stranded DNA Formats. Chembiochem 2022; 23:e202200025. [PMID: 35352452 DOI: 10.1002/cbic.202200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Indexed: 11/07/2022]
Abstract
DNA-Encoded Chemical Library (DEL) has attracted substantial attention due to the infinite possibility for hit discovery in both pharmaceutical companies and academia. The encoding method is the initial step of DEL construction and one of the cornerstones of DEL applications. Classified by the DNA format, the existing DEL encoding strategies could be categorized into single-stranded DNA-based strategies and double-stranded DNA-based strategies. The two DEL formats have their unique advantages but are usually incompatible with each other. To address this issue, we proposed the concept of interconversion between double- and single-stranded DEL based on the "reversible covalent headpiece (RCHP)" design, which combined maximum robustness of synthesis with extraordinary flexibility of applications in distinct setups. Future opportunities in this field were also proposed to advance DEL technology to a comprehensive drug discovery platform.
Collapse
Affiliation(s)
- Yizhou Li
- Chongqing University, School of Pharmaceutical Sciences, Chongqing College Town, Shapingba, 401331, Chongqing, CHINA
| | - Guixian Zhao
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Xiaohong Fan
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Yangfeng Li
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Gong Zhang
- Chongqing University, School of Pharmaceutical Science, CHINA
| |
Collapse
|
46
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
47
|
Yang S, Zhao G, Gao Y, Sun Y, Zhang G, Fan X, Li Y, Li Y. In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chem Sci 2022; 13:2604-2613. [PMID: 35340849 PMCID: PMC8890091 DOI: 10.1039/d1sc06268a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
Sulfur/selenium-containing electron-rich arenes (ERAs) exist in a wide range of both approved and investigational drugs with diverse pharmacological activities. These unique chemical structures and bioactive properties, if combined with the emerging DNA-encoded chemical library (DEL) technique, would facilitate drug and chemical probe discovery. However, it remains challenging, as there is no general DNA-compatible synthetic methodology available for the formation of C-S and C-Se bonds in aqueous solution. Herein, an in-solution direct oxidative coupling procedure that could efficiently integrate sulfur/selenium into the ERA under mild conditions is presented. This method features simple DNA-conjugated electron-rich arenes with a broad substrate scope and a transition-metal free process. Furthermore, this synthetic methodology, examined by a scale-up reaction test and late-stage precise modification in a mock peptide-like DEL synthesis, will enable its utility for the synthesis of sulfur/selenium-containing DNA-encoded libraries and the discovery of bioactive agents.
Collapse
Affiliation(s)
- Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Chongqing 404100 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
48
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double‐ and Single‐Stranded DNA‐Encoded Chemical Libraries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University 400044 Chongqing P. R. China
| |
Collapse
|
49
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
50
|
Zhong S, Fang X, Wang Y, Zhang G, Li Y, Li Y. DNA-Compatible Diversification of Indole π-Activated Alcohols via a Direct Dehydrative Coupling Strategy. Org Lett 2022; 24:1022-1026. [PMID: 35050627 DOI: 10.1021/acs.orglett.1c04169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Indole-based diversification is highly desired in the DNA-encoded chemical library construction. Herein, we present a general strategy for on-DNA synthesis of diverse C3-functionalized indole derivatives via indole π-activated alcohol formation followed by direct dehydrative coupling. Highly efficient bond linkages of C-C, C-N, and C-S were achieved to fuse building blocks that are widely commercially available. DNA-encoding compatibility of the method has been further demonstrated to pave an avenue for application in constructing indole-focused three-dimensional libraries.
Collapse
Affiliation(s)
- Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|