1
|
Fotie J. Applications of carbon-silicon bioisosterism in drug design and development. Future Med Chem 2025:1-3. [PMID: 39921266 DOI: 10.1080/17568919.2025.2463883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, USA
| |
Collapse
|
2
|
Yao S, Budde MS, Yang X, Xiong Y, Zhao L, Driess M. Disilicon-Mediated Carbon Monoxide Activation: From a 1,2,3-Trisila- to 1,3-Disilacyclopentadienes with Hypercoordinate λ 4Si-λ 3C Double Bonds. Angew Chem Int Ed Engl 2025; 64:e202414696. [PMID: 39305142 DOI: 10.1002/anie.202414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/01/2024]
Abstract
The facile reaction of the SiPh2-bridged bis-silylene (LSi:)2SiPh2 (L=PhC(NBut)2) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)2(PhC)2SiPh2 1 with a hypercoordinate λ4Si-λ3Si double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert N2O to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene 3, representing the first hypercoordinate example of a cyclosilene with a λ4Si-λ3C double bond. Likewise, reaction of Xyl-NC (Xyl=2,6-dimethylphenyl), an isocyanide isoelectronic with CO, with 1 furnishes the related 1,3-disilacyclopentadiene 4 but with an amidinato silylene pendent attached to the Si=C carbon ring atom.
Collapse
Affiliation(s)
- Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Markus Stefan Budde
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
3
|
García-Romero Á, Hu C, Pink M, Goicoechea JM. A Crystalline Unsupported Phosphagallene and Phosphaindene. J Am Chem Soc 2025; 147:1231-1239. [PMID: 39698785 DOI: 10.1021/jacs.4c15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The synthesis and isolation of TerP═GaTer and TerP═InTer (Ter = 2,6-Dipp2-C6H3; Dipp = 2,6-diisopropylphenyl) is reported. These compounds feature unsupported P═Ga and P═In double bonds and two-coordinate triel element centers. Key to the stabilization of such compounds is the steric bulk of the terphenyl substituents, which serve to shield the highly reactive P═E bonds (E = Ga, In) and prevent further aggregation. When smaller aromatic substituents are employed on the phosphorus-containing precursor, the cyclic compounds Mes*P(ETer)2 (Mes* = 2,4,6-tBu3-C6H2) are isolated instead. These species contain weakly aromatic three-membered rings. The presence of an external base (PMe3) is required in order to stabilize a phosphagallene when the smaller Mes* substituent is used, allowing for the isolation of Mes*P═GaTer(PMe3).
Collapse
Affiliation(s)
- Álvaro García-Romero
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Chenyang Hu
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd., Oxford OX1 3TA, U.K
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Sugahara T, Hashizume D, Espinosa Ferao A, Masada K, Tokitoh N, Sasamori T. Experimental and Theoretical Characterization of 4π-Electron Möbius Aromatic System of a 1,2-Digermacyclobutadiene †. Angew Chem Int Ed Engl 2025; 64:e202413426. [PMID: 39235154 DOI: 10.1002/anie.202413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
We present the visualization of the experimental valence electron-density distribution (EDD) in the isolated 1,2-digermacyclobutadiene ring system, revealing the unique 4π electron-delocalization on the four-membered Ge2C2 ring. A remarkably high Möbius 4π-electron aromatic character in the Ge2C2 ring can be suggested from theoretical calculations, in sharp contrast to the significant antiaromaticity of the all-carbon cyclobutadiene ring.
Collapse
Affiliation(s)
- Tomohiro Sugahara
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia Campus de Espinardo, 30100, Murcia, Spain
| | - Koichiro Masada
- Division of Chemistry, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahiro Sasamori
- Division of Chemistry, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
5
|
Byrne KM, Bjornsson R, Krämer T. The diradicaloid electronic structure of dialumenes: a benchmark study at the Full-CI limit. Phys Chem Chem Phys 2024; 26:30018-30034. [PMID: 39624956 DOI: 10.1039/d4cp03005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Multiply-bonded main group compounds of groups 13-15 are attracting significant interest not only because they provide fundamental insight into the nature of metal-metal bonding, but also for their potential in small molecule bond activation and catalysis. This includes dialumenes, neutral Al(I) compounds that contain AlAl double bonds, which display high reactivity owing to their intrinsic diradicaloid character. The electronic structure of the simplest dialumene, Al2H2, is here analyzed up to a practical Full-CI limit using DMRG and selected CI methods for the bond dissociation energy (BDE), geometry and properties of the electron density (difference density, ELF). Acquiring Full-CI reference values for the simplest dialumene (but possessing the highest diradical character) allows for a rigorous benchmarking of simpler correlated wavefunction theory (WFT) methods and density functional methods in treating the electronic structure of such systems. Single-reference coupled cluster theory using a RHF reference is found to reliably converge to the Full-CI limit and CCSD(T) is fully capable of capturing the diradical character, while multi-reference methods offer no clear advantages. Density functional methods struggle to fully describe the electronic structure complexity although non-hybrid functionals such as TPSS come close. Solving the inverse Kohn-Sham problem for a Full-CI-quality density revealed minimal density-driven errors in the TPSS-calculated BDE unlike high-percentage hybrids such as M06-2X. No density functional, however, predicts accurate relative energies. Fractional-occupation density plots at the TPSS level correlate well with WFT-based diradical character metrics, a useful result for determining diradical character in larger systems.
Collapse
Affiliation(s)
- Keelan M Byrne
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Ragnar Bjornsson
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 Rue des Martyrs, F-38054 Grenoble, Cedex, France.
| | - Tobias Krämer
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
- Hamilton Institute, Maynooth University, Maynooth, Co, Kildare, Ireland
| |
Collapse
|
6
|
Ghosh M, Chatterjee J, Panwaria P, Kudlu A, Tothadi S, Khan S. Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission. Angew Chem Int Ed Engl 2024; 63:e202410792. [PMID: 39148269 DOI: 10.1002/anie.202410792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report the inaugural instance of N-heterocyclic silylene (NHSi)-coordinated copper amide emitters (2-5). These complexes exhibit thermally activated delayed fluorescence (TADF) and singlet-triplet dual emission in anaerobic conditions. The NHSi-Cu-diphenylamide (2) complex demonstrates TADF with a very small ΔEST gap (0.01 eV), an absolute quantum yield of 11 %, a radiative rate of 2.55×105 s-1, and a short τTADF of 0.45 μs in the solid state. The dual emissive complexes (3-5) achieve an absolute quantum yield of up to 20 % in the solid state with a kISC rate of 1.82×108 s-1 and exhibit room temperature phosphorescence (RTP) with lifetimes up to 9 ms. The gradual decrease in the intensity of the triplet state of complex 3 under controlled oxygen exposure demonstrates its potential for future oxygen-sensing applications. Complexes 2 and 3 have been further utilized to fabricate converted LEDs, paving the way for future OLED production using newly synthesized NHSi-Cu-amides.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ashwath Kudlu
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
7
|
Barthélemy A, Krossing I. Cationic Group 13 and 14 Element Clusters. Inorg Chem 2024; 63:21763-21787. [PMID: 39485314 DOI: 10.1021/acs.inorgchem.4c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Anionic and neutral clusters dominate the cluster chemistry of group 13 and 14 elements, many of which have become classic textbook examples of main group element clusters. However, facilitated by the development of unreactive, weakly coordinating anions, the number of known group 13 and 14 cationic cluster compounds has risen rapidly in recent years. Hence, this review aims to give an overview over this research field, which arouses increasing interest owing to the often unusual structures of the cationic clusters, as well as their application in bond activation chemistry. Challenges of the cluster formation are discussed and suitable starting materials are presented, as well as syntheses, structures and the rich follow-up chemistry of (also mixed) group 13 and 14 cluster cations.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i.Br., Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i.Br., Germany
| |
Collapse
|
8
|
Feng G, Yamashita M. Synthesis and Reactivity of an Alumanyl-Tin Species to Form an Al,N-Heteroallene Derivative. J Am Chem Soc 2024; 146:28653-28657. [PMID: 39378396 DOI: 10.1021/jacs.4c11586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The molecular chemistry of metal-metal bonds is crucial for understanding the bonding and reactivity of metal-containing molecules as well as solid metals and their alloys, especially with respect to their application as catalysts for organic transformations and industrial processes. Despite the high efficiency of the recently developed nucleophilic alumanyl anions in the synthesis of diverse Al-metal bonds, the bonding between main group metals in a low oxidation state and the Al atom remains largely unexplored. This paper describes the reaction of an alumanyl anion with a chlorostannylene precursor to afford a compound with an unprecedented covalent Al-Sn bond. The lability of the covalent Al-Sn bond renders it reactive toward the insertion of carbodiimide, N2O, and phenylacetylene. Remarkably, the reaction with benzonitrile furnished an unprecedented Al,N-heteroallene species that contains a linear Al═N═C linkage.
Collapse
Affiliation(s)
- Genfeng Feng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Makoto Yamashita
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1-E1-2 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Dabringhaus P, Molino A, Gilliard RJ. Carbodiphosphorane-Activated Distibene and Dibismuthene Dications. J Am Chem Soc 2024; 146:27186-27195. [PMID: 39298432 DOI: 10.1021/jacs.4c10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Low-valent antimony and bismuth have emerged as novel platforms for achieving reversible small-molecule activation at main-group metals. Although various examples of oxidative addition reactions at monomeric Sb(I) and Bi(I) have been reported, the chemistry of the heavy group 15 Sb(I)═Sb(I)/Bi(I)═Bi(I) double bonds toward small molecules remains largely unexplored. In this study, we present a straightforward synthesis of distibene and dibismuthene dications coordinated with a neutral carbodiphosphorane (CDP) ligand. The nonbonding interactions between the occupied p-orbital at the CDP ligand and the π-bonding orbital of the Sb═Sb/Bi═Bi bonds yield compounds with exceptionally small HOMO-LUMO gaps. In addition, the reduction of steric hindrance compared to known neutral derivatives stabilized with bulky aryl groups allows for better accessibility of the double bonds. This high reactivity is demonstrated in the oxidative addition of distibene to diphenyldisulfide as well as in [2+2] cycloadditions to alkynes. Additionally, the Sb═Sb bond reversibly adds to 2,3-dimethylbutadiene in a [4+2] cycloaddition reaction.
Collapse
Affiliation(s)
- Philipp Dabringhaus
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Mukherjee N, Majumdar M. Diverse Functionality of Molecular Germanium: Emerging Opportunities as Catalysts. J Am Chem Soc 2024; 146:24209-24232. [PMID: 39172926 DOI: 10.1021/jacs.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fundamental research on germanium as the central element in compounds for bond activation chemistry and catalysis has achieved significant feats over the last two decades. Designing strategies for small molecule activations and the ultimate catalysts established capitalize on the orbital modalities of germanium, apparently imitating the transition-metal frontier orbitals. There is a growing body of examples in contemporary research implicating the tunability of the frontier orbitals through avant-garde approaches such as geometric constrained empowered reactivity, bimetallic orbital complementarity, cooperative reactivity, etc. The goal of this Perspective is to provide readers with an overview of the emerging opportunities in the field of germanium-based catalysis by perceiving the underlying key principles. This will help to convert the discrete set of findings into a more systematic vision for catalyst designs. Critical exposition on the germanium's frontier orbitals participations evokes the key challenges involved in innovative catalyst designs, wherein viewpoints are provided. We close by addressing the forward-looking directions for germanium-based catalytic manifold development. We hope that this Perspective will be motivational for applied research on germanium as a constituent of pragmatic catalysts.
Collapse
Affiliation(s)
- Nilanjana Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
11
|
Xu H, Roy MMD, Kostenko A, Kelly JA, Fujimori S, Inoue S. Dialumene-Mediated Production of Phosphines through P 4 Reduction. Angew Chem Int Ed Engl 2024; 63:e202404532. [PMID: 38763910 DOI: 10.1002/anie.202404532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
The formation of phosphorus-rich alanes featuring butterfly-like geometries is achieved. The two-electron reduction products feature a unique P4 2- structure and can act as a source of P3-. The treatment of these phosphorus containing products with electrophiles under mild conditions results in the formation of different phosphines. This approach eliminates the need for high temperatures and/or high pressures, which are commonly required in industrial processes for the preparation of useful phosphines.The activation and further functionalization of white phosphorus (P4) by main group complexes has become an increasingly studied topic in recent times. Herein, we report the controlled formation of phosphorus-rich alanes featuring butterfly-like geometries from the selective reaction of P4 with dialumenes, ([L(IiPr)Al]2) (1: L=Tripp=2,4,6-iPr3C6H2; 2: L=tBu2MeSi; IiPr=[MeCN(iPr)]2C)). The two-electron-reduction product of P4 features a P4 2- structure and is shown to be able to act as a source of P3-. Treatments of different electrophiles (e.g., chlorotrimethylsilane (Me3SiCl), iodotrimethylsilane (Me3SiI), HCl, or acetyl chloride (CH3COCl)) with these alanes under mild conditions gave the corresponding phosphines (e.g., P(SiMe3)3, PH3, or P(COCH3)3).
Collapse
Affiliation(s)
- Huihui Xu
- TUM School of Natural Sciences, Department of Chemistry Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Matthew M D Roy
- TUM School of Natural Sciences, Department of Chemistry Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - John A Kelly
- TUM School of Natural Sciences, Department of Chemistry Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Shiori Fujimori
- TUM School of Natural Sciences, Department of Chemistry Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
12
|
Ding Y, Jin W, Zhang J, Cui C. Reaction of a Disilyne with Internal Alkynes: Reversible [1 + 2] Cycloaddition and Formation of Strained Unsaturated Silacycles. J Am Chem Soc 2024; 146:18831-18835. [PMID: 38958387 DOI: 10.1021/jacs.4c05436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The reactions of NHB-stabilized disilyne (NHB)Si≡Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with internal alkynes were described. Reaction of disilyne 1 with one equivalent of bis(trimethylsilyl)acetylene led to a reversible [1 + 2] cycloaddition of one of the Si atoms with the alkyne and the insertion of the other Si into one of Ar rings with the formation of a silirenyl-silepin 2, whereas reaction of 1 with two equivalents of Me3SiCCSiMe3 resulted in the formal addition of the Csp-Si bond to the Si≡Si triple bond to give disilene (NHB)(Me3Si)Si=Si(CCSiMe3)(NHB). Reaction of 1 with 1,3-diyne Me3SiCCCCSiMe3 yielded a 1,2-disilacyclobut-3-ene via cycloaddition, ring expansion, and NHB 1,2-shift sequence. The initial [1 + 2] cycloaddition of one of the silicon atoms with an alkyne was strongly supported by DFT calculations. The results demonstrated the significant bis(silylene) character and rich synthetic potential of bis(boryl) disilyne 1.
Collapse
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wen Jin
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
13
|
Sugamata K, Asakawa T, Minoura M. Reactivity of a Linear 2-Germapropadiene with Acids, Ketones, and Amines. Chem Asian J 2024; 19:e202400262. [PMID: 38647108 DOI: 10.1002/asia.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The reactivity of an isolable 2-germapropadiene with acids, ketones, and amines was investigated. The reactions of 2-germapropagiene 1 with hydrogen chloride and acetic acid afforded the corresponding dichlorogermane (2) and diacetoxygermane (3), respectively, indicating that the central germanium atom of 1 is electrophilic. The reaction of 1 with benzaldehyde proceeds via a formal [2+2] cycloaddition to afford the corresponding spiro compound (4). Moreover, 1 reacts smoothly with acetone to furnish germane 5, which contains a six-membered ring involving two acetone molecules. Furthermore, 1 undergoes N-H bond insertion with methylamine or aniline to afford diamino germanes 7 and 8, respectively. The reaction of 1 with urea selectively afforded the corresponding N-H-insertion product (8).
Collapse
Affiliation(s)
- Koh Sugamata
- College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Teppei Asakawa
- College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Mao Minoura
- College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
14
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
15
|
Griffin LP, Ellwanger MA, Clark J, Myers WK, Roper AF, Heilmann A, Aldridge S. Bis(Aluminyl)Magnesium: A Source of Nucleophilic or Radical Aluminium-Centred Reactivity. Angew Chem Int Ed Engl 2024; 63:e202405053. [PMID: 38536728 DOI: 10.1002/anie.202405053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 04/23/2024]
Abstract
The homoleptic magnesium bis(aluminyl) compound Mg[Al(NON)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) can be accessed from K2[Al(NON)]2 and MgI2 and shown to possess a non-linear geometry (∠Al-Mg-Al=164.8(1)°) primarily due to the influence of dispersion interactions. This compound acts a four-electron reservoir in the reductive de-fluorination of SF6, and reacts thermally with polar substrates such as MeI via nucleophilic attack through aluminium, consistent with the QT-AIM charges calculated for the metal centres, and a formal description as a Al(I)-Mg(II)-Al(I) trimetallic. On the other hand, under photolytic activation, the reaction with 1,5-cyclooctadiene leads to the stereo-selective generation of transannular cycloaddition products consistent with radical based chemistry, emphasizing the covalent nature of the Mg-Al bonds and a description as a Al(II)-Mg(0)-Al(II) synthon. Consistently, photolysis of Mg[Al(NON)]2 in hexane in the absence of COD generates [Al(NON)]2 together with magnesium metal.
Collapse
Affiliation(s)
- Liam P Griffin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jonathon Clark
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Aisling F Roper
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
16
|
Chen H, Chen W, Wang D, Chen Y, Liu Z, Ye S, Tan G, Gao S. An Isolable One-Coordinate Lead(I) Radical with Strong g-Factor Anisotropy. Angew Chem Int Ed Engl 2024; 63:e202402093. [PMID: 38438306 DOI: 10.1002/anie.202402093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Lead-based radicals in the oxidation state of +1 are elusive species and are highly challenging to isolate in the condensed phase. In this study, we present the synthesis and characterization of the first isolable free plumbylyne radical 2 bearing a one-coordinate Pb(I) atom. It reacts with an N-heterocyclic carbene (NHC) to afford a two-coordinate NHC-ligated Pb(I) radical 3. 2 and 3 represent the first isolable Pb(I)-based radicals. Theoretical calculations and electron paramagnetic resonance analysis revealed that the unpaired electron mainly resides at the Pb 6p orbital in both radicals. Owing to the unique one-coordinate nature of the Pb atom in 2, it possesses two-fold orbital pseudo-degeneracy and substantial unquenched orbital angular momentum, and exhibits hitherto strongest g-factor anisotropy (gx,y,z=1.496, 1.166, 0.683) amongst main group radicals. Preliminary investigations into the reactivity of 2 unveiled its Pb-centered radical nature, and plumbylenes were isolated as products.
Collapse
Affiliation(s)
- Haonan Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yizhen Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zheng Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Gengwen Tan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Song Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
17
|
Oshima K, Kobayashi R, Sakamoto K, Yoza K, Ishida S, Iwamoto T. An Isolable THF-Coordinated Dialkylgermanone. Chem Asian J 2024; 19:e202400111. [PMID: 38380801 DOI: 10.1002/asia.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
A stable dialkylgermanone was generated by mixing a solid of the corresponding dialkylgermylene and gaseous N2O. While the dialkylgermanone is marginally persistent in solution and gradually converts to its head-to-tail dimer at room temperature, the addition of THF to the dialkylgermanone provided an isolable THF-coordinated dialkylgermanone. The THF-coordinated dialkylgermanone reacts with H2O, THF, and B(C6F5)3 similar to the corresponding base-free two-coordinate dialkylsilanone. The dialkylgermanone undergoes deoxygenation in the presence of triphenylphosphine to provide the corresponding germylene and olefination upon treatment with phosphaylide Ph3PCHPh to afford the corresponding Ge=C bond compound (germa-Wittig reaction).
Collapse
Affiliation(s)
- Kazuma Oshima
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Kengo Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Kenji Yoza
- Bruker Japan K. K., 3-9 Moriya-cho, Kanagawa-Ku, Yokohama, 221-0022, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
18
|
Li W, Li CQ, Leng G, Yan YK, Ma Y, Xu Z, Yang L. Theoretical Investigation on Dialumenes toward Dihydrogen Activation: Mechanism and Ligand Effect. J Phys Chem A 2024; 128:3273-3284. [PMID: 38635947 DOI: 10.1021/acs.jpca.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, we report a computation study based on the density functional theory calculations to understand the mechanism and ligand effect of the base-stabilized dialumenes toward dihydrogen activation. Among all of the examined modes of dihydrogen activation using the base-stabilized dialumene, we found that the concerted 1,2-hydrogenation of the Al═Al double bond is kinetically more preferable. The concerted 1,2-hydrogenation of the Al═Al double bond adopts an electron-transfer model with certain asynchrony. That is, the initial electron donation from the H-H σ bonding orbital to the empty 3p orbital of the Al1 center is followed by the backdonation from the lone pair electron of the Al2 center to the H-H σ antibonding orbital. Combined with the energy decomposition analysis on the transition states of the concerted 1,2-hydrogenation of the Al═Al double bond and the topographic steric mapping analysis on the free dialumenes, we ascribe the higher reactivity of the aryl-substituted dialumene over the silyl-substituted analogue in dihydrogen activation to the stronger electron-withdrawing effect of the aryl group, which not only increases the flexibility of the Al═Al double bond but also enhances the Lewis acidity of the Al═Al core. Consequently, the aryl-substituted dialumene fragment suffers less geometric deformation, and the orbital interactions between the dialumene and dihydrogen moieties are more attractive during the 1,2-hydrogenation process. Moreover, our calculations also predict that the Al═Al double bond has a good tolerance with the stronger electron-withdrawing group (-CF3) and the weaker σ-donating N-heterocyclic carbene (NHC) analogue (e.g., triazol carbene and NHSi). The reactivity of the dialumene in dihydrogen activation can be further improved by introducing these groups as the supporting ligand and the stabilizing base on the Al═Al core, respectively.
Collapse
Affiliation(s)
- Weiyi Li
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Cai-Qin Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Geng Leng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- TIianfu Co-Innovation Center, University of Electronic Science and Technology of China, Chengdu 610299, P. R. China
| | - Ying-Kun Yan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Yueyue Ma
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Ziyan Xu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Lingsong Yang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| |
Collapse
|
19
|
Kimmich R, Kern RH, Strienz M, Koldemir A, Eichele K, Pöttgen R, Wesemann L, Schnepf A. Synthesis and Investigation of a Soluble Distannene with no Trans-Bent Angle or Twisting in the Solid-State. Chemistry 2024; 30:e202400209. [PMID: 38362851 DOI: 10.1002/chem.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
By treating KSiiPr3 with Sn[N(SiMe3)2]2 the distannene Sn2(TIPS)4 (TIPS=SiiPr3) is formed in a metathesis reaction. The crystal structure analysis of Sn2(TIPS)4 reveals a planar arrangement of the substituents in the solid-state and hence the second planar alkene like distannene of its kind. Due to the TIPS substituents, Sn2(TIPS)4 is well soluble in all commonly used organic solvents, opening the door for various analytics and reactivity studies. Due to its stability in solution, various reactions can be performed such as cycloaddition reactions with 2,3-dimethyl-1,3-butadiene (DMBD) and TMS-azide.
Collapse
Affiliation(s)
- Roman Kimmich
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Ralf H Kern
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Markus Strienz
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Aylin Koldemir
- Department of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, D-48149, Münster
| | - Klaus Eichele
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Rainer Pöttgen
- Department of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, D-48149, Münster
| | - Lars Wesemann
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Andreas Schnepf
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
20
|
Qiao Z, Li X, Chen M, Cao F, Mo Z. Double 1,2-Carbon Migration at Mixed Heavier Sn=Ge Vinylidenes. Angew Chem Int Ed Engl 2024; 63:e202401570. [PMID: 38380578 DOI: 10.1002/anie.202401570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
1,2-migration is one recurring isomerization reaction in organic chemistry. In contrast, double 1,2-migration remains rare and limited to transition-metal complexes. Herein, we describe the synthesis, characterization and reactivity of mixed heavier Sn=Ge vinylidenes. Double 1,2-carbon migration enables the isomerization of the stannagermenylidene (3) to the germastannenylidene (4). X-ray diffraction analysis and DFT calculations revealed that 3 and 4 feature a Sn=Ge double bond. The reaction of 3 with IMe4 (1,3,4,5-tetramethylimidazoline-2-ylidene) results in the electron redistribution in the Sn=Ge core to give the germylone-stannylene adduct (5). Moreover, treatment of 3 with 0.25 equiv. of (AlCp*)4 produces the heteronuclear aluminyl stannagermyne (6).
Collapse
Affiliation(s)
- Zihao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xueyan Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Helling C, Döhler L, Kysliak O, Görls H, Liebing P, Wölper C, Kretschmer R, Schulz S. Metal-metal cooperativity boosts Lewis basicity and reduction properties of the bis(gallanediyl) CyL 2Ga 2. Dalton Trans 2024; 53:4922-4929. [PMID: 38410991 DOI: 10.1039/d4dt00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The interplay of two proximate gallium centres equips the bimetallic complex CyL2Ga2 (1, CyL2 = 1,2-trans-Cy[NC(Me)C(H)C(Me)N(Dip)]2, Dip = 2,6-i-Pr2C6H3) with increased Lewis basicity and higher reducing power compared to the monometallic gallanediyl LGa (2, L = HC[MeCN(Dip)]2) as evidenced by cross-over experiments. Quantum chemical calculations were employed to support the experimental findings.
Collapse
Affiliation(s)
- Christoph Helling
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Lotta Döhler
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Oleksandr Kysliak
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Phil Liebing
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Chemistry, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
22
|
Bücker A, Gehlhaar A, Wölper C, Schulz S. Activation of non-polar bonds by an electron-rich gallagermylene. Chem Commun (Camb) 2024; 60:2902-2905. [PMID: 38353274 DOI: 10.1039/d3cc06223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The electron-rich germylene LGa(μ-Cl)GeArMes (1) (L = CH[C(Me)N(Dipp)]2, Dipp = 2,6-iPr2C6H3, ArMes = 2,6-Mes2C6H3, Mes = 2,4,6-Me3C6H2) shows promising potential in the σ-bond activation of unpolar molecules as is shown in oxidative addition reactions with H2 and P4, yielding L(Cl)GaGe(H)2ArMes (2) and L(Cl)Ga(P4)GeArMes (3). Compounds 2 and 3 were characterised spectroscopically (1H, 13C{1H}, (31P{1H}), IR) and by single-crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Anna Bücker
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen 45117, Germany.
| | - Alexander Gehlhaar
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen 45117, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen 45117, Germany.
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen 45117, Germany.
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
23
|
Sorbelli D, Belpassi L, Belanzoni P. Cooperative small molecule activation by apolar and weakly polar bonds through the lens of a suitable computational protocol. Chem Commun (Camb) 2024; 60:1222-1238. [PMID: 38126734 DOI: 10.1039/d3cc05614g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Small molecule activation processes are central in chemical research and cooperativity is a valuable tool for the fine-tuning of the efficiency of these reactions. In this contribution, we discuss recent and remarkable examples in which activation processes are mediated by bimetallic compounds featuring apolar or weakly polar metal-metal bonds. Relevant experimental breakthroughs are thoroughly analyzed from a computational perspective. We highlight how the rational and non-trivial application of selected computational approaches not only allows rationalization of the observed reactivities but also inferring of general principles applicable to activation processes, such as the breakdown of the structure-reactivity relationship in carbon dioxide activation in a cooperative framework. We finally provide a simple yet unbiased computational protocol to study these reactions, which can support experimental advances aimed at expanding the range of applications of apolar and weakly polar bonds as catalysts for small molecule activation.
Collapse
Affiliation(s)
- Diego Sorbelli
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| | - Paola Belanzoni
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| |
Collapse
|
24
|
Groll L, Kelly JA, Inoue S. Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO 2 and N 2 O. Chem Asian J 2024; 19:e202300941. [PMID: 37996985 DOI: 10.1002/asia.202300941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
A heteroleptic amino(imino)stannylene (TMS2 N)(It BuN)Sn: (TMS=trimethylsilyl, It Bu=C[(N-t Bu)CH]2 ) as well as two homoleptic NHI-stabilized tetrylenes, (It BuN)2 E: (NHI=N-heterocyclic imine, E=Ge, Sn) are presented. VT-NMR investigations of (It BuN)2 Sn: (2) reveal an equilibrium between the monomeric stannylene at room temperature and the dimeric form at -80 °C as well as in the solid state. Upon reaction of the homoleptic tetrylenes with CO2 , both compounds insert two equivalents of CO2 , however differing bonding modes can be observed. (It BuN)2 Sn: (2) inserts one equivalent of CO2 into each Sn-N bond, giving carbamato groups coordinated κ2 O,O' to the metal center. With (It BuN)2 Ge: (3), the Ge-N bonds stay intact upon activation, being bridged by one molecule of CO2 respectively, forming 4-membered rings. Furthermore, the reactivity of 2 towards N2 O was investigated, resulting in partial oxidation to form stannylene dimer [((It BuN)3 SnO)(It BuN)Sn:]2 (6).
Collapse
Affiliation(s)
- Lisa Groll
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - John A Kelly
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
25
|
Abstract
Low valent group 14 compounds exhibit diverse structures and reactivities. The employment of diazaborolyl anions (NHB anions), isoelectronic analogues to N-heterocyclic carbenes (NHCs), in group 14 chemistry leads to the exceptional structures and reactivity. The unique combination of σ-electron donation and pronounced steric hindrance impart distinct structural characteristics to the NHB-substituted low valent group 14 compounds. Notably, the modulation of the HOMO-LUMO gap in these compounds with the diazaborolyl substituents results in novel reaction patterns in the activation of small molecules and inert chemical bonds. This review mainly summarizes the recent advances in NHB-substituted low-valent heavy Group 14 compounds, emphasizing their synthesis, structural characteristics and application to small molecule activation.
Collapse
Affiliation(s)
- Chenxi Duan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Bücker A, Wölper C, Siera H, Haberhauer G, Schulz S. Multiple ethylene activation by heteroleptic L(Cl)Ga-substituted germylenes. Dalton Trans 2024; 53:640-646. [PMID: 38073505 DOI: 10.1039/d3dt03944g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ethylene insertion into the Ga-Ge bond of the L(Cl)Ga-substituted germylene LGa(μ-Cl)GeDMP 1 (L = HC(C(Me)NAr)2, Ar = 2,6-iPr2C6H3; DMP = 2,6-Mes2C6H3, Mes = 2,4,6-Me3C6H2) at ambient temperature is followed by dimerization of the as-formed germylene to give the digermene 3, which further reacted with ethylene in a [2 + 2] cycloaddition to give the 1,2-digermacyclobutane 4. In marked contrast, the amino-substituted germylene L(Cl)GaGeN(SiMe3)Ar 2 reacted directly to the 1,2-digermacyclobutane 5. Quantum chemical calculations confirmed the assumed reaction mechanism, hence demonstrating the crucial role of the substituent on the reaction mechanism.
Collapse
Affiliation(s)
- Anna Bücker
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Hannah Siera
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
27
|
Zheng X, Crumpton AE, Ellwanger MA, Aldridge S. A planar per-borylated digermene. Dalton Trans 2023; 52:16591-16595. [PMID: 37961827 DOI: 10.1039/d3dt03416j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A tetraboryl digermene synthesized by the reaction between a dianionic digermanide nucleophile and a boron halide electrophile is dimeric both in the solid state and in hydrocarbon solution. It features both a planar 'alkene-like' geometry for the Ge2B4 core, and an exceptionally short GeGe double bond. These structural features are consistent with the known electronic properties of the boryl group, and with lowest energy (in silico) fragmentation into two triplet bis(boryl)germylene fragments.
Collapse
Affiliation(s)
- Xiongfei Zheng
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
28
|
Barthélemy A, Scherer H, Daub M, Bugnet A, Krossing I. Structures, Bonding Analyses and Reactivity of a Dicationic Digallene and Diindene Mimicking trans-bent Ditetrylenes. Angew Chem Int Ed Engl 2023; 62:e202311648. [PMID: 37728006 DOI: 10.1002/anie.202311648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The reaction of bisdicyclohexylphosphinoethane (dcpe) and the subvalent MI sources [MI (PhF)2 ][pf] (M=Ga+ , In+ ; [pf]- =[Al(ORF )4 ]- ; RF =C(CF3 )3 ) yielded the salts [{M(dcpe)}2 ][pf]2 , containing the first dicationic, trans-bent digallene and diindene structures reported so far. The non-classical MI ⇆MI double bonds are surprisingly short and display a ditetrylene-like structure. The bonding situation was extensively analyzed by quantum chemical calculations, QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy Decomposition Analysis with the combination of Natural Orbitals for Chemical Valence) analyses and is compared to that in the isoelectronic and isostructural, but neutral digermenes and distannenes. The dissolved [{Ga(dcpe)}2 ]2+ ([pf]- )2 readily reacts with 1-hexene, cyclooctyne, diphenyldisulfide, diphenylphosphine and under mild conditions at room temperature. This reactivity is analyzed and rationalized.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Michael Daub
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Alexis Bugnet
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
29
|
Zhang H, Wang Y, Lu Q, Song J, Duan Y, Zeng Y, Mo Y. Stretched Central Double Bonds in Dialumene and Disilene by Amino Substituents: A Case of Lone Pair Repulsion. Chemistry 2023; 29:e202301862. [PMID: 37506171 DOI: 10.1002/chem.202301862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
There have been remarkable advances in the syntheses and applications of groups 13 and 14 homonuclear ethene analogues. However, successes are largely limited to aryl- and/or silyl-substituted species. Analogues bearing two or more heteroatoms are still scarce. In this work, the block-localized wavefunction (BLW) method at the density functional theory (DFT) level was employed to study dialumene and disilene bearing two amino substituents whose optimal geometries exhibit significantly stretched central M=M (M=Al or Si) double bonds compared with aryl- and/or silyl-substituted species. Computational analyses showed that the repulsion between the lone electron pairs of amino substituents and M=M π bond plays a critical role in the elongation of the M=M bonds. Evidently, replacing the substituent groups -NH2 with -BH2 can enhance the planarity and shorten the central double bonds due to the absence of lone pair electrons in BH2 .
Collapse
Affiliation(s)
- Huaiyu Zhang
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yating Wang
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingrui Lu
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yandong Duan
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
30
|
Fotie J, Matherne CM, Wroblewski JE. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores. Chem Biol Drug Des 2023; 102:235-254. [PMID: 37029092 DOI: 10.1111/cbdd.14239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Bioisosterism is one of the leading strategies in medicinal chemistry for the design and modification of drugs, consisting in replacing an atom or a substituent with a different atom or a group with similar chemical properties and an inherent biocompatibility. The objective of such an exercise is to produce a diversity of molecules with similar behavior while enhancing the desire biological and pharmacological properties, without inducing significant changes to the chemical framework. In drug discovery and development, the optimization of the absorption, distribution, metabolism, elimination, and toxicity (ADMETox) profile is of paramount importance. Silicon appears to be the right choice as a carbon isostere because they possess very similar intrinsic properties. However, the replacement of a carbon by a silicon atom in pharmaceuticals has proven to result in improved efficacy and selectivity, while enhancing physicochemical properties and bioavailability. The current review discusses how silicon has been strategically introduced to modulate drug-like properties of anticancer agents, from a molecular design strategy, biological activity, computational modeling, and structure-activity relationships perspectives.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Caitlyn M Matherne
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jordan E Wroblewski
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
31
|
Li B, Weinert HM, Wölper C, Schulz S. Reactions of Zinc Hydride with Silylenes: From Oxidative Addition to Ligand Exchange Reactions. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
32
|
Zheng X, Crumpton AE, Protchenko AV, Heilmann A, Ellwanger MA, Aldridge S. Disproportionation and Ligand Lability in Low Oxidation State Boryl-Tin Chemistry. Chemistry 2023; 29:e202203395. [PMID: 36399407 PMCID: PMC10947314 DOI: 10.1002/chem.202203395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Boryltin compounds featuring the metal in the+1 or 0 oxidation states can be synthesized from the carbene-stabilized tin(II) bromide (boryl)Sn(NHC)Br (boryl={B(NDippCH)2 }; NHC=C{(Ni PrCMe)2 }) by the use of strong reducing agents. The formation of the mono-carbene stabilized distannyne and donor-free distannide systems (boryl)SnSn(IPrMe)(boryl) (2) and K2 [Sn2 (boryl)2 ] (3), using Mg(I) and K reducing agents mirrors related germanium chemistry. In contrast to their lighter congeners, however, systems of the type [Sn(boryl)]n are unstable with respect to disproportionation. Carbene abstraction from 2 using BPh3 , and two-electron oxidation of 3 both result in the formation of a 2 : 1 mixture of the Sn(II) compound Sn(boryl)2 , and the hexatin cluster, Sn6 (boryl)4 (4). A viable mechanism for this rearrangement is shown by quantum chemical studies to involve a vinylidene intermediate (analogous to the isolable germanium compound, (boryl)2 Ge=Ge), which undergoes facile atom transfer to generate Sn(boryl)2 and trinuclear [Sn3 (boryl)2 ]. The latter then dimerizes to give the observed hexametallic product 4, with independent studies showing that similar trigermanium species aggregate in analogous fashion.
Collapse
Affiliation(s)
- Xiongfei Zheng
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Agamemnon E. Crumpton
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andrey V. Protchenko
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Mathias A. Ellwanger
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
33
|
Bisai MK, Ajithkumar VS, Raj KV, Vanka K, Gonnade RG, Sen SS. A zwitterionic disilanylium from an unsymmetrical disilene. Chem Commun (Camb) 2023; 59:1669-1672. [PMID: 36689219 DOI: 10.1039/d2cc06954g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reaction of PhC(NtBu)2SiSi(SiMe3)3 (1) with Me3SiCH2Cl afforded an unsymmetrical sp2-sp3 disilene, 2, with concomitant elimination of Me3SiCl. The analogous reaction with PhC(NtBu)2SiCl resulted in the oxidative addition of the C-Cl bond at the Si(II) atom (3). The reactions of 2 with sulfur and selenium led to compounds with SiE (ES (4) and Se (5)) double bonds. Tellurium reacted differently with 2 and furnished a zwitterionic compound, 6.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
34
|
Li T, Zhang L, He Y, Chen Y, Wang D, Liu J, Tan G. A germanimidoyl chloride: synthesis, characterization and reactivity. Chem Commun (Camb) 2023; 59:1533-1536. [PMID: 36661338 DOI: 10.1039/d2cc05970c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first germanimidoyl chloride MsFluindtBu-Ge(Cl)NMes (2, where MsFluindtBu is a bulky hydrindacene skeleton) was synthesized through the reaction of MsFluindtBu-GeCl (1) and mesityl azide (MesN3). In contrast, treatment of 1 with a less bulky azide ArN3 (Ar = 4-tBuC6H4) produced a germatetrazole chloride MsFluindtBu-Ge(Cl)N4Ar2 (3), and a salt [MsFluindtBu-GeN4Ar2]+[BArF4]- (4; ArF = 3,5-(CF3)2C6H3) followed by chloride abstraction with NaBArF4, both bearing a five-membered GeN4 ring. Functionalization of 2 with Ar'Li (Ar' = 3,5-tBu2C6H3) or MeLi furnished a germanimine MsFluindtBu-Ge(Ar')NMes (5) or an amide lithium salt MsFluindtBu-Ge(Me)2-N(Mes)Li(thf) (6).
Collapse
Affiliation(s)
- Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuhao He
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jingjing Liu
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
35
|
Zhang Y, Wu L, Wang H. Application of N-heterocyclic silylenes in low-valent group 13, 14 and 15 chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Sorbelli D, Belpassi L, Belanzoni P. Radical-like reactivity for dihydrogen activation by coinage metal-aluminyl complexes: computational evidence inspired by experimental main group chemistry. Chem Sci 2023; 14:889-896. [PMID: 36755722 PMCID: PMC9890964 DOI: 10.1039/d2sc05815d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The computational study of an unprecedented reactivity of coinage metal-aluminyl complexes with dihydrogen is reported. In close resemblance to group 14 dimetallenes and dimetallynes, the complexes are predicted to activate H2 under mild conditions. Two different reaction pathways are found disclosing a common driving force, i.e., the nucleophilic behavior of the electron-sharing M-Al (M = Cu, Ag, Au) bond, which enables a cooperative and diradical-like mechanism. This mode of chemical reactivity emerges as a new paradigm for dihydrogen activation and calls for experimental feedback.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 - 06123 Perugia Italy .,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC) Via Elce di Sotto 8 - 06123 Perugia Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC) Via Elce di Sotto 8 - 06123 Perugia Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 - 06123 Perugia Italy .,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC) Via Elce di Sotto 8 - 06123 Perugia Italy
| |
Collapse
|
37
|
Sorbelli D, Belpassi L, Belanzoni P. Widening the Landscape of Small Molecule Activation with Gold-Aluminyl Complexes: A Systematic Study of E-H (E=O, N) Bonds, SO 2 and N 2 O Activation. Chemistry 2023; 29:e202203584. [PMID: 36660925 DOI: 10.1002/chem.202203584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The electronic features of gold-aluminyl complexes have been thoroughly explored. Their similarity with Group 14 dimetallenes and other metal-aluminyl complexes suggests that their reactivity with small molecules beyond carbon dioxide could be accessed. In this work, the reactivity of the [t Bu3 PAuAl(NON)] (NON=4,5-bis(2,6 diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) complex towards water, ammonia, sulfur dioxide and nitrous oxide is computationally explored. The reaction mechanisms computed for each substrate strongly suggest that all activation processes are in principle experimentally feasible. Electronic structure analysis highlights that, in all cases, the reactivity is driven by the presence of the poorly polarized electron-sharing gold-aluminyl bond, which induces a radical-like reactivity of the complex towards all the substrates. A flat topology of the potential energy surface (PES) has been found for the reaction with N2 O, where two almost isoenergetic transition states can be located along the same reaction coordinate with different geometries, suggesting that the N2 O binding mode may not be a good indicator of the nature of N2 O activation in a cooperative bimetallic reactivity. In addition, the catalytic potentialities of these complexes have been explored in the framework of nitrous oxide reduction. The study reveals that the [t Bu3 PAuAl(NON)] complex might be an efficient catalyst towards oxidation of phosphines (and boranes) via N2 O reduction. These findings underline recurring trends in the novel chemistry of gold-aluminyl complexes and call for experimental feedbacks.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| |
Collapse
|
38
|
Izod K, Liu M, Evans P, Wills C, Dixon CM, Waddell PG, Probert MR. Spontaneous Decomposition of an Extraordinarily Twisted and Trans-Bent Fully-Phosphanyl-Substituted Digermene to an Unusual Ge I Cluster. Angew Chem Int Ed Engl 2022; 61:e202208851. [PMID: 35946808 PMCID: PMC9804623 DOI: 10.1002/anie.202208851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 01/05/2023]
Abstract
Ditetrelenes R2 E=ER2 (E=Si, Ge, Sn, Pb) substituted by multiple N/P/O/S-donor groups are extremely rare due to their propensity to disaggregate into their tetrylene monomers R2 E. We report the synthesis of the first fully phosphanyl-substituted digermene {(Mes)2 P}2 Ge=Ge{P(Mes)2 }2 (3, Mes=2,4,6-Me3 C6 H2 ), which adopts a highly unusual structure in the solid state, that is both strongly trans-bent and highly twisted. Variable-temperature 31 P{1 H} NMR spectroscopy suggests that 3 persists in solution, but is subject to a dynamic equilibrium between two conformations, which have different geometries about the Ge=Ge bond (twisted/non-twisted) due to a difference in the nature of their π-stacking interactions. Compound 3 undergoes unprecedented, spontaneous decomposition in solution to give a unique GeI cluster {(Mes)2 P}4 Ge4 ⋅5 CyMe (7).
Collapse
Affiliation(s)
- Keith Izod
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Mo Liu
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Peter Evans
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Corinne Wills
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Casey M. Dixon
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Paul G. Waddell
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | |
Collapse
|
39
|
Zhao X, Szilvási T, Hanusch F, Kelly JA, Fujimori S, Inoue S. Isolation and Reactivity of Tetrylene-Tetrylone-Iron Complexes Supported by Bis(N-Heterocyclic Imine) Ligands. Angew Chem Int Ed Engl 2022; 61:e202208930. [PMID: 35925668 PMCID: PMC9804675 DOI: 10.1002/anie.202208930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/09/2023]
Abstract
The germanium iron carbonyl complex 3 was prepared by the reaction of dimeric chloro(imino)germylene [IPrNGeCl]2 (IPrN=bis(2,6-diisopropylphenyl)imidazolin-2-iminato) with one equivalent of Collman's reagent (Na2 Fe(CO)4 ) at room temperature. Similarly, the reaction of chloro(imino)stannylene [IPrNSnCl]2 with Na2 Fe(CO)4 (1 equiv) resulted in the Fe(CO)4 -bridged bis(stannylene) complex 4. We observed reversible formation of bis(tetrylene) and tetrylene-tetrylone character in complexes 3 vs. 5 and 4 vs. 6, which was supported by DFT calculations. Moreover, the Li/Sn/Fe trimetallic complex 12 has been isolated from the reaction of [IPrNSnCl]2 with cyclopentadienyl iron dicarbonyl anion. The computational analysis further rationalizes the reduction pathway from these chlorotetrylenes to the corresponding complexes.
Collapse
Affiliation(s)
- Xuan‐Xuan Zhao
- School of Natural SciencesDepartment of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Tibor Szilvási
- Department of Chemical and Biological EngineeringUniversity of AlabamaTuscaloosaAL 35487USA
| | - Franziska Hanusch
- School of Natural SciencesDepartment of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - John A. Kelly
- School of Natural SciencesDepartment of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Shiori Fujimori
- School of Natural SciencesDepartment of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Shigeyoshi Inoue
- School of Natural SciencesDepartment of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
40
|
Sugahara T, Hashizume D, Tokitoh N, Matsui H, Kishi R, Nakano M, Sasamori T. Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues. Phys Chem Chem Phys 2022; 24:22557-22561. [PMID: 36000346 DOI: 10.1039/d2cp03068c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the experimental visualization of the valence-electron-density distribution in benzene and its kinetically stabilized heavier-element analogues, i.e., 1,2-disilabenzene and 1,2-digermabenzene. The valence-electron-density-distribution (EDD) analysis on the 1,2-disila- and 1,2-digermabenzenes revealed that these contain incompletely delocalized π electrons on their cyclic conjugation systems, making them less aromatic compared to benzene. Based on the results of this EDD analysis in combination with anisotropy of the current-induced density (ACID) calculations, considerable contributions from the characteristic resonance structures of 1,2-disila- and 1,2-digermabenzenes with cleaved EE bonds can be expected.
Collapse
Affiliation(s)
- Tomohiro Sugahara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Matsui
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC) and Center for Quantum Information and Quantum Biology (QIQB) Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
41
|
Sarkar D, Groll L, Munz D, Hanusch F, Inoue S. Ligand Assisted CO2 Sequestration and Catalytic Valorization by an NHI‐Stabilized Stannylene. ChemCatChem 2022. [DOI: 10.1002/cctc.202201048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Debotra Sarkar
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Lisa Groll
- Technical University Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Dominik Munz
- Saarland University - Campus Saarbrucken: Universitat des Saarlandes Inorganic Chemistry GERMANY
| | - Franziska Hanusch
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Shigeyoshi Inoue
- Technische Universität München Fakultät für Chemie Lichtenbergstraße 485748 Garching 85748 Garching bei München GERMANY
| |
Collapse
|
42
|
Izod K, Liu M, Evans P, Wills C, Dixon CM, Waddell PG, Probert MR. Spontaneous decomposition of an extraordinarily twisted and trans‐bent fully‐phosphanyl‐substituted digermene to an unusual Ge(I) cluster. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Keith Izod
- University of Newcastle School of Chemistry Bedson Building NE1 7RU Newcastle upon Tyne UNITED KINGDOM
| | - Mo Liu
- Newcastle University School of Chemistry UNITED KINGDOM
| | - Peter Evans
- Newcastle University School of Chemistry UNITED KINGDOM
| | - Corinne Wills
- Newcastle University School of Chemistry UNITED KINGDOM
| | | | | | | |
Collapse
|
43
|
Inoue S, Melen RL, Harder S. Main Group Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shigeyoshi Inoue
- Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Wales UK
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Alexander-Friedrich-University Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
44
|
Zhao XX, Szilvási T, Hanusch F, Kelly J, Fujimori S, Inoue S. Isolation and Reactivity of Tetrylene‐Tetrylone‐Iron Complexes Supported by Bis(N‐Heterocyclic Imine) Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuan-Xuan Zhao
- Technische Universität München: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Tibor Szilvási
- The University of Alabama Department of Chemical and Biological Engineering UNITED STATES
| | - Franziska Hanusch
- Technische Universität München: Technische Universitat Munchen Department of Chemistry GERMANY
| | - John Kelly
- Technische Universität München: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Shiori Fujimori
- Technische Universität München: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Shigeyoshi Inoue
- Technische Universität München Fakultät für Chemie Lichtenbergstraße 485748 Garching 85748 Garching bei München GERMANY
| |
Collapse
|
45
|
Synthesis and reactivity of the complexes [(dpp-bian)SiCl2] and [(dpp-bian)Si{FeCp(CO)}2(μ-CO)] (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene). Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and Its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022; 61:e202205785. [DOI: 10.1002/anie.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
|
47
|
Lai TY, Fettinger JC, Power PP. N–N Double-Bond Cleavage and Azobenzene Rearrangement with C–C Bond Formation Induced by a Germylene. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Yi Lai
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
48
|
Chen M, Lei B, Wang X, Rong H, Song H, Mo Z. A Silylene‐Stabilized Germanium Analogue of Alkynylaluminum. Angew Chem Int Ed Engl 2022; 61:e202204495. [DOI: 10.1002/anie.202204495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Binglin Lei
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xuyang Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Haibin Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
49
|
Stigler S, Park M, Porzelt A, Kostenko A, Henschel D, Inoue S. Conversion of an NHC-Stabilized Silyliumylidene to a Dicationic Silicon(IV) Complex Capable of CO 2 Activation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Ding Y, Li Y, Zhang J, Cui C. Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yazhou Ding
- Nankai University Institute of elemento-organic chemistry CHINA
| | - Yang Li
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Jianying Zhang
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Chunming Cui
- Nankai University Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|