1
|
Tashiro S, Yamada Y, Kringe LA, Okajima Y, Shionoya M. Intricate Low-Symmetry Ag 6L4 Capsules Formed by Anion-Templated Self-Assembly of the Stereoisomers of an Unsymmetric Ligand. J Am Chem Soc 2024; 146:34501-34509. [PMID: 39616534 DOI: 10.1021/jacs.4c11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach. In this study, a strategy was developed to form interconvertible stereoisomers using the unsymmetric macrocyclic ligand benzimidazole[3]arene. Single-crystal X-ray diffraction analysis revealed that the isomers assembled with silver tetrafluoroborate afforded a conformationally heteroleptic Ag6L4 capsule with an intricate structure. The six Ag ions in the capsule were desymmetrized, resulting in significantly different coordination geometries. Remarkably, the capsule encapsulates a single tetrafluoroborate anion via multipoint C-H···F-B hydrogen bonds in both the solid and solution states, suggesting that anions of appropriate size and shape can act as a template for the capsule formation. These results demonstrate that the use of isomerizable and unsymmetric ligands is the effectiveness of constructing highly dissymmetric supramolecular structures from a single ligand.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lea Antonia Kringe
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Okajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Benchimol E, O'Connor HM, Schmidt B, Bogo N, Holstein JJ, Lovitt JI, Shanmugaraju S, Stein CJ, Gunnlaugsson T, Clever GH. Chiral Pd 2L 4 Capsules from Readily Accessible Tröger's Base Ligands Inducing Circular Dichroism on Fullerenes C 60 and C 70. Angew Chem Int Ed Engl 2024:e202421137. [PMID: 39625997 DOI: 10.1002/anie.202421137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Indexed: 12/14/2024]
Abstract
The induction of chirality on pristine fullerenes through non-covalent embedding in an asymmetric nano-confinement has only been rarely reported. Bringing molecules with such a unique electronic structure and broad application range into a chiral environment is particularly appealing for the development of chiroptical materials, enantioselective photoredox catalysts and systems showing chirality-induced spin selectivity (CISS). In this study, we report the formation of a chiral, configurationally stable Pd2L4 capsule assembled from a C2-symmetric, 'ribbon-shaped' ligand with a Tröger's base naphthalimide (TbNaps) backbone, easily synthesized in three steps from commercially available compounds. Embedding chirality directly into the ligand backbone ensures a relatively lightweight receptor design whose aromatic panels create a strongly shielded inner cavity of about 700 Å3 volume. Fullerenes C60 and C70, as well as a pair of corannulenes, can be bound in acetonitrile (where unsubstituted fullerenes are insoluble) and X-ray structures of host-guest complexes were obtained. Tight interactions between the chiral host and the fullerene guests leads to the induction of a circular dichroism (CD) on the characteristic absorption bands of the forbidden π-π* transitions of the fullerenes, backed up by sTDA TD-DFT calculations and detailed investigation of the electronic excited states.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Helen M O'Connor
- School of Chemistry, Centre for Synthesis and Chemical Biology and Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin, 2, Ireland
| | - Björn Schmidt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Nicola Bogo
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - June I Lovitt
- School of Chemistry, Centre for Synthesis and Chemical Biology and Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin, 2, Ireland
| | | | - Christopher J Stein
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Germany
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology and Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin, 2, Ireland
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Liu H, Guo C, Huang Y, Zhou Z, Jian S, Zhang Z, Hou Y, Mu C, Zhang M. Fusion of two homoleptic truncated tetrahedra into a heteroleptic truncated octahedron. Chem Sci 2024:d4sc02736a. [PMID: 39165732 PMCID: PMC11331344 DOI: 10.1039/d4sc02736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The exploration of novel structures and structural transformation of supramolecular assemblies is of vital importance for their functions and applications. Herein, based on coordination-driven self-assembly, we prepare a neutral truncated tetrahedron and a heteroleptic truncated octahedron, whose structures are unambiguously confirmed by X-ray diffraction analysis. More importantly, the truncated tetrahedron is quantitatively transformed into the truncated octahedron through its fusion with another cationic truncated tetrahedron, as evidenced by fluorescence, mass and NMR spectroscopy. This study not only deepens our understanding of the process of supramolecular fusion but also opens up possibilities for the subsequent preparation of advanced supramolecular assemblies with complex structures and integrated functions.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 P. R. China
| | - Yujuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zilin Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shijin Jian
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
4
|
Sivalingam V, Parbin M, Krishnaswamy S, Chand DK. Cage-To-Cage Transformations in Self-Assembled Coordination Cages Using "Acid/Base" or "Guest Binding-Induced Strain" as Stimuli. Angew Chem Int Ed Engl 2024; 63:e202403711. [PMID: 38567836 DOI: 10.1002/anie.202403711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/03/2024]
Abstract
Controlling supramolecular systems between different functional forms by utilizing acids/bases as stimuli is a formidable challenge, especially where labile coordination bonds are involved. A pair of acid/base responsive, interconvertible 1,5-enedione/pyrylium based Pd2L4-type cages are prepared that exhibit differential guest binding abilities towards disulfonates of varied sizes. A three-state switch has been achieved, where (i) a weakly coordinating base induced cage-to-cage transformation in the first step, (ii) a strongly coordinating base triggered cage disassembly as the second step, and (iii) the third step shows acid(strong) promoted generation of initial cage, thereby completing the cycle. To our surprise, binding of a specific disulfonate guest facilitated cage-to-cage transformations by inducing strain on the cage assembly thereby opening the labile pyrylium rings of the cage. Through a competitive guest binding study, we demonstrated the superior guest binding capability of the octacationic pyrylium-based cage over a similar-sized tetracationic cage. These results provide a reliable approach to reversibly modulate the guest binding properties of acid/base-responsive self-assembled coordination cages.
Collapse
Affiliation(s)
- Vellaiyadevan Sivalingam
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Minaz Parbin
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Molinska P, Tarzia A, Male L, Jelfs KE, Lewis JEM. Diastereoselective Self-Assembly of Low-Symmetry Pd n L 2n Nanocages through Coordination-Sphere Engineering. Angew Chem Int Ed Engl 2023; 62:e202315451. [PMID: 37888946 PMCID: PMC10952360 DOI: 10.1002/anie.202315451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low-symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination-sphere engineering (CSE) to bias isomer selectivity within homo- and heteroleptic Pdn L2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular-level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host-guest and host-solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low-symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli-responsive, shape-shifting MOCs.
Collapse
Affiliation(s)
- Paulina Molinska
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Andrew Tarzia
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Kim E. Jelfs
- Department of ChemistryImperial College London, Molecular Sciences Research Hub White City CampusWood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| |
Collapse
|
6
|
Shuto M, Sumida R, Yuasa M, Sawada T, Yoshizawa M. A Closed Cavity Strategy for Selective Dipeptide Binding by a Polyaromatic Receptor in Water. JACS AU 2023; 3:2905-2911. [PMID: 37885581 PMCID: PMC10598568 DOI: 10.1021/jacsau.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Precise recognition of peptides is a daunting task owing to the substantial number of available amino acids and their combination into various oligo/polymeric structures in addition to the high hydration of their flexible frameworks. Here, we report the selective recognition of a dipeptide through a closed cavity strategy, in contrast to previous synthetic receptors with open cavities. A polyaromatic receptor with a virtually isolated, hydrophobic cavity exclusively binds one molecule of phenylalanine dipeptide from a mixture with its amino acid and tripeptide in water via multiple CH-π and hydrogen-bonding interactions in the complementary cavity. The binding selectivity persists even in the presence of other dipeptides, such as leucine-leucine, leucine-phenylalanine, tyrosine-phenylalanine, tryptophan-tryptophan, and aspartame, revealed by NMR/MS-based competitive binding experiments. ITC studies reveal that the selective binding of the phenylalanine dipeptide is relatively strong (Ka = 1.1 × 105 M-1) and an enthalpically and entropically favorable process (ΔH = -11.7 kJ mol-1 and TΔS = 17.0 kJ mol-1). In addition, the present receptor can be used for the emission detection of the dipeptide through a combination with a fluorescent dye in water.
Collapse
Affiliation(s)
- Mayu Shuto
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Ryuki Sumida
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Mana Yuasa
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Tomohisa Sawada
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Pearcy AC, Lisboa LS, Preston D, Page NB, Lawrence T, Wright LJ, Hartinger CG, Crowley JD. Exploiting reduced-symmetry ligands with pyridyl and imidazole donors to construct a second-generation stimuli-responsive heterobimetallic [PdPtL 4] 4+ cage. Chem Sci 2023; 14:8615-8623. [PMID: 37592996 PMCID: PMC10430685 DOI: 10.1039/d3sc01354e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
A new sequential metalation strategy that enables the assembly of a new more robust reduced symmetry heterobimetallic [PdPtL4]4+ cage C is reported. By exploiting a low-symmetry ditopic ligand (L) that features imidazole and pyridine donor units we were able to selectively form a [Pt(L)4]2+ "open-cage" complex. When this was treated with Pd(ii) ions the cage C assembled. 1H and DOSY nuclear magnetic resonance (NMR) spectroscopy and electrospray ionisation mass spectrometry (ESIMS) data were consistent with the quantitative formation of the cage and the heterobimetallic structure was confirmed by single crystal X-ray crystallography. The cage C was shown to bind anionic guest molecules. NMR studies suggested that these guests interacted with the cavity of the cage in a specific orientation and this was confirmed for the mesylate ion (MsO-) : C host-guest adduct using X-ray crystallography. In addition, the system was shown to be stimulus-responsive and could be opened and closed on demand when treated with appropriate stimuli. If a guest molecule was bound within the cage, the opening and closing was accompanied by the release and re-uptake of the guest molecule.
Collapse
Affiliation(s)
- Aston C Pearcy
- Department of Chemistry, University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Lynn S Lisboa
- Department of Chemistry, University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Dan Preston
- Research School of Chemistry, Australian National University Canberra ACT 0200 Australia
| | - Nick B Page
- Department of Chemistry, University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Tristan Lawrence
- Department of Chemistry, University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
8
|
Banerjee R, Bhattacharyya S, Mukherjee PS. Synthesis of an Adaptable Molecular Barrel and Guest Mediated Stabilization of Its Metastable Higher Homologue. JACS AU 2023; 3:1998-2006. [PMID: 37502154 PMCID: PMC10369414 DOI: 10.1021/jacsau.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023]
Abstract
Structural and functional modulation of three-dimensional artificial macromolecular systems is of immense importance. Designing supramolecular cages that can show stimuli mediated reversible switching between higher-order structures is quite challenging. We report here construction of a Pd6 trifacial barrel (1) by coordination self-assembly. Surprisingly, barrel 1 was found to exhibit guest-responsive behavior. In presence of fullerenes C60 and C70, 1 unprecedentedly transformed to its metastable higher homologue Pd8 tetrafacial barrel (2), forming stable host-guest complexes (C60)3⊂2 and (C70)2⊂2, respectively. Again, encapsulated fullerenes could be extracted from the cavity of 2 using 1,2-dichlorobenzene, leading to its facile conversion to the parent trifacial barrel 1. Such reversible structural interconversion between an adaptable molecular barrel and its guest stabilized higher homologue is an uncommon observation.
Collapse
|
9
|
Fu X, Zhu B, Hu X. Force-Triggered Atropisomerization of a Parallel Diarylethene to Its Antiparallel Diastereomers. J Am Chem Soc 2023. [PMID: 37413689 PMCID: PMC10375474 DOI: 10.1021/jacs.3c03994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
This paper describes a mechanical approach to inducing the atropisomerization of a parallel diarylethene into its antiparallel diastereomers exhibiting distinct chemical reactivity. A congested parallel diarylethene mechanophore in the (Ra,Sa)-configuration with mirror symmetry is atropisomerized to its antiparallel diastereomers with C2 symmetry under ultrasound-induced force field. The resulting stereochemistry-converted material gains symmetry-allowed reactivity toward conrotatory photocyclization.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Boyu Zhu
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Bobylev EO, Ruijter J, Poole DA, Mathew S, de Bruin B, Reek JNH. Effector Regulated Catalytic Cyclization of Alkynoic Acids Using Pt 2 L 4 Cages. Angew Chem Int Ed Engl 2023; 62:e202218162. [PMID: 36779628 DOI: 10.1002/anie.202218162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Metabolic pathways are highly regulated by effector molecules that influences the rate of enzymatic reactions. Inspired by the catalytic regulation found in living cells, we report a Pt2 L4 cage of which the activity can be controlled by effectors that bind inside the cage. The cage shows catalytic activity in the lactonization of alkynoic acids, with the reaction rates dependent on the effector guest bound in the cage. Some effector guests enhance the rate of the lactonization by up to 19-fold, whereas one decreases it by 5-fold. When mixtures of specific substrates are used, both starting materials and products act as guests for the Pt2 L4 cage, enhancing its catalytic activity for one substrate while reducing its activity for the other. The reported regulatory behavior obtained by the addition of effector molecules paves the way to the development of more complex, metabolic-like catalyst systems.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Julian Ruijter
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - David A Poole
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Simon Mathew
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Vasdev RAS, Preston D, Casey-Stevens CA, Martí-Centelles V, Lusby PJ, Garden AL, Crowley JD. Exploiting Supramolecular Interactions to Control Isomer Distributions in Reduced-Symmetry [Pd 2L 4] 4+ Cages. Inorg Chem 2023; 62:1833-1844. [PMID: 35604785 DOI: 10.1021/acs.inorgchem.2c00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis, and drug delivery. Recently, there have been increasing efforts to enhance those applications by generating reduced-symmetry MSAs. Here we report our attempts to use supramolecular (dispersion and hydrogen-bonding) forces and solvophobic effects to generate isomerically pure [Pd2(L)4]4+ cage architectures from a family of new reduced-symmetry ditopic tripyridyl ligands. The reduced-symmetry tripyridyl ligands featured either solvophilic polyether chains, solvophobic alkyl chains, or amino substituents. We show using NMR spectroscopy, high-performance liquid chromatography, X-ray diffraction data, and density functional theory calculations that the combination of dispersion forces and solvophobic effects does not provide any control of the [Pd2(L)4]4+ isomer distribution with mixtures of all four cage isomers (HHHH, HHHT, cis-HHTT, or trans-HTHT, where H = head and T = tail) obtained in each case. More control was obtained by exploiting hydrogen-bonding interactions between amino units. While the cage assembly with a 3-amino-substituted tripyridyl ligand leads to a mixture of all four possible isomers, the related 2-amino-substituted tripyridyl ligand generated a cis-HHTT cage architecture. Formation of the cis-HHTT [Pd2(L)4]4+ cage was confirmed using NMR studies and X-ray crystallography.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Dan Preston
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Caitlin A Casey-Stevens
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland
| | - Paul J Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland
| | - Anna L Garden
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
12
|
Sumida R, Matsumoto T, Yokoi T, Yoshizawa M. A Porous Polyaromatic Solid for Vapor Adsorption of Xylene with High Efficiency, Selectivity, and Reusability. Chemistry 2022; 28:e202202825. [PMID: 36129172 PMCID: PMC10092481 DOI: 10.1002/chem.202202825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 12/29/2022]
Abstract
Development of porous materials capable of capturing volatile organic compounds (VOCs), such as benzene and its derivatives, with high efficiency, selectivity, and reusability is highly demanded. Here we report unusual vapor adsorption behavior toward VOCs by a new porous solid, composed of a polyaromatic capsule bearing a spherical nanocavity with subnano-sized windows. Without prior crystallization and high-temperature vacuum drying, the porous polyaromatic solid exhibits the following five features: vapor adsorption of benzene over cyclohexane with 90 % selectivity, high affinity toward o-xylene over benzene and toluene with >80 % selectivity, ortho-selective adsorption ability (>50 %) from mixed xylene isomers, tight VOCs storage even under high temperature and vacuum conditions, and at least 5 times reusability for xylene adsorption. The observed adsorption abilities are accomplished at ambient temperature and pressure within 1 h, which has not been demonstrated by organic/inorganic porous materials reported previously.
Collapse
Affiliation(s)
- Ryuki Sumida
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research Tokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Takeshi Matsumoto
- Nanospace Catalysis Unit Institute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Toshiyuki Yokoi
- Nanospace Catalysis Unit Institute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research Tokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| |
Collapse
|
13
|
Lewis JEM. Pseudo-heterolepticity in Low-Symmetry Metal-Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212392. [PMID: 36074024 PMCID: PMC9828238 DOI: 10.1002/anie.202212392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/12/2023]
Abstract
Heteroleptic metal-organic cages, formed through integrative self-assembly of ligand mixtures, are highly attractive as reduced symmetry supramolecular hosts. Ensuring high-fidelity, non-statistical self-assembly, however, presents a significant challenge in molecular engineering due to the inherent difficulty in predicting thermodynamic energy landscapes. In this work, two conceptual strategies are described that circumvent this issue, using ligand design strategies to access structurally sophisticated metal-organic hosts. Using these approaches, it was possible to realise cavity environments described by two inequivalent, unsymmetrical ligand frameworks, representing a significant step forward in the construction of highly anisotropic confined spaces.
Collapse
Affiliation(s)
- James E. M. Lewis
- School of ChemistryUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
- Previous address: Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
14
|
Li RJ, Tarzia A, Posligua V, Jelfs KE, Sanchez N, Marcus A, Baksi A, Clever GH, Fadaei-Tirani F, Severin K. Orientational self-sorting in cuboctahedral Pd cages. Chem Sci 2022; 13:11912-11917. [PMID: 36320919 PMCID: PMC9580501 DOI: 10.1039/d2sc03856k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2023] Open
Abstract
Cuboctahedral coordination cages of the general formula [Pd12L24]24+ (L = low-symmetry ligand) were analyzed theoretically and experimentally. With 350 696 potential isomers, the structural space of these assemblies is vast. Orientational self-sorting refers to the preferential formation of particular isomers within the pool of potential structures. Geometric and computational analyses predict the preferred formation of cages with a cis arrangement at the metal centers. This prediction was corroborated experimentally by synthesizing a [Pd12L24]24+ cage with a bridging 3-(4-(pyridin-4-yl)phenyl)pyridine ligand. A crystallographic analysis of this assembly showed exclusive cis coordination of the 3- and the 4-pyridyl donor groups at the Pd2+ ions.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Victor Posligua
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | | | - Adam Marcus
- Institut of Mathematics, EPFL Lausanne 1015 Switzerland
| | - Ananya Baksi
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Universität Dortmund Dortmund 44227 Germany
| | - Guido H Clever
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Universität Dortmund Dortmund 44227 Germany
| | - Farzaneh Fadaei-Tirani
- Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Kay Severin
- Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
15
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible-Light-Responsive Self-Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination. Angew Chem Int Ed Engl 2022; 61:e202205701. [PMID: 35972841 PMCID: PMC9541570 DOI: 10.1002/anie.202205701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A photoswitchable ligand based on azobenzene is self-assembled with palladium(II) ions to form a [Pd2 (E-L)4 ]4+ cage. Irradiation with 470 nm light results in the near-quantitative switching to a monomeric species [Pd(Z-L)2 ]2+ , which can be reversed by irradiation with 405 nm light, or heat. The photoswitching selectivity towards the metastable isomer is significantly improved upon self-assembly, and the thermal half-life is extended from 40 days to 850 days, a promising approach for tuning photoswitching properties.
Collapse
Affiliation(s)
| | | | - Ruoming Tian
- Crystallography laboratoryMark Wainwright Analytical CentreUNSW SydneySydneyNSW 2052Australia
| | - Jason R. Price
- School of ChemistryUNSW SydneySydneyNSW 2052Australia
- ANSTOThe Australian Synchrotron800 Blackburn RdClaytonVic 3168Australia
| | | | | | | |
Collapse
|
16
|
Lewis J. Pseudo‐heterolepticity in Low‐Symmetry Metal‐Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James Lewis
- University of Birmingham School of Chemistry Edgbaston B15 2TT Birmingham UNITED KINGDOM
| |
Collapse
|
17
|
|
18
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible‐Light‐Responsive Self‐Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ray G. DiNardi
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | - Ruoming Tian
- Crystallography laboratory Mark Wainwright Analytical Centre UNSW Sydney Sydney NSW 2052 Australia
| | - Jason R. Price
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
- ANSTO The Australian Synchrotron 800 Blackburn Rd Clayton Vic 3168 Australia
| | - Mohammad Tajik
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | | |
Collapse
|
19
|
Li S, Cai L, Hong M, Chen Q, Sun Q. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204732. [DOI: 10.1002/anie.202204732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| |
Collapse
|
20
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
21
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
22
|
|
23
|
Li SC, Cai LX, Hong M, Chen Q, Sun QF. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shao-Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qihui Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qing-Fu Sun
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
24
|
Howlader P, Ahmed S, Mondal S, Zangrando E, Mukherjee PS. Conformation-Selective Self-Assembly of Pd 6 Trifacial Molecular Barrels Using a Tetrapyridyl Ligand. Inorg Chem 2022; 61:8121-8125. [PMID: 35559685 DOI: 10.1021/acs.inorgchem.2c01081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A conformationally flexible tetrapyridyl ligand L was assembled separately with three cis-blocked 90° PdII acceptors (M1, M2, and M3) containing different blocking diamines. Surprisingly, different conformations of the donor L were arrested by the acceptors depending on the nature of the blocking amine, leading to the formation of isomeric Pd6 barrels (B1, B2, and B3). B2 and B3 with larger windows have been used to encapsulate polyaromatic hydrocarbons.
Collapse
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Surajit Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Birvé AP, Patel HD, Price JR, Bloch WM, Fallon T. Guest-Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage. Angew Chem Int Ed Engl 2022; 61:e202115468. [PMID: 34854191 PMCID: PMC9303423 DOI: 10.1002/anie.202115468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
A fluxional bis-monodentate ligand, based on the archetypal shape-shifting molecule bullvalene, self-assembles with M2+ (M=Pd2+ or Pt2+ ) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal-mediated self-assembly selects for an M2 L4 architecture while maintaining shape-shifting ligand complexity. A second level of simplification is achieved with guest-exchange; the binding of halides within the M2 L4 cage mixture results in a convergence to a cage species with all four ligands present as the "B isomer". Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X-ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2 L4 assembly.
Collapse
Affiliation(s)
- André P. Birvé
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| | - Harshal D. Patel
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| | - Jason R. Price
- ANSTOAustralian Synchrotron800 Blackburn RoadClaytonVic 3168Australia
| | - Witold M. Bloch
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| | - Thomas Fallon
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| |
Collapse
|
26
|
Findlay J, Patil K, Gardiner M, MacDermott-Opeskin H, O'mAra M, Kruger P, Preston D. Heteroleptic tripalladium(II) cages. Chem Asian J 2022; 17:e202200093. [PMID: 35139260 DOI: 10.1002/asia.202200093] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/08/2022] [Indexed: 11/08/2022]
Abstract
There is a concerted attempt to develop self-assembled metallo-cages of greater structural complexity, and heteroleptic Pd II cages are emerging as prime candidates in these efforts. Most of these are dinuclear: few examples of higher nuclearity have been reported. We demonstrate here a robust method for the formation of tripalladium(II) cages from the 2:3:3 combination of a tritopic ligand, Pd II , and a selection of ditopic ligands of the correct size and geometry.
Collapse
Affiliation(s)
- James Findlay
- Australian National University, Research School of Chemistry, AUSTRALIA
| | - Komal Patil
- University of Canterbury, School of Physical and Chemical Sciences, NEW ZEALAND
| | - Michael Gardiner
- Australian National University, Research School of Chemistry, AUSTRALIA
| | | | - Megan O'mAra
- Australian National University, Research School of Chemistry, AUSTRALIA
| | - Paul Kruger
- University of Canterbury, School of Physical and Chemical Sciences, NEW ZEALAND
| | - Dan Preston
- Australian National University, Research School of Chemistry, Building 137, Sullivan Creek Road, 26010, Australia, 9200, Canberra, AUSTRALIA
| |
Collapse
|
27
|
Birvé AP, Patel HD, Price JR, Bloch WM, Fallon T. Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- André P. Birvé
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| | - Harshal D. Patel
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| | - Jason R. Price
- ANSTO Australian Synchrotron 800 Blackburn Road Clayton Vic 3168 Australia
| | - Witold M. Bloch
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| | - Thomas Fallon
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| |
Collapse
|
28
|
Shang P, Dong G, Jiang XF. Hydrogen bonds promoted formation of Eu(III)-based host-guest complex and luminescence properties. Inorganica Chim Acta 2022; 530:120676. [DOI: 10.1016/j.ica.2021.120676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Geng Dong
- Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
29
|
Lewis JEM. Molecular engineering of confined space in metal–organic cages. Chem Commun (Camb) 2022; 58:13873-13886. [DOI: 10.1039/d2cc05560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The host–guest chemistry of metal–organic cages can be modified through tailoring of structural aspects such as size, shape and functionality. In this review, strategies, opportunities and challenges of such molecular engineering are discussed.
Collapse
Affiliation(s)
- James E. M. Lewis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
31
|
Ronson TK, Carpenter JP, Nitschke JR. Dynamic optimization of guest binding in a library of diastereomeric heteroleptic coordination cages. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
33
|
Tarzia A, Lewis JEM, Jelfs KE. High‐Throughput Computational Evaluation of Low Symmetry Pd
2
L
4
Cages to Aid in System Design**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| | - James E. M. Lewis
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| | - Kim E. Jelfs
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
34
|
Tarzia A, Lewis JEM, Jelfs KE. High-Throughput Computational Evaluation of Low Symmetry Pd 2 L 4 Cages to Aid in System Design*. Angew Chem Int Ed Engl 2021; 60:20879-20887. [PMID: 34254713 PMCID: PMC8518684 DOI: 10.1002/anie.202106721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Unsymmetrical ditopic ligands can self-assemble into reduced-symmetry Pd2 L4 metallo-cages with anisotropic cavities, with implications for high specificity and affinity guest-binding. Mixtures of cage isomers can form, however, resulting in undesirable system heterogeneity. It is paramount to be able to design components that preferentially form a single isomer. Previous data suggested that computational methods could predict with reasonable accuracy whether unsymmetrical ligands would preferentially self-assemble into single cage isomers under constraints of geometrical mismatch. We successfully apply a collaborative computational and experimental workflow to mitigate costly trial-and-error synthetic approaches. Our rapid computational workflow constructs unsymmetrical ligands and their Pd2 L4 cage isomers, ranking the likelihood for exclusively forming cis-Pd2 L4 assemblies. From this narrowed search space, we successfully synthesised four new, low-symmetry, cis-Pd2 L4 cages.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| |
Collapse
|
35
|
Affiliation(s)
- Edmundo G. Percástegui
- Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carretera Toluca-Atlacomulco km 14.5, Toluca Estado de México 50200 México
| |
Collapse
|
36
|
Martín Díaz AE, Lewis JEM. Structural Flexibility in Metal-Organic Cages. Front Chem 2021; 9:706462. [PMID: 34336791 PMCID: PMC8317845 DOI: 10.3389/fchem.2021.706462] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/02/2021] [Indexed: 01/23/2023] Open
Abstract
Metal-organic cages (MOCs) have emerged as a diverse class of molecular hosts with potential utility across a vast spectrum of applications. With advances in single-crystal X-ray diffraction and economic methods of computational structure optimisation, cavity sizes can be readily determined. In combination with a chemist's intuition, educated guesses about the likelihood of particular guests being bound within these porous structures can be made. Whilst practically very useful, simple rules-of-thumb, such as Rebek's 55% rule, fail to take into account structural flexibility inherent to MOCs that can allow hosts to significantly adapt their internal cavity. An often unappreciated facet of MOC structures is that, even though relatively rigid building blocks may be employed, conformational freedom can enable large structural changes. If it could be exploited, this flexibility might lead to behavior analogous to the induced-fit of substrates within the active sites of enzymes. To this end, in-roads have already been made to prepare MOCs incorporating ligands with large degrees of conformational freedom. Whilst this may make the constitution of MOCs harder to predict, it has the potential to lead to highly sophisticated and functional synthetic hosts.
Collapse
Affiliation(s)
| | - James E. M. Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| |
Collapse
|
37
|
Sumida R, Tanaka Y, Niki K, Sei Y, Toyota S, Yoshizawa M. Cyclic monoterpenes trapped in a polyaromatic capsule: unusual selectivity, isomerization, and volatility suppression. Chem Sci 2021; 12:9946-9951. [PMID: 34377391 PMCID: PMC8317663 DOI: 10.1039/d1sc01987b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic monoterpenes (CMTs) are intractable natural products with high volatility and strong odors so that there has been no molecular receptor capable of selectively and tightly trapping CMTs in both solution and the solid state. We herein report that a polyaromatic capsule acts as a functional nanoflask for CMTs with the following five features: (i) the capsule can selectively bind menthone from mixtures with other saturated CMTs in water. In contrast, (ii) treatment of the capsule with mixtures of menthone and π-conjugated CMTs gives rise to ternary host–guest complexes with high pair-selectivity. Notably, (iii) the encapsulated menthone displays unusual isomerization from a typical chair conformer to otherwise unstable conformers upon heating. (iv) The selective binding of volatilized CMTs is demonstrated by the capsule even in the solid state at atmospheric pressure. Furthermore, (v) the volatilities of CMTs are significantly suppressed at elevated temperatures by the capsule upon encapsulation in solution as well as in the solid state. A polyaromatic capsule demonstrated its unique host functions toward cyclic monoterpenes, i.e., selective binding in water, pair-selective encapsulation, unusual isomerization, selective binding in the solid state, and remarkable volatility suppression.![]()
Collapse
Affiliation(s)
- Ryuki Sumida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Keita Niki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
38
|
Kudo K, Ide T, Kishida N, Yoshizawa M. Preparation of a Multicarbazole-Based Nanocapsule Capable of Largely Modulating Guest Spectroscopic Properties in Water. Angew Chem Int Ed Engl 2021; 60:10552-10556. [PMID: 33635566 DOI: 10.1002/anie.202102043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/01/2023]
Abstract
A nanocapsule composed of multiple carbazole panels (ca. 12 panels) was quantitatively generated from bent carbazole-based amphiphiles in water. Unlike previously reported macrocycles and coordination cages bearing several carbazole panels, the resultant nanocapsule displays enhanced emissivity and improved electrochemical stability as compared with the monomeric amphiphile. The spectroscopic properties of substituted coumarin and boron-dipyrromethene dyes can be modulated upon encapsulation by the nanocapsule in water. In the cavity, a highly blue-shifted absorption band is observed from largely twisted coumarin dyes and two absorption bands are found from boron-dipyrromethene dimers stacked in an unusual L-shaped fashion. Moreover, the encapsulated dimers exhibit unique excimer-like emission.
Collapse
Affiliation(s)
- Kohi Kudo
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo, 193-0997, Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo, 193-0997, Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
39
|
Bobylev EO, Poole Iii DA, de Bruin B, Reek JNH. Selective formation of Pt 12L 24 nanospheres by ligand design. Chem Sci 2021; 12:7696-7705. [PMID: 34168821 PMCID: PMC8188466 DOI: 10.1039/d1sc01295a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Supramolecular self-assemblies are used across various fields for different applications including their use as containers for catalysts, drugs and fluorophores. M12L24 spheres are among the most studied, as they offer plenty of space for functionalization, yielding systems with unique properties in comparison to their single components. Detailed studies on the formation of M12L24 structures using palladium cornerstones (that have generally dynamic coordination chemistry) aided in the development of synthetic protocols. The more robust platinum-based systems received thus far much less attention. The general use of platinum-based assemblies remains elusive as parameters and design principles of the ligand building blocks are not fully established. As platinum-based nanospheres are more robust due to the kinetically more stable nitrogen-platinum bond, we studied the sphere formation process in detail in order to develop descriptors for the formation of platinum-based nanospheres. In a systematic study, using time-dependent mass spectrometry, 1H-NMR and DOSY NMR, we identified new kinetically trapped intermediates during the formation of Pt12L24 spheres and we developed key parameters for selective formation of Pt12L24 spheres. Molecular mechanics calculations and experimental result support the importance of charge and steric bulk placed at the endo-site of the ditopic linker for selective sphere formation. Applicability of these principles is demonstrated by employing various ditopic ligands with different bend-angles for the synthesis of a range of Pt2L4, Pt3L6, Pt4L8 and Pt12L24 polyhedra with platinum cornerstones in excellent yields, thus paving the way for future applications of well-defined robust platinum nanospheres of different shapes and sizes with the general composition Pt n L2n .
Collapse
Affiliation(s)
- Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - David A Poole Iii
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
40
|
Kudo K, Ide T, Kishida N, Yoshizawa M. Preparation of a Multicarbazole‐Based Nanocapsule Capable of Largely Modulating Guest Spectroscopic Properties in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kohi Kudo
- Department of Chemical Science and Engineering National Institute of Technology Tokyo College 1220-2 Kunugida-machi, Hachioji-shi Tokyo 193-0997 Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering National Institute of Technology Tokyo College 1220-2 Kunugida-machi, Hachioji-shi Tokyo 193-0997 Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
41
|
Markwell-Heys AW, Schneider ML, Madridejos JML, Metha GF, Bloch WM. Self-sorting of porous Cu 4L 2L' 2 metal-organic cages composed of isomerisable ligands. Chem Commun (Camb) 2021; 57:2915-2918. [PMID: 33616581 DOI: 10.1039/d0cc08076d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the self-sorting of a dynamic combinatorial library (DCL) of metal-organic cages composed of a rotationally isomerisable ligand. Convergence of the DCL occurs upon crystallisation and leads to low-symmetry Cu4L2L'2 cages that display differing porosities based on their overall shape and ligand configuration.
Collapse
Affiliation(s)
| | - Matthew L Schneider
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia.
| | | | - Gregory F Metha
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia.
| | - Witold M Bloch
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
42
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Coal-Tar Dye-based Coordination Cages and Helicates. Angew Chem Int Ed Engl 2021; 60:5673-5678. [PMID: 33245206 PMCID: PMC7986857 DOI: 10.1002/anie.202015246] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 02/07/2023]
Abstract
A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.
Collapse
Affiliation(s)
- Irene Regeni
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Bin Chen
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Current Address: State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Soochow UniversitySuzhou215123China
| | - Marina Frank
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Ananya Baksi
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
43
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Teerfarben‐basierte Koordinationskäfige und ‐helikate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Irene Regeni
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Bin Chen
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
- Derzeitige Adresse: State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Soochow University Suzhou 215123 China
| | - Marina Frank
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Ananya Baksi
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
44
|
Vasdev RAS, Findlay JA, Turner DR, Crowley JD. Self-Assembly of a Redox Active, Metallosupramolecular [Pd 3 L 6 ] 6+ Complex Using a Rotationally Flexible Ferrocene Ligand. Chem Asian J 2020; 16:39-43. [PMID: 33251757 DOI: 10.1002/asia.202001277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
A new ferrocene-containing [Pd3 (L4EFc )6 ]6+ (X- )6 (C ⋅ BF4 and C ⋅ SbF6 where X=BF4 - or SbF6 - ) self-assembled double-walled triangle has been synthesized from the known, rotationally flexible, 1,1'-bis(4-pyridylethynyl)ferrocene ligand (L4EFc ), and characterized by 1 H, 13 C and diffusion ordered (DOSY) NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), X-ray crystallography and cyclic voltammetry (CV). The molecular structures confirmed that double-walled triangle cage systems (C ⋅ BF4 and C ⋅ SbF6 ) were generated. C ⋅ BF4 was shown to interact with the anionic guest, p-toluenesulfonate. CV experiments revealed that the triangles were redox active, however addition of the guest did not influence the redox potentials.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - James A Findlay
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David R Turner
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
45
|
Gemen J, Ahrens J, Shimon LJW, Klajn R. Modulating the Optical Properties of BODIPY Dyes by Noncovalent Dimerization within a Flexible Coordination Cage. J Am Chem Soc 2020; 142:17721-17729. [PMID: 33006898 PMCID: PMC7564082 DOI: 10.1021/jacs.0c08589] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/25/2022]
Abstract
Aggregation of organic molecules can drastically affect their physicochemical properties. For instance, the optical properties of BODIPY dyes are inherently related to the degree of aggregation and the mutual orientation of BODIPY units within these aggregates. Whereas the noncovalent aggregation of various BODIPY dyes has been studied in diverse media, the ill-defined nature of these aggregates has made it difficult to elucidate the structure-property relationships. Here, we studied the encapsulation of three structurally simple BODIPY derivatives within the hydrophobic cavity of a water-soluble, flexible PdII6L4 coordination cage. The cavity size allowed for the selective encapsulation of two dye molecules, irrespective of the substitution pattern on the BODIPY core. Working with a model, a pentamethyl-substituted derivative, we found that the mutual orientation of two BODIPY units in the cage's cavity was remarkably similar to that in the crystalline state of the free dye, allowing us to isolate and characterize the smallest possible noncovalent H-type BODIPY aggregate, namely, an H-dimer. Interestingly, a CF3-substituted BODIPY, known for forming J-type aggregates, was also encapsulated as an H-dimer. Taking advantage of the dynamic nature of encapsulation, we developed a system in which reversible switching between H- and J-aggregates can be induced for multiple cycles simply by addition and subsequent destruction of the cage. We expect that the ability to rapidly and reversibly manipulate the optical properties of supramolecular inclusion complexes in aqueous media will open up avenues for developing detection systems that operate within biological environments.
Collapse
Affiliation(s)
- Julius Gemen
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Johannes Ahrens
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- BASF
SE, Carl-Bosch-Straße
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Linda J. W. Shimon
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|