1
|
Li F, Ye J, Liu P, Jiang J, Chen X. An Overview on Bioactive Glasses for Bone Regeneration and Repair: Preparation, Reinforcement, and Applications. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 39761075 DOI: 10.1089/ten.teb.2024.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively. Moreover, the article outlines some frequently used manufacturing methods for three-dimensional BG-based bone bioscaffolds and highlights the remarkable achievements of these scaffolds in the field of bone defect repair in recent years. Lastly, based on the many potential challenges encountered in the preparation and application of BGs, a brief outlook on their future directions is presented. This review may help to provide new ideas for researchers to develop ideal BG-based bone substitutes for bone reconstruction and functional recovery.
Collapse
Affiliation(s)
- Fulong Li
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Juelan Ye
- Biomedical Engineering, School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai, China
| | - Ping Liu
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Jiaqi Jiang
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Xiaohong Chen
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| |
Collapse
|
2
|
Randhawa A, Ganguly K, Dutta SD, Patil TV, Lim KT. Transcriptomic profiling of human mesenchymal stem cells using a pulsed electromagnetic-wave motion bioreactor system for enhanced osteogenic commitment and therapeutic potentials. Biomaterials 2025; 312:122713. [PMID: 39084096 DOI: 10.1016/j.biomaterials.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Traditional bioreactor systems involve the use of three-dimensional (3D) scaffolds or stem cell aggregates, limiting the accessibility to the production of cell-secreted biomolecules. Herein, we present the use a pulse electromagnetic fields (pEMFs)-assisted wave-motion bioreactor system for the dynamic and scalable culture of human bone marrow-derived mesenchymal stem cells (hBMSCs) with enhanced the secretion of various soluble factors with massive therapeutic potential. The present study investigated the influence of dynamic pEMF (D-pEMF) on the kinetic of hBMSCs. A 30-min exposure of pEMF (10V-1Hz, 5.82 G) with 35 oscillations per minute (OPM) rocking speed can induce the proliferation (1 × 105 → 4.5 × 105) of hBMSCs than static culture. Furthermore, the culture of hBMSCs in osteo-induction media revealed a greater enhancement of osteogenic transcription factors under the D-pEMF condition, suggesting that D-pEMF addition significantly boosted hBMSCs osteogenesis. Additionally, the RNA sequencing data revealed a significant shift in various osteogenic and signaling genes in the D-pEMF group, further suggesting their osteogenic capabilities. In this research, we demonstrated that the combined effect of wave and pEMF stimulation on hBMSCs allows rapid proliferation and induces osteogenic properties in the cells. Moreover, our study revealed that D-pEMF stimuli also induce ROS-scavenging properties in the cultured cells. This study also revealed a bioactive and cost-effective approach that enables the use of cells without using any expensive materials and avoids the possible risks associated with them post-implantation.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
da Silva BM, dos Santos IFC, Mancuso P, Pereira LAF, Moroz I, Gallina MF, Tsunemi MH, Souza MT, Pellizzon CH, Silva JIS, Brandão CVS, Alves LAG. Clinical, thermographic, and tensiometric evaluation of rat cutaneous wounds treated with collagen gel associated with F18 bioactive glass. Acta Cir Bras 2024; 39:e399424. [PMID: 39630703 PMCID: PMC11606614 DOI: 10.1590/acb399424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE To evaluate the association of collagen gel with F18 bioactive glass (BG) in the healing of non-contaminated cutaneous wounds induced in healthy Wistar rats. METHODS One hundred twelve adult and healthy Wistar rats were randomly divided into four groups (n = 28): saline solution (0.9%); healing ointment based on allantoin and zinc oxide; collagen gel; and association of F18 BG powder and collagen gel. All the rats underwent the creation of a 3-cm diameter wound in their dorsal region. Macroscopic, thermographic, and tensiometric evaluations of the wound were performed. RESULTS The presence of granulation tissue varied significantly in and between the groups. The surface temperature assessed through thermography of wounds treated with saline solution (0.9%) increased significantly over time and between the groups. No difference was identified regarding tensiometry. CONCLUSIONS Collagen gel associated with F18 BG induced beneficial healing effects on non-contaminated cutaneous wounds in Wistar rats, which included the induction of increased blood perfusion as assessed through thermography.
Collapse
Affiliation(s)
- Bruna Martins da Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Postgraduate Program in Animal Biotechnology – Botucatu (SP) – Brazil
| | - Ivan Felismino Charas dos Santos
- Universidade Federal de Rondônia – Rolim de Moura (RO) – Brazil
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Botucatu (SP) – Brazil
| | - Paula Mancuso
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Botucatu (SP) – Brazil
| | | | - Ivan Moroz
- Universidade Estadual Paulista – School of Agronomic Sciences – Department of Bioprocesses and Biotechnology – Botucatu (SP) – Brazil
| | - Marina Frazatti Gallina
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Postgraduate Program in Animal Biotechnology – Botucatu (SP) – Brazil
| | - Miriam Harumi Tsunemi
- Universidade Estadual Paulista – Institute of Biosciences of Botucatu – Department of Biostatistics – Botucatu (SP) – Brazil
| | - Marina Trevelin Souza
- Vetra Pesquisa e Desenvolvimento de Produtos Cerâmicos de Alta Tecnologia – Ribeirão Preto (SP) – Brazil
| | - Claudia Helena Pellizzon
- Universidade Estadual Paulista – Institute of Biosciences of Botucatu – Department of Structural and Functional Biology – Botucatu (SP) – Brazil
| | - José Ivaldo Siqueira Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Postgraduate Program in Animal Biotechnology – Botucatu (SP) – Brazil
| | - Cláudia Valéria Seullner Brandão
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP) – Brazil
| | | |
Collapse
|
4
|
Sreena R, Raman G, Manivasagam G, Nathanael AJ. Bioactive glass-polymer nanocomposites: a comprehensive review on unveiling their biomedical applications. J Mater Chem B 2024; 12:11278-11301. [PMID: 39392456 DOI: 10.1039/d4tb01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Most natural and synthetic polymers are promising materials for biomedical applications because of their biocompatibility, abundant availability, and biodegradability. Their properties can be tailored according to the intended application by fabricating composites with other polymers or ceramics. The incorporation of ceramic nanoparticles such as bioactive glass (BG) and hydroxyapatite aids in the improvement of mechanical and biological characteristics and alters the degradation kinetics of polymers. BG can be used in the form of nanoparticles, nanofibers, scaffolds, pastes, hydrogels, or coatings and is significantly employed in different applications. This biomaterial is highly preferred because of its excellent biocompatibility, bone-stimulating activity, and favourable mechanical and degradation characteristics. Different compositions of nano BG are incorporated into the polymer system and studied for positive results such as enhanced bioactivity, better cell adherence, and proliferation rate. This review summarizes the fabrication and the progress of natural/synthetic polymer-nano BG systems for biomedical applications such as drug delivery, wound healing, and tissue engineering. The challenges and the future perspectives of the composite system are also addressed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea.
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| | - A Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Pejchalová L, Pejchal J, Roleček J, Vojníková M, Chlup Z, Mařák V, González-Sánchez M, Čížková J, Salamon D. In Vivo Assessment on Freeze-Cast Calcium Phosphate-Based Scaffolds with a Selective Cell/Tissue Ingrowth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58326-58336. [PMID: 39431911 PMCID: PMC11533149 DOI: 10.1021/acsami.4c12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Highly porous bioceramic scaffolds are widely used as bone substitutes in many applications. However, the use of bioceramics is often limited to hard tissues due to the risk of potential soft tissue calcification. A further limitation of highly porous bioceramic scaffolds is their poor mechanical stability, manifested by their tendency to break under stress. In our study, highly porous CaP-based scaffolds were prepared via freeze-casting with longitudinal and oriented pores ranging from 10 to 20 μm and a relative porosity of ∼70%. The resulting scaffolds achieved a flexural strength of 10.6 ± 2.7 MPa, which, in conjunction with their favorable bioactivity, made them suitable for in vivo testing. The prepared scaffolds were subcutaneously implanted in rats for two distinct periods: 6 weeks and 6 months, respectively. The subsequent development of fibrous tissue and involvement of myofibroblasts, newly formed vessels, and macrophages were observed, with notable changes in spatial and temporal distributions within the implantation. The absence of calcification in the surrounding soft tissue, as a result of the narrow pore geometry, indicates the opportunity to tailor the scaffold behavior for soft tissue regeneration.
Collapse
Affiliation(s)
- Lucie Pejchalová
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Jaroslav Pejchal
- Department
of Toxicology and Military Pharmacy Faculty of Military Health Science, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - Jakub Roleček
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Michaela Vojníková
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
- Department
of Chemistry, Biochemistry Mendel University
in Brno, Trida Generala
Piky 1999/5, 613 00 Brno, Czech Republic
| | - Zdeněk Chlup
- Institute
of Physics of Materials, Academy of Science
of the Czech Republic, Zizkova 513/22, 616 62 Brno, Czech Republic
| | - Vojtěch Mařák
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Manuela González-Sánchez
- Department
of Physics of Condensed Matter, Faculty of Physics, University of Seville, Avenue de la Reina Mercedes, S/N, Seville 41012, Spain
| | - Jana Čížková
- Department
of Radiobiology, Faculty of Military Health Science, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - David Salamon
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
- Institute
of Structural and Functional Ceramics, Montatuniversität
Leoben, Peter Tunner
Strasse 5, 8700 Leoben, Austria
| |
Collapse
|
6
|
Patil SJ, Thorat VM, Koparde AA, Bhosale RR, Bhinge SD, Chavan DD, Tiwari DD. Theranostic Applications of Scaffolds in Current Biomedical Research. Cureus 2024; 16:e71694. [PMID: 39559663 PMCID: PMC11571282 DOI: 10.7759/cureus.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Theranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare. Recent advancements in fabrication techniques have enabled the creation of highly intricate and precisely engineered scaffolds with controllable physical and chemical properties, enhancing their therapeutic potential for tissue engineering and regenerative medicine. This paper proposes a new categorization method for scaffolds in tissue engineering based on the relativity of scaffold design-independent parameters. Five types of scaffolds are defined at different levels, highlighting the importance of understanding and analyzing scaffold types. It possesses the ability to seamlessly integrate diagnostics and therapeutics within a single platform, enhancing the efficacy and precision of personalized medicine. Natural scaffolds derived from biomaterials and synthetic scaffolds fabricated by human intervention are discussed, with synthetic scaffolds offering advantages such as tunable mechanical properties and controlled drug delivery, while natural scaffolds provide inherent biocompatibility and bioactivity, making them ideal for promoting cellular responses. The use of synthetic scaffolds shows great promise in advancing regenerative medicine and improving patient outcomes. The transfer of new technologies and changes in society have accelerated the evolution of health monitoring into the era of personal health monitoring. Using emerging health data, cost-effective analytics, wireless sensor networks, mobile smartphones, and easy internet access, the combination of these technologies is expected to accelerate the transition to personal health monitoring outside of traditional healthcare settings. The main objective of this review article is to provide a comprehensive overview of the theranostic applications of scaffolds in current biomedical research, highlighting their dual role in therapy and diagnostics. The review aims to explore the latest advancements in scaffold design, fabrication, and functionalization, emphasizing how these innovations contribute to improved therapeutic efficacy, targeted drug delivery, and the real-time monitoring of disease progression across various medical fields.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
7
|
Tong Y, Yuan J, Li Z, Deng C, Cheng Y. Drug-Loaded Bioscaffolds for Osteochondral Regeneration. Pharmaceutics 2024; 16:1095. [PMID: 39204440 PMCID: PMC11360256 DOI: 10.3390/pharmaceutics16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| |
Collapse
|
8
|
Rong M, Liu D, Xu X, Li A, Bai Y, Yang G, Liu K, Zhang Z, Wang L, Wang K, Lu L, Jiang Y, Liu J, Zhang X. A Superparamagnetic Composite Hydrogel Scaffold as In Vivo Dynamic Monitorable Theranostic Platform for Osteoarthritis Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405641. [PMID: 38877353 DOI: 10.1002/adma.202405641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent disease, characterized by subchondral fractures in its initial stages, which has no precise and specific treatment now. Here, a novel multifunctional scaffold is synthesized by photopolymerizing glycidyl methacrylate-modified hyaluronic acid (GMHA) as the matrix in the presence of hollow porous magnetic microspheres based on hydroxyapatite. In vivo subchondral bone repairing results demonstrate that the scaffold's meticulous design has most suitable properties for subchondral bone repair. The porous structure of inorganic particles within the scaffold facilitates efficient transport of loaded exogenous vascular endothelial growth factor (VEGF). The Fe3O4 nanoparticles assembled in microspheres promote the osteogenic differentiation of bone marrow mesenchymal stem cells and accelerate the new bone generation. These features enable the scaffold to exhibit favorable subchondral bone repair properties and attain high cartilage repair scores. The therapy results prove that the subchondral bone support considerably influences the upper cartilage repair process. Furthermore, magnetic resonance imaging monitoring demonstrates that Fe3O4 nanoparticles, which are gradually replaced by new bone during osteochondral defect repair, allow a noninvasive and radiation-free assessment to track the newborn bone during the OA repair process. The composite hydrogel scaffold (CHS) provides a versatile platform for biomedical applications in OA treatment.
Collapse
Affiliation(s)
- Mayifei Rong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dingge Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoguang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Yihua Bai
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gang Yang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Kaiping Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zhihua Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Langran Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Kai Wang
- School of Mathematics and Physics, Handan University, Handan, 056005, China
| | - Liying Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yong Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
9
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering. J Mater Chem B 2024; 12:6886-6904. [PMID: 38912967 DOI: 10.1039/d4tb00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Scaffolds for bone tissue engineering require considerable mechanical strength to repair damaged bone defects. In this study, we designed and developed mechanically competent composite shape memory triphasic bone scaffolds using fused filament fabrication (FFF) three dimensional (3D) printing. Wollastonite particles (WP) were incorporated into the poly lactic acid (PLA)/polycaprolactone (PCL) matrix as a reinforcing agent (up to 40 wt%) to harness osteoconductive and load-bearing properties from the 3D printed scaffolds. PCL as a minor phase (20 wt%) was added to enhance the toughening effect and induce the shape memory effect in the triphasic composite scaffolds. The 3D-printed composite scaffolds were studied for morphological, thermal, and mechanical properties, in vitro degradation, biocompatibility, and shape memory behaviour. The composite scaffold had interconnected pores of 550 μm, porosity of more than 50%, and appreciable compressive strength (∼50 MPa), which was over 90% greater than that of the pristine PLA scaffolds. The flexural strength was improved by 140% for 40 wt% of WP loading. The inclusion of WP did not affect the thermal property of the scaffolds; however, the inclusion of PCL reduced the thermal stability. An accelerated in vitro degradation was observed for WP incorporated composite scaffolds compared to pristine PLA scaffolds. The inclusion of WP improved the hydrophilic property of the scaffolds, and the result was significant for 40 wt% WP incorporated composite scaffolds having a water contact angle of 49.61°. The triphasic scaffold exhibited excellent shape recovery properties with a shape recovery ratio of ∼84%. These scaffolds were studied for their protein adsorption, cell proliferation, and bone mineralization potential. The incorporation of WP reduced the protein adsorption capacity of the composite scaffolds. The scaffold did not leach any toxic substance and demonstrated good cell viability, indicating its biocompatibility and growth-promoting behavior. The osteogenic potential of the WP incorporated scaffolds was observed in MC3T3-E1 cells, revealing early mineralization in pre-osteoblast cells cultured in different WP incorporated composite scaffolds. These results suggest that 3D-printed WP reinforced PLA/PCL composite bioactive scaffolds are promising for load bearing bone defect repair.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Pooja Makwana
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Bindiya Dhimmar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| | - Prashant Kumar Jain
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| |
Collapse
|
11
|
Zhu Y, Zhang X, Chang G, Deng S, Chan HF. Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312964. [PMID: 39014919 DOI: 10.1002/adma.202312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Indexed: 07/18/2024]
Abstract
Bioactive glass (BG) is a class of biocompatible, biodegradable, multifunctional inorganic glass materials, which is successfully used for orthopedic and dental applications, with several products already approved for clinical use. Apart from exhibiting osteogenic properties, BG is also known to be angiogenic and antibacterial. Recently, BG's role in immunomodulation has been gradually revealed. While the therapeutic effect of BG is mostly reported in the context of bone and skin-related regeneration, its application in regenerating other tissues/organs, such as muscle, cartilage, and gastrointestinal tissue, has also been explored recently. The strategies of applying BG have also expanded from powder or cement form to more advanced strategies such as fabrication of composite polymer-BG scaffold, 3D printing of BG-loaded scaffold, and BG-induced extracellular vesicle production. This review presents a concise overview of the recent applications of BG in regenerative medicine. Various regenerative strategies of BG will be first introduced. Next, the applications of BG in regenerating various tissues/organs, such as bone, cartilage, muscle, tendon, skin, and gastrointestinal tissue, will be discussed. Finally, summarizing clinical applications of BG for tissue regeneration will conclude, and outline future challenges and directions for the clinical translation of BG.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, P. R. China
| |
Collapse
|
12
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Hu S, Zhu Y, Yu S, Guo Y, Wang Y, Lv M, Bai W, Ma P. Osteogenic effect and mechanism of IL-10 in diabetic rat jaw defect mode. Oral Dis 2024; 30:2695-2707. [PMID: 37551796 DOI: 10.1111/odi.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of IL-10 on the phenotype polarization of macrophages and osteogenesis in diabetes mellitus type 2 (T2DM) rat jaw defects. METHODS Lipopolysaccharide (LPS) and interleukin-10 (IL-10) were chosen to induce the polarization of macrophages. In vitro assessment included wound-healing assay, western blotting, and alizarin red staining after co-culture of the bone marrow-derived mesenchymal stem cells (BMSCs) and induced macrophages. For in vivo study, IL-10 was loaded on GelMA-Heparin and applied to bone defects of the alveolar ridge in diabetic rats, while Bio-Oss Collagen, simple GelMA-Heparin, and blank control groups were set for contrast experiment. The mandibles of rats were processed for micro-computed tomography, histology, and immunohistochemistry 1 week and 4 weeks after the operation. RESULTS IL-10 induced expression of arginase 1, TGF-β1, EGR2, and Mannose Receptor (CD206), whereas LPS induced expression of iNOS, TNF-α, IL-6, CD80. The BMSCs co-cultured with macrophages induced by IL-10 showed increased migration, osteogenic differentiation, and mineralization in vitro. Notably, the IL-10-laden GelMA-Heparin group showed quicker new bone formation and a higher M2/M1 ratio of macrophages in the jawbone defect area compared with the control groups. CONCLUSIONS IL-10 can stably induce macrophages to M2 type, thereby influencing BMSCs and improving the osteogenesis of jaw bone defects.
Collapse
Affiliation(s)
- Sitong Hu
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yihui Zhu
- Dental Department, Beijing Shunyi District Hospital, Beijing, China
| | - Shujia Yu
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Menghao Lv
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Bai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Pan Ma
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Li S, Yang H, Qu X, Qin Y, Liu A, Bao G, Huang H, Sun C, Dai J, Tan J, Shi J, Guan Y, Pan W, Gu X, Jia B, Wen P, Wang X, Zheng Y. Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis. Nat Commun 2024; 15:3131. [PMID: 38605012 PMCID: PMC11009309 DOI: 10.1038/s41467-024-47189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.
Collapse
Affiliation(s)
- Shuang Li
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Hongtao Yang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Aobo Liu
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Guo Bao
- Department of Reproduction and Physiology National Research Institute for Family Planning, 100081, Beijing, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, 450003, Zhengzhou, China
| | - Chaoyang Sun
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Jiabao Dai
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Junlong Tan
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Jiahui Shi
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Wei Pan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xuenan Gu
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Bo Jia
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.
| | - Xiaogang Wang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
16
|
Wang Z, Chen X, Yan L, Wang W, Zheng P, Mohammadreza A, Liu Q. Antimicrobial peptides in bone regeneration: mechanism and potential. Expert Opin Biol Ther 2024; 24:285-304. [PMID: 38567503 DOI: 10.1080/14712598.2024.2337239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) are small-molecule peptides with a unique antimicrobial mechanism. Other notable biological activities of AMPs, including anti-inflammatory, angiogenesis, and bone formation effects, have recently received widespread attention. These remarkable bioactivities, combined with the unique antimicrobial mechanism of action of AMPs, have led to their increasingly important role in bone regeneration. AREAS COVERED In this review, on the one hand, we aimed to summarize information about the AMPs that are currently used for bone regeneration by reviewing published literature in the PubMed database. On the other hand, we also highlight some AMPs with potential roles in bone regeneration and their possible mechanisms of action. EXPERT OPINION The translation of AMPs to the clinic still faces many problems, but their unique antimicrobial mechanisms and other conspicuous biological activities suggest great potential. An in-depth understanding of the structure and mechanism of action of AMPs will help us to subsequently combine AMPs with different carrier systems and perform structural modifications to reduce toxicity and achieve stable release, which may be a key strategy for facilitating the translation of AMPs to the clinic.
Collapse
Affiliation(s)
- ZhiCheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoMan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - WenJie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - PeiJia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Atashbahar Mohammadreza
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of International Education, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Lee H, Kengla C, Kim HS, Kim I, Cho J, Renteria E, Shin K, Atala A, Yoo JJ, Lee SJ. Enhancing Craniofacial Bone Reconstruction with Clinically Applicable 3D Bioprinted Constructs. Adv Healthc Mater 2024; 13:e2302508. [PMID: 37906084 PMCID: PMC11250468 DOI: 10.1002/adhm.202302508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Medical imaging and 3D bioprinting can be used to create patient-specific bone scaffolds with complex shapes and controlled inner architectures. This study investigated the effectiveness of a biomimetic approach to scaffold design by employing geometric control. The biomimetic scaffold with a dense external layer showed improved bone regeneration compared to the control scaffold. New bone filled the defected region in the biomimetic scaffolds, while the control scaffolds only presented new bone at the boundary. Histological examination also shows effective bone regeneration in the biomimetic scaffolds, while fibrotic tissue ingrowth is observed in the control scaffolds. These findings suggest that the biomimetic bone scaffold, designed to minimize competition for fibrotic tissue formation in the bony defect, can enhance bone regeneration. This study underscores the notion that patient-specific anatomy can be accurately translated into a 3D bioprinting strategy through medical imaging, leading to the fabrication of constructs with significant clinical relevance.
Collapse
Affiliation(s)
- Hyeongjin Lee
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Present address:
Department of Biotechnology and BioinformaticsKorea UniversitySejong30019Republic of Korea
| | - Carlos Kengla
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| | - Han Su Kim
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Department of Otorhinolaryngology‐Head and Neck SurgeryCollege of MedicineEwha Womans UniversitySeoul07804Republic of Korea
| | - Ickhee Kim
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Jae‐Gu Cho
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Department of Otorhinolaryngology‐Head and Neck SurgeryCollege of MedicineKorea UniversitySeoul02708Republic of Korea
| | - Eric Renteria
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Kyungsup Shin
- Department of OrthodonticsUniversity of Iowa College of DentistryIowa CityIA52242USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| |
Collapse
|
18
|
Xie Y, Hang L. Mechanical gated ion channel Piezo1: Function, and role in macrophage inflammatory response. Innate Immun 2024; 30:32-39. [PMID: 38710209 PMCID: PMC11165660 DOI: 10.1177/17534259241249287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 05/08/2024] Open
Abstract
Macrophages are present in many mechanically active tissues and are often subjected to varying degrees of mechanical stimulation. Macrophages play a crucial role in resisting pathogen invasion and maintaining tissue homeostasis. Piezo-type mechanosensitive channel component 1 (Piezo1) is the main cation channel involved in the rapid response to mechanical stimuli in mammals. This channel plays a crucial role in controlling blood pressure and motor performance and regulates urinary osmotic pressure and epithelial cell proliferation and division. In recent years, numerous studies have shown that in macrophages, Piezo1 not only plays a role in regulating the aforementioned physiological processes but also participates in multiple pathological processes such as inflammation and cancer. In this review, we summarize the research progress on Piezo1-mediated regulation of macrophage-mediated inflammatory responses through downstream signalling pathways and the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, PR China
| | - Lihua Hang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, PR China
| |
Collapse
|
19
|
Shi Y, Tao W, Yang W, Wang L, Qiu Z, Qu X, Dang J, He J, Fan H. Calcium phosphate coating enhances osteointegration of melt electrowritten scaffold by regulating macrophage polarization. J Nanobiotechnology 2024; 22:47. [PMID: 38297240 PMCID: PMC10829397 DOI: 10.1186/s12951-024-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
The osteoimmune microenvironment induced by implants plays a significant role in bone regeneration. It is essential to efficiently and timely switch the macrophage phenotype from M1 to M2 for optimal bone healing. This study examined the impact of a calcium phosphate (CaP) coating on the physiochemical properties of highly ordered polycaprolactone (PCL) scaffolds fabricated using melt electrowritten (MEW). Additionally, it investigated the influence of these scaffolds on macrophage polarization and their immunomodulation on osteogenesis. The results revealed that the CaP coated PCL scaffold exhibited a rougher surface topography and higher hydrophilicity in comparison to the PCL scaffold without coating. Besides, the surface morphology of the coating and the release of Ca2+ from the CaP coating were crucial in regulating the transition of macrophages from M1 to M2 phenotypes. They might activate the PI3K/AKT and cAMP-PKA pathways, respectively, to facilitate M2 polarization. In addition, the osteoimmune microenvironment induced by CaP coated PCL could not only enhance the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro but also promote the bone regeneration in vivo. Taken together, the CaP coating can be employed to control the phenotypic switching of macrophages, thereby creating a beneficial immunomodulatory microenvironment that promotes bone regeneration.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weidong Tao
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjing Yang
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Mu Y, Du Z, Gao W, Xiao L, Crawford R, Xiao Y. The effect of a bionic bone ionic environment on osteogenesis, osteoimmunology, and in situ bone tissue engineering. Biomaterials 2024; 304:122410. [PMID: 38043465 DOI: 10.1016/j.biomaterials.2023.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Bone, a mineralized tissue, continuously undergoes remodeling. It is a process that engages the mineralization and demineralization of the bone matrix, orchestrated by the interactions among cells and cell-secreted biomolecules under the bone ionic microenvironment (BIE). The osteoinductive properties of the demineralized organic bone matrix and many biological factors have been well-investigated. However, the impact of the bone ionic environment on cell differentiation and osteogenesis remains largely unknown. In this study, we extracted and isolated inorganic bone components (bone-derived monetite, BM) using a low-temperature method and, for the first time, investigated whether the BIE could actively affect cell differentiation and regulate osteoimmune reactions. It was evidenced that the BIE could foster the osteogenesis of human bone marrow stromal cells (hBMSCs) and promote hBMSCs mineralization without using osteogenic inductive agents. Interestingly, it was noted that BIE resulted in intracellular mineralization, evidenced by intracellular accumulation of carbonate hydroxyapatite similar to that oberved in osteoblasts cultured in osteoinductive media. Additionally, BIE was found to enhance osteogenesis by generating a favorable osteoimmune environment. In a rat calvarial bone defect model, the osteogenic capacity of BIE was evaluated using a collagen type I-impregnated BM (Col-BM) composite. It showed that Col-BM significantly promoted new bone formation in the critical-size bone defect areas. Taken together, this is the first study that investigated the influence of the BIE on osteogenesis, osteoimmunology, and in situ bone tissue engineering. The innate osteoinductive potential of inorganic bone components, both in vitro and in vivo, not only expands the understanding of the BIE on osteogenesis but also benefits future biomaterials engineering for bone tissue regeneration.
Collapse
Affiliation(s)
- Yuqing Mu
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Zhibin Du
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wendong Gao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
21
|
El-Kady AM, Mahmoud EM, Sayed M, Kamel SM, Naga SM. In-vitro and in-vivo evaluation for the bio-natural Alginate/nano-Hydroxyapatite (Alg/n-HA) injectable hydrogel for critical size bone substitution. Int J Biol Macromol 2023; 253:126618. [PMID: 37659491 DOI: 10.1016/j.ijbiomac.2023.126618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Currently, bio-natural injectable hydrogels are receiving a lot of attention due to their ability to control, adjust, and adapt to random bone defects, in addition, to their ability to mimic the composition of natural bones. From such a viewpoint, this study goal is to prepare and characterize the injectable hydrogels paste based on the natural alginate (Alg) derived from brown sea algae as a polysaccharide polymer, which coupled with nano biogenic-hydroxyapatite (n-HA) prepared from eggshells and enriched with valuable trace elements. The viscosity and mechanical properties of the paste were investigated. As well as the in-vitro study in terms of water absorption and biodegradability in the PBS, biocompatibility and the capability of the injectable Alginate/n-Hydroxyapatite (Alg/n-HA) to regenerate bone for the most suitable injectable form. The injectable hydrogel (BP -B sample) was chosen for the study as it had an appropriate setting time for injecting (13 mins), and suitable compressive strength reached 6.3 MPa. The in vivo study was also carried out including a post-surgery follow-up test of the newly formed bone (NB) in the defect area after 10 and 20 weeks using different techniques such as (SEM/EDX) and histological analysis, the density of the newly formed bone by Dual x-ray absorptiometry (DEXA), blood biochemistry and the radiology test. The results proved that the injectable hydrogels Alginate/n-Hydroxyapatite (Alg/n-HA) had an appreciated biodegradability and bioactivity, which allow the progress of angiogenesis, endochondral ossification, and osteogenesis throughout the defect area, which positively impacts the healing time and ensures the full restoration for the well-mature bone tissue that similar to the natural bone.
Collapse
Affiliation(s)
- Abeer M El-Kady
- Glass Research Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - E M Mahmoud
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt.
| | - M Sayed
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - S M Kamel
- Oral Biology Department, MSA University, Egypt
| | - S M Naga
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| |
Collapse
|
22
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Park JH, Seo YJ, Oh HS, Byun JH. Effects of myeloid immune cells on the metabolic process of biomimetic bone regeneration. Life Sci 2023; 334:122251. [PMID: 37931745 DOI: 10.1016/j.lfs.2023.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
AIMS As the process of bone regeneration is preceded by an inflammatory response, the immune system has long been considered important for fracture healing. Despite many studies on the contribution of immune cells to bone-related diseases, the role of immune cells in the regeneration therapy of lost bone is not well understood. In addition, various types of cells are involved in the clinical bone regeneration environment, but most of the osteo-biology studies are conducted in an osteoblast-only environment. MATERIALS AND METHODS Here, we investigated the effects of macrophages and dendritic cells on osteogenic differentiation in a co-culture environment involving human periosteal cell-derived osteoblasts, human monocyte-derived osteoclasts, and myeloid-derived cells. In addition, the cluster of myeloid immune cells involved in the clinical bone regeneration process was analyzed through bone defect rat modeling. KEY FINDINGS We found that specific types of myeloid cells and related cytokines increased osteogenic differentiation. These results were confirmed in experiments using myeloid cells originating from human primitive peripheral blood mononuclear cells and by measuring the colonization of macrophages and dendritic cells in an in vivo bone defect environment. In addition, Next generation sequencing (NGS) analysis was performed through RNA sequencing for osteogenesis caused by macrophages and dendritic cells in vitro, which implemented a clinical bone regeneration environment. The results of these experiments suggest that the role of M2 macrophages or dendritic cells is markedly increased during osteogenic differentiation. Therefore, we propose that the exchange of bioactive factors between macrophages and dendritic cells during the bone formation metabolic process is a crucial step of tissue regeneration rather than limited to the initial inflammatory response. SIGNIFICANCE This study indicates that M2 macrophages, among myeloid cells, can be mediators that play a vital role in the effective bone regeneration process and shows the potential as a useful next-generation advanced cell therapy for bone regeneration treatment.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye-Seong Oh
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
24
|
Sheela S, AlGhalban FM, Ahmed I, Abou Neel EA. In vitro immunomodulatory effect of solid versus porous phosphate-based glass microspheres using macrophages. Heliyon 2023; 9:e23059. [PMID: 38149183 PMCID: PMC10750036 DOI: 10.1016/j.heliyon.2023.e23059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
This study aimed to investigate the immunomodulatory effect of two different forms of phosphate-based glass microspheres (solid and porous), on human macrophages. Human THP-1 monocytes were converted to M0 macrophages after being treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h. The differentiated cells were analysed for the CD14 marker using flow cytometry. The adhesion, spreading, and viability of M0 macrophages grown directly or indirectly (extracts) at varying concentrations of solid and porous glass microspheres (GMs) were analysed via phase contrast microscopy, confocal microscopy, and XTT assay. The expression of IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70 cytokines was investigated using flow cytometry. The conversion to M0 macrophages was confirmed by their adherent nature, increased granularity, and CD14 expression. The results showed that both solid and porous GMs or extracts favored the attachment, spreading, and proliferation of macrophages in a comparable manner to cells grown in a normal tissue culture medium. Only the higher concentration of porous GMs (10 mg/mL) changed the morphology of M0 macrophages and increased the expression of IL-1β and IL-8 pro-inflammatory cytokines; this could be related to the fast degradation nature of porous GMs. Of the six cytokines analysed, M0 macrophages grown directly or indirectly with GMs only expressed IL-1β, IL-10, and IL-8. Accordingly, solid microspheres may have advantages as regenerative agents due to their controlled degradation.
Collapse
Affiliation(s)
- Soumya Sheela
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatma Mousa AlGhalban
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ensanya A. Abou Neel
- Preventive and Restorative Dentistry Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, Royal Free Hospital, Rowland Hill Street, London, United Kingdom
| |
Collapse
|
25
|
Fu M, Yang C, Sun G. Recent advances in immunomodulatory hydrogels biomaterials for bone tissue regeneration. Mol Immunol 2023; 163:48-62. [PMID: 37742359 DOI: 10.1016/j.molimm.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There is a high incidence of fractures in clinical practice and therapy. The repairment of critical size defects in the skeletal system remains a huge challenge for surgeons and researchers, which can be overcame by the application of bone tissue-engineered biomaterials. An increasing number of investigations have revealed that the immune system plays a vital role in the repair of bone defects, especially macrophages, which can modulate the integration of biomaterials and bone regeneration in multiple ways. Therefore, it has become increasingly important in regenerative medicine to regulate macrophage polarization to prevent inflammation caused by biomaterial implantation. Recent studies have stressed the importance of hydrogel-based modifications and the incorporation of various cellular and molecular signals for regulating immune responses to promote bone tissue regeneration and integrate biomaterials. In this review, we first elaborate briefly on the described the general physiological mechanism and process of bone tissue regeneration. Then, we summarized the immunomodulatory role macrophages play in bone repair. In addition, the role of hydrogel-based immune modification targeting macrophage modulation in accelerating and enhancing bone tissue regeneration was also discussed. Finally, we highlighted future directions and research strategies related to hydrogel optimization for the regulation of the immune response during bone regeneration and healing.
Collapse
Affiliation(s)
- Mei Fu
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chensong Yang
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guixin Sun
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
26
|
Maroquenne M, Bourguignon M, Larochette N, El-Hafci H, Margottin M, Potier E, Logeart-Avramoglou D. The Lower in Vivo Osteogenicity of Adipose Tissue-Derived Stem Cells Correlates with a Higher Innate Immune Response. Stem Cell Rev Rep 2023; 19:2869-2885. [PMID: 37642900 DOI: 10.1007/s12015-023-10614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Adipose tissue-derived mesenchymal stem cells (ATSCs) have been used as an alternative to bone marrow-derived mesenchymal stem cells (BMSCs) for bone tissue engineering applications. The ability of ATSCs to promote new bone formation remains lower than that of BMSCs. This study aimed to investigate the mechanisms underlying osteogenicity differences between human ATSCs and BMSCs in ceramic constructs, focusing on the effects of inflammation on this process. In contrast to ATSC-containing constructs, which did not induce bone formation in an ectopic mouse model, BMSC constructs consistently did so. Gene expression analysis revealed that human BMSCs, concomitantly with host murine progenitors, differentiated into the osteogenic lineage early post-implantation. In contrast, ATSCs differentiated later, when few implanted viable cells remained post-implantation, while the host murine cells did not differentiate. Comparison of the inflammatory profile in the cell constructs indicated concomitant upregulation of some human and murine inflammatory genes in the ATSC-constructs compared to the BMSC-constructs during the first-week post-implantation. The high level of chemokine production by the ATSCs was confirmed at the gene and protein levels before implantation. The immune cell recruitment within the constructs was then explored post-implantation. Higher numbers of TRAP-/ MRC1 (CD206) + multinucleated giant cells, NOS2 + M1, and ARG1 + M2 macrophages were present in the ATSC constructs than in the BMSC constructs. These results proved that ATSCs are a transient source of inflammatory cytokines promoting a transient immune response post-implantation; this milieu correlates with impaired osteogenic differentiation of both the implanted ATSCs and the host osteoprogenitor cells.
Collapse
Affiliation(s)
- Manon Maroquenne
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | | | | | - Hanane El-Hafci
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | - Morgane Margottin
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | - Delphine Logeart-Avramoglou
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France.
- Laboratoire de Biologie, Bioingénierie et Bioimagerie Ostéo-articulaires, Université Paris Cité, 10 Avenue de Verdun, Paris, F-75010, France.
| |
Collapse
|
27
|
Liu Z, Wang R, Liu W, Liu Y, Feng X, Zhao F, Chen P, Shao L, Rong M. Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review. Biomater Sci 2023; 11:7003-7017. [PMID: 37718623 DOI: 10.1039/d3bm00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Silicon nitride, an emerging bioceramic material, is highly sought after in the biomedical industry due to its osteogenesis-promoting properties, which are a result of its unique surface chemistry and excellent mechanical properties. Currently, it is used in clinics as an orthopedic implant material. The osteogenesis-promoting properties of silicon nitride are manifested in its contribution to the formation of a local osteogenic microenvironment, wherein silicon nitride and its hydrolysis products influence osteogenesis by modulating the biological behaviors of the constituents of the osteogenic microenvironment. In particular, silicon nitride regulates redox signaling, cellular autophagy, glycolysis, and bone mineralization in cells involved in bone formation via several mechanisms. Moreover, it may also promote osteogenesis by influencing immune regulation and angiogenesis. In addition, the wettability, surface morphology, and charge of silicon nitride play crucial roles in regulating its osteogenesis-promoting properties. However, as a bioceramic material, the molding process of silicon nitride needs to be optimized, and its osteogenic mechanism must be further investigated. Herein, we summarize the impact of the molding process of silicon nitride on its osteogenic properties and clinical applications. In addition, the mechanisms of silicon nitride in promoting osteogenesis are discussed, followed by a summary of the current gaps in silicon nitride mechanism research. This review, therefore, aims to provide novel ideas for the future development and applications of silicon nitride.
Collapse
Affiliation(s)
- Ziyi Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Ruijie Wang
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Yushan Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Pei Chen
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Mingdeng Rong
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| |
Collapse
|
28
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
29
|
Zhu Y, Wang Y, Xia G, Zhang X, Deng S, Zhao X, Xu Y, Chang G, Tao Y, Li M, Li H, Huang X, Chan HF. Oral Delivery of Bioactive Glass-Loaded Core-Shell Hydrogel Microspheres for Effective Treatment of Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207418. [PMID: 37092589 PMCID: PMC10288274 DOI: 10.1002/advs.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Resolving inflammation and promoting intestinal tissue regeneration are critical for inflammatory bowel disease (IBD) treatment. Bioactive glass (BG) is a clinically approved bone graft material and has been shown to modulate inflammatory response, but it is unknown whether BG can be applied to treat IBD. Here, it is reported that BG attenuates pro-inflammatory response of lipopolysaccharide (LPS)-stimulated macrophages and hence reduces inflammatory damage to intestinal organoids in vitro. In addition, zein/sodium alginate-based core-shell microspheres (Zein/SA/BG) are developed for oral delivery of BG, which helps prevent premature dissolution of BG in the stomach. The results show that Zein/SA/BG protects BG from a gastric-simulated environment while dissolved in an intestinal-simulated environment. When administered to acute and chronic colitis mice model, Zein/SA/BG significantly reduces intestinal inflammation, promotes epithelial tissue regeneration, and partially restores microbiota homeostasis. These findings are the first to reveal the therapeutic efficacy of BG against IBD, which may provide a new therapeutic approach at low cost for effective IBD treatment.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yiwei Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Guanggai Xia
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Cell Therapy and Cell Drugs of Luzhou Key LaboratorySchool of PharmacySouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoyu Zhao
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Haiyan Li
- Chemical and Environmental EngineeringSchool of EngineeringRMIT University124 La Trobe StMelbourneVIC3000Australia
| | - Xinyu Huang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics999077Hong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SAR999077China
| |
Collapse
|
30
|
Zhang QY, Tan J, Huang K, Nie R, Feng ZY, Zou CY, Li QJ, Chen J, Sheng N, Qin BQ, Gu ZP, Liu LM, Xie HQ. Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation. Carbohydr Polym 2023; 305:120546. [PMID: 36737196 DOI: 10.1016/j.carbpol.2023.120546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jie Tan
- Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Sheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Bo-Quan Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Min Liu
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
31
|
Xiang X, Pathak JL, Wu W, Li J, Huang W, Wu Q, Xin M, Wu Y, Huang Y, Ge L, Zeng S. Human serum-derived exosomes modulate macrophage inflammation to promote VCAM1-mediated angiogenesis and bone regeneration. J Cell Mol Med 2023; 27:1131-1143. [PMID: 36965158 PMCID: PMC10098299 DOI: 10.1111/jcmm.17727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/27/2023] Open
Abstract
During exogenous bone-graft-mediated bone defect repair, macrophage inflammation dictates angiogenesis and bone regeneration. Exosomes from different human cells have shown macrophage immunomodulation-mediated bone regeneration potential. However, the effect of human serum-derived exosomes (serum-Exo) on macrophage immunomodulation-mediated angiogenesis during bone defect repair has not been investigated yet. In this study, we explored the effects of serum-Exo on macrophage inflammation regulation-mediated angiogenesis during bone defect repair and preliminarily elucidated the mechanism. Healthy serum-Exo was isolated by ultracentrifugation. The effect of serum-Exo on LPS-induced M1 macrophage inflammation was analysed in vitro. The conditioned medium of serum-Exo-treated LPS-induced M1 macrophage (serum-Exo-treated M1 macrophage-CM) was used to culture human umbilical vein endothelial cells (HUVEC), and the effect on angiogenesis was analysed by western blot, qRT-PCR, etc. mRNA-sequencing of HUVECs was performed to identify deferentially expressed genes. Finally, the rat mandibular defect model was established and treated with Bio-Oss and Bio-Oss + Exo. The effect of the Bio-Oss + Exo combination on mandibular bone regeneration was observed by micro-computed tomography (micro-CT), haematoxylin and eosin (HE) staining, Masson staining, and immunohistochemical staining. Serum-Exo promoted the proliferation of RAW264.7 macrophages and reduced the expression of M1-related genes such as IL-6, IL-1β, iNOS, and CD86. Serum-Exo-treated M1 macrophage-CM induced the proliferation, migration, and angiogenic differentiation of HUVEC, as well as the expression of H-type blood vessel markers CD31 and endomucin (EMCN), compared with M1 macrophage-CM. Moreover, higher expression of vascular endothelial adhesion factor 1 (VCAM1) in HUVEC cultured with serum-Exo-treated M1 macrophage-CM compared with M1 macrophages-CM. Inhibition of VCAM1 signalling abrogated the pro-angiogenic effect of serum-Exo-treated M1 macrophage-CM on HUVEC. Local administration of serum-Exo during mandibular bone defect repair reduced the number of M1 macrophages and promoted angiogenesis and osteogenesis. Collectively, our results demonstrate the macrophage inflammation regulation-mediated pro-angiogenic potential of serum-Exo during bone defect repair possibly via upregulation of VCAM1 signalling in HUVEC.
Collapse
Affiliation(s)
- Xi Xiang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak Lal Pathak
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenbin Wu
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jianwen Li
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Qiuyu Wu
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Mengyu Xin
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuejun Wu
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhang Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Linhu Ge
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
32
|
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023; 52:2031-2081. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
33
|
Żak M, Rusak A, Kuropka P, Szymonowicz M, Pezowicz C. Mechanical properties and osteointegration of the mesh structure of a lumbar fusion cage made by 3D printing. J Mech Behav Biomed Mater 2023; 141:105762. [PMID: 36931002 DOI: 10.1016/j.jmbbm.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/17/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
The currently popular 3D printing makes it possible to produce spatial scaffolds, the main purpose of which is to obtain implants that have favourable mechanical properties to promote cell adhesion. This study aims to prove the influence of changes in selected geometrical parameters of scaffolds, used in intervertebral cages, on the mechanical properties obtained and thus on the osteointegration of the studied constructs with osteoblasts and fibroblasts. The stiffness values and maximum failure force of four modifications to geometric dimensions of the meshes were determined from the intendation test. Adhesion assays were conducted (including gentle pendulum motion) for Balb/3T3 fibroblasts and NHOst osteoblasts. The study revealed that an important geometrical parameter affecting the strength of the mesh is the height (h) of the connection point between arms of successive mesh cells. There was no significant effect of the mesh geometry on the abundance and survival of Balb/3T3 and NHOst cells. At the same time, fibroblasts were more likely to form colonies in the area where there is fusion of mesh cells, as opposed to osteoblasts that were more numerous at vertices of the mesh.
Collapse
Affiliation(s)
- Małgorzata Żak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Kuropka
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Maria Szymonowicz
- Pre-Clinical Research Centre, Wroclaw Medical University, Wrocław, Poland
| | - Celina Pezowicz
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
34
|
Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol 2023; 230:123246. [PMID: 36649862 DOI: 10.1016/j.ijbiomac.2023.123246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Many studies in the bone tissue engineering field have focused on the interactions between materials and bone marrow stem cells. With the development of osteoimmunology, the immune cells' essential role in biomaterial-mediated osteogenesis has increasingly been recognized. As a promising therapeutic candidate for bone defects due to their prominent biocompatibility, tuneability, and versatility, it is necessary to develop alginate-based biomaterials that can regulate immune cells, especially macrophages. Moreover, modified alginate-based biomaterials may facilitate better regulation of macrophage phenotypes by the newly endowed physicochemical properties, including stiffness, porosity, hydrophilicity, and electrical properties. This review summarizes the role of macrophages in bone regeneration and the recent research progress related to the effects of alginate-based biomaterials on macrophages applied in bone tissue engineering. This review also emphasizes the strategies adopted by material design to regulate macrophage phenotypes, the corresponding macrophage responses, and their contribution to osteogenesis.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Ren J, Fok MR, Zhang Y, Han B, Lin Y. The role of non-steroidal anti-inflammatory drugs as adjuncts to periodontal treatment and in periodontal regeneration. J Transl Med 2023; 21:149. [PMID: 36829232 PMCID: PMC9960225 DOI: 10.1186/s12967-023-03990-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Periodontitis is the sixth most prevalent chronic disease globally and places significant burdens on societies and economies worldwide. Behavioral modification, risk factor control, coupled with cause-related therapy have been the "gold standard" treatment for managing periodontitis. Given that host inflammatory and immunological responses play critical roles in the pathogenesis of periodontitis and impact treatment responses, several adjunctive strategies aimed at modulating host responses and improving the results of periodontal therapy and maintenance have been proposed. Of the many pharmacological host modulators, we focused on non-steroidal anti-inflammatory drugs (NSAIDs), due to their long history and extensive use in relieving inflammation and pain and reducing platelet aggregation. NSAIDs have been routinely indicated for treating rheumatic fever and osteoarthritis and utilized for the prevention of cardiovascular events. Although several efforts have been made to incorporate NSAIDs into the treatment of periodontitis, their effects on periodontal health remain poorly characterized, and concerns over the risk-benefit ratio were also raised. Moreover, there is emerging evidence highlighting the potential of NSAIDs, especially aspirin, for use in periodontal regeneration. This review summarizes and discusses the use of NSAIDs in various aspects of periodontal therapy and regeneration, demonstrating that the benefits of NSAIDs as adjuncts to conventional periodontal therapy remain controversial. More recent evidence suggests a promising role for NSAIDs in periodontal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jianhan Ren
- grid.194645.b0000000121742757Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Melissa Rachel Fok
- grid.194645.b0000000121742757Division of Periodontology and Implant Dentistry, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Yunfan Zhang
- grid.11135.370000 0001 2256 9319Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
36
|
Rafikova G, Piatnitskaia S, Shapovalova E, Chugunov S, Kireev V, Ialiukhova D, Bilyalov A, Pavlov V, Kzhyshkowska J. Interaction of Ceramic Implant Materials with Immune System. Int J Mol Sci 2023; 24:4200. [PMID: 36835610 PMCID: PMC9959507 DOI: 10.3390/ijms24044200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.
Collapse
Affiliation(s)
- Guzel Rafikova
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Svetlana Piatnitskaia
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elena Shapovalova
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | | | - Victor Kireev
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Applied Physics, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Daria Ialiukhova
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Azat Bilyalov
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Julia Kzhyshkowska
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciecnes (MI3), Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg, 68167 Mannheim, Germany
| |
Collapse
|
37
|
Yang Y, Su S, Liu S, Liu W, Yang Q, Tian L, Tan Z, Fan L, Yu B, Wang J, Hu Y. Triple-functional bone adhesive with enhanced internal fixation, bacteriostasis and osteoinductive properties for open fracture repair. Bioact Mater 2023; 25:273-290. [PMID: 36825223 PMCID: PMC9941416 DOI: 10.1016/j.bioactmat.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
At present, effective fixation and anti-infection implant materials represent the mainstay for the treatment of open fractures. However, external fixation can cause nail tract infections and is ineffective for fixing small fracture fragments. Moreover, closed reduction and internal fixation during the early stage of injury can lead to potential bone infection, conducive to bone nonunion and delayed healing. Herein, we designed a bone adhesive with anti-infection, osteogenic and bone adhesion fixation properties to promote reduction and fixation of open fractures and subsequent soft tissue repair. It was prepared by the reaction of gelatin (Gel) and oxidized starch (OS) with vancomycin (VAN)-loaded mesoporous bioactive glass nanoparticles (MBGNs) covalently cross-linked with Schiff bases. Characterization and adhesion experiments were conducted to validate the successful preparation of the Gel-OS/VAN@MBGNs (GOVM-gel) adhesive. Meanwhile, in vitro cell experiments demonstrated its good antibacterial effects with the ability to stimulate bone marrow mesenchymal stem cell (BMSCs) proliferation, upregulate the expression of alkaline phosphatase (ALP) and osteogenic proteins (RunX2 and OPN) and enhance the deposition of calcium nodules. Additionally, we established a rat skull fracture model and a subcutaneous infection model. The histological analysis showed that bone adhesive enhanced osteogenesis, and in vivo experiments demonstrated that the number of inflammatory cells and bacteria was significantly reduced. Overall, the adhesive could promote early reduction of fractures and antibacterial and osteogenic effects, providing the foothold for treatment of this patient population.
Collapse
Affiliation(s)
- Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenghui Su
- Department of Orthopaedics, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian Province, 352100, China
| | - Shencai Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Weilu Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Lei Fan
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| | - Jian Wang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| |
Collapse
|
38
|
Chen S, Wang H, Liu D, Bai J, Haugen HJ, Li B, Yan H. Early osteoimmunomodulation by mucin hydrogels augments the healing and revascularization of rat critical-size calvarial bone defects. Bioact Mater 2023; 25:176-188. [PMID: 36817825 PMCID: PMC9932297 DOI: 10.1016/j.bioactmat.2023.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The design principle of osteogenic bone grafts has shifted from immunological inertness to limiting foreign body response to combined osteoimmunomodulatory activity to promote high-quality endogenous bone regeneration. Recently developed immunomodulatory mucin hydrogels have been shown to elicit very low complement activation and suppress macrophage release and activation after implantation in vivo. However, their immunoregulatory activity has not yet been studied in the context of tissue repair. Herein, we synthesized mucin-monetite composite materials and investigated their early osteoimmunomodulation using a critical-size rat bone defect model. We demonstrated that the composites can polarize macrophages towards the M2 phenotype at weeks 1 and 2. The early osteoimmunomodulation enhanced early osteogenesis and angiogenesis and ultimately promoted fracture healing and engraftment (revascularization of the host vasculature) at weeks 6 and 12. Overall, we demonstrated the applicability of mucin-based immunomodulatory biomaterials to enhance tissue repair in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Song Chen
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jianzhong Bai
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Corresponding author.
| | - Hongji Yan
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institute and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden,Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden,Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden,Corresponding author. AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.
| |
Collapse
|
39
|
Zhang B, Xing F, Chen L, Zhou C, Gui X, Su Z, Fan S, Zhou Z, Jiang Q, Zhao L, Liu M, Fan Y, Zhang X. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213261. [PMID: 36577193 DOI: 10.1016/j.bioadv.2022.213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Currently, various bioceramics have been widely used in bone regeneration. However, it remains a huge challenge to remote isolation bone regeneration, such as severed finger regeneration. The remote isolation bone tissue has a poor regenerative microenvironment that lacks enough blood and nutrition supply. It is very difficult to repair and regenerate. In this study, well-controlled multi-level porous 3D-printed calcium phosphate (CaP) bioceramic scaffolds with precision customized structures were fabricated by high-resolution digital light projection (DLP) printing technology for remote isolation bone regeneration. In vitro results demonstrated that optimizing material processing procedures could achieve multi-level control of 3D-printed CaP bioceramic scaffolds and enhance the osteoinduction ability of bioceramics effectively. In vivo results indicated that 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedure exhibited a promising ability of bone regeneration and osteoinduction in ectopic osteogenesis and in situ caudal vertebrae regeneration in beagles. This study provided a promising strategy based on 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedures for remote isolation bone regeneration, such as severed finger regeneration.
Collapse
Affiliation(s)
- Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zixuan Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shiqi Fan
- Schools of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhigang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
Li D, Li X, Zhang J, Tang Z, Tian A. The immunomodulatory effect of IL-4 accelerates bone substitute material-mediated osteogenesis in aged rats via NLRP3 inflammasome inhibition. Front Immunol 2023; 14:1121549. [PMID: 37153554 PMCID: PMC10157059 DOI: 10.3389/fimmu.2023.1121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Bone defect repair by implanting bone substitute materials has been a common clinical treatment. With the understanding of substance-immune system interactions and increasing evidence indicating that the post-implantation immune response determines the fate of bone substitute materials, active modulation of host macrophage polarization is considered a promising strategy. However, whether the same regulatory effects exist when an individual immune system is altered with aging is unclear. Methods In this study, we mechanistically investigated the effect of immunosenescence on the active regulation of macrophage polarization by establishing a cranial bone defect model in young and aged rats implanted with Bio-Oss®. Forty-eight young and 48 aged specific pathogen-free (SPF) male SD rats were randomly divided into two groups. In the experimental group, 20 μL of IL-4 (0.5 μg/mL) was injected locally on the third to seventh postoperative days, while an equal volume of PBS was injected in the control group. Specimens were collected at 1, 2, 6, and 12 weeks postoperatively, and bone regeneration at the defect site was evaluated by micro-CT, histomorphometry, immunohistochemistry, double-labeling immunofluorescence, and RT-qPCR. Results The application of exogenous IL-4 reduced activation of NLRP3 inflammasomes by promoting the polarization of M1 macrophages to M2 macrophages, thus promoting bone regeneration at the site of bone defects in aged rats. However, this effect was gradually weakened after the IL-4 intervention was discontinued. Conclusion Our data confirmed that a strategy to regulate macrophage polarization is also feasible under conditions of immunosenescence, i.e., the local inflammatory microenvironment can be regulated by reducing M1-type macrophages. However, further experiments are needed to determine an exogenous IL-4 intervention that can maintain a more sustained effect.
Collapse
Affiliation(s)
- Duchenhui Li
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, China
- Department of Physiology and Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao Li
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Jie Zhang
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenglong Tang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, China
- Department of Physiology and Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Ai Tian, ; Zhenglong Tang,
| | - Ai Tian
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
- *Correspondence: Ai Tian, ; Zhenglong Tang,
| |
Collapse
|
41
|
Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, Chen B, Fu Q, Sun G. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. Int J Nanomedicine 2023; 18:1875-1895. [PMID: 37051313 PMCID: PMC10084881 DOI: 10.2147/ijn.s399487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Background Immune responses and osteogenesis differentiation induced by implants are crucial for bone tissue regeneration. Consideration of only one of those properties is not sufficient. To investigate the synergistic actions, we designed alginate/graphene oxide/sericin/nanohydroxyapatite (Alg/GO/Ser/nHAP) nanocomposite hydrogels with both osteoimmunomodulatory and osteoinductive activities. This study aimed to explore the effect of hydrogel with osteoimmunomodulatory properties on promoting osteogenesis of bone marrow stem cells (BMSCs). Methods Alg/GO/Ser/nHAP nanocomposite hydrogel was fabricated and was characterized by SEM, FTIR, XRD, stress-strain, rheology, swelling and degradation. After the impact of sericin on M2 macrophage polarization was identified, the BMSCs viability and adhesion were evaluated by CCK8 assay, live/dead staining, cytoskeleton staining. The cell osteogenic differentiation was observed by ALP/ARS staining, immunofluorescence staining, RT-PCR, and Western blotting, respectively. Rat cranial defect model was used to assess osteoimmunomodulatory effects of scaffolds in vivo by micro‑computed tomographic, histological, and immunohistochemical analyses after 8 weeks of healing. Results In vitro experiments revealed that the hydrogel presented desirable mechanical strength, stability, porosity, and biocompatibility. Significantly, sericin and nHAP appeared to exert synergistic effects on bone regeneration. Sericin was observed to inhibit the immune response by inducing macrophage M2-type polarization to create a positive osteoimmune microenvironment, contributing to improving osseointegration at the bone-implant interface to promote osteogenesis. However, the osteogenic differentiation in rat BMSCs was further enhanced by combining nHAP and sericin in the nanocomposite hydrogel. Eventually, the hydrogel was implanted into the rat cranial defect model, assisting in the reduction of local inflammation and efficient bone regeneration. Conclusion The nanocomposite hydrogel stimulated bone formation by the synergistic effects of immunomodulation of macrophage polarization by sericin and direct osteogenic induction by nHAP, demonstrating that such a scaffold that modulates the osteoimmune microenvironment to promote osteogenesis is a promising approach for the development of bone tissue engineering implants in the future.
Collapse
Affiliation(s)
- Mei Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hongrui Wang
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qingge Fu
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Correspondence: Guixin Sun; Qingge Fu, Email ;
| |
Collapse
|
42
|
Gani MA, Budiatin AS, Shinta DW, Ardianto C, Khotib J. Bovine hydroxyapatite-based scaffold accelerated the inflammatory phase and bone growth in rats with bone defect. J Appl Biomater Funct Mater 2023; 21:22808000221149193. [PMID: 36708249 DOI: 10.1177/22808000221149193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hydroxyapatite (HA) is a biomaterial widely used to treat bone defect, such as due to traffic accident. The HA scaffold is obtained from synthetic HA or natural sources, such as bovine hydroxyapatite (BHA). This study aims to compare the characteristics and in vivo performance of BHA-based and HA-based scaffolds. For this purpose, the scaffold was formulated with gelatin (GEL) and characterised by SEM-EDX, FTIR and mini autograph. The defect model was carried out on the femur area of Wistar rats classified into three animal groups: defect, HA-GEL and BHA-GEL. Postoperatively (7, 14 and 28 days), the bone was radiologically evaluated, and stained with haematoxylin-eosin, anti-CD80 and anti-CD163. The BHA-GEL scaffold showed a regular surface and spherical particle shape, whereas the HA-GEL scaffold exhibited irregular surface. The BHA-GEL scaffold had higher pore size and compressive strength and lower calcium-to-phosphorus ratio than the HA-GEL scaffold. In vivo study showed that the expression of CD80 in the three experimental groups was not significantly different. However, the expression of CD163 differed significantly between the groups. The BHA-GEL group showed robust expression of CD163 on day 7, which rapidly decreased over time. It also showed increased osteoclasts, osteoblasts and osteocytes cell count that contributed to the integrity of the defect area. In conclusion, the BHA-based scaffold exhibited the desired physical and chemical characteristics that benefit in vivo performance versus the HA-based scaffold. Thus, the BHA-based scaffold may be used as a bone graft.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | | | - Dewi Wara Shinta
- Department of Pharmacy Practice, Universitas Airlangga, Surabaya, Indonesia
| | | | - Junaidi Khotib
- Department of Pharmacy Practice, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
43
|
Xiao L, Shiwaku Y, Hamai R, Baba K, Tsuchiya K, Imazato S, Sasaki K, Suzuki O. Osteogenic capacity of octacalcium phosphate involving macrophage polarization. J Biomed Mater Res A 2022; 111:1006-1020. [PMID: 36573692 DOI: 10.1002/jbm.a.37484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Previous research has found that octacalcium phosphate (OCP) increases macrophage accumulation and alters the initial inflammatory response. However, the role of the immune response induced by OCP in osteogenesis remains unknown. This study investigated the behavior of macrophages and bone regeneration capacity during the early inflammatory stage of OCP-mediated osteogenesis. To assess the change in macrophage polarization and osteogenic capacity, we used a standardized rat defect model filled with OCP or calcium-deficient hydroxyapatite (CDHA)-a material obtained through the hydrolysis of the original OCP. OCP or CDHA granules were incubated with RAW264 cells for 5 days to investigate the effect of physicochemical characteristics on macrophage cytokine/chemokine expression in vitro. Our in vivo results show that due to the OCP implantation, macrophages in the rat tibial defect area tend to polarize to the M2 phenotype (anti-inflammatory) and inhibit the formation of the M1 phenotype (pro-inflammatory). In comparison to CDHA, OCP exhibited superior bone regeneration potential due to its rapid promotion of cortical bone healing and stimulation of macrophage-related growth factors. Furthermore, our in vitro results have shown that OCP regulates the expression of macrophage chemokines over time. Compared to incubation with CDHA, incubation with OCP caused changes in the ionic microenvironment. These findings suggest that the OCP-mediated macrophage polarization and secretion profile not only regulate immune function but also positively affect osteogenesis.
Collapse
Affiliation(s)
- Linghao Xiao
- Division of Craniofacial Function Engineering Tohoku University Graduate School of Dentistry Sendai Japan
- Division of Advanced Prosthetic Dentistry Tohoku University Graduate School of Dentistry Sendai Japan
- Department of Advanced Functional Materials Science Osaka University Graduate School of Dentistry Suita Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering Tohoku University Graduate School of Dentistry Sendai Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering Tohoku University Graduate School of Dentistry Sendai Japan
| | - Kazuyoshi Baba
- Department of Orthopedic Surgery Tohoku University Graduate School of Medicine Sendai Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering Tohoku University Graduate School of Dentistry Sendai Japan
| | - Satoshi Imazato
- Department of Biomaterials Science Osaka University Graduate School of Dentistry Suita Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry Tohoku University Graduate School of Dentistry Sendai Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering Tohoku University Graduate School of Dentistry Sendai Japan
| |
Collapse
|
44
|
Zhao H, Wang X, Jin A, Wang M, Wang Z, Huang X, Dai J, Wang X, Lin D, Shen SGF. Reducing relapse and accelerating osteogenesis in rapid maxillary expansion using an injectable mesoporous bioactive glass/fibrin glue composite hydrogel. Bioact Mater 2022; 18:507-525. [PMID: 35415307 PMCID: PMC8976096 DOI: 10.1016/j.bioactmat.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Rapid maxillary expansion (RME), as a common treatment for craniomaxillofacial deformity, faces the challenge of high relapse rates and unsatisfactory therapeutic effects. In this study, a standardized Sprague-Dawley (SD) rat RME model was first established with a modified expander as well as retainer design and optimized anterior maxillary expanding force of 100 g which exerted the most synchronized mobility of mid-palatal suture and incisors. Via the standardized model, the high relapse rate was proven to be attributed to insufficient osteogenesis in expanded suture, requiring long-term retainer wearing in clinical situations. To reduce the relapse rate, mesoporous bioactive glass/fibrin glue (MBG/FG) composite hydrogels were developed for an in situ minimal invasive injection that enhance osteogenesis in the expanded palate. The component of 1 wt% MBG was adopted for enhanced mechanical strength, matched degradation rate and ion dissolution, excellent in vitro biocompatibility and osteoinductivity. Effects of 1%MBG/FG composite hydrogel on osteogenesis in expanded mid-palatal sutures with/without retention were evaluated in the standardized model. The results demonstrated that injection of 1%MBG/FG composite hydrogel significantly promoted bone formation within the expanded mid-palatal suture, inhibited osteoclastogenesis and benefited the balance of bone remodeling towards osteogenesis. Combination of retainer and injectable biomaterial was demonstrated as a promising treatment to reduce relapse rate and enhance osteogenesis after RME. The model establishment and the composite hydrogel development in this article might provide new insight to other craniomaxillofacial deformity treatment and design of bone-repairing biomaterials with higher regenerative efficiency. A standardized rat RME model was established with optimized parameters. Sufficient osteogenesis was the prerequisite of reducing relapse ratio. Design of an injectable MBG/FG composite hydrogel for osteogenic enhancement. Combinatory treatment of injection and retention was developed for relapse reduction.
Collapse
|
45
|
Palierse E, Roquart M, Norvez S, Corté L. Coatings of hydroxyapatite-bioactive glass microparticles for adhesion to biological tissues. RSC Adv 2022; 12:21079-21091. [PMID: 35919836 PMCID: PMC9305725 DOI: 10.1039/d2ra02781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Adsorption of particles across interfaces has been proposed as a way to create adhesion between hydrogels and biological tissues. Here, we explore how this particle bridging approach can be applied to attach a soft polymer substrate to biological tissues, using bioresorbable and nanostructured hydroxyapatite-bioactive glass microparticles. For this, microparticles of aggregated flower-like hydroxyapatite and bioactive glass (HA-BG) were synthesized via a bioinspired route. A deposition technique using suspension spreading was developed to tune the coverage of HA-BG coatings at the surface of weakly cross-linked poly(beta-thioester) films. By varying the concentration of the deposited suspensions, we produced coatings having surface coverages ranging from 4% to 100% and coating densities ranging from 0.02 to 1.0 mg cm-2. The progressive dissolution of these coatings within 21 days in phosphate-buffered saline was followed by SEM. Ex vivo peeling experiments on pig liver capsules demonstrated that HA-BG coatings produce an up-to-two-fold increase in adhesion energy (9.8 ± 1.5 J m-2) as compared to the uncoated film (4.6 ± 0.8 J m-2). Adhesion energy was found to increase with increasing coating density until a maximum at 0.2 mg cm-2, well below full surface coverage, and then it decreased for larger coating densities. Using microscopy observations during and after peeling, we show that this maximum in adhesion corresponds to the appearance of particle stacks, which are easily separated and transferred onto the tissue. Such bioresorbable HA-BG coatings give the possibility of combining particle bridging with the storage and release of active compounds, therefore offering opportunities to design functional bioadhesive surfaces.
Collapse
Affiliation(s)
- Estelle Palierse
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Maïlie Roquart
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| |
Collapse
|
46
|
Wang D, Cao H, Hua W, Gao L, Yuan Y, Zhou X, Zeng Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair. MEMBRANES 2022; 12:membranes12070716. [PMID: 35877919 PMCID: PMC9315966 DOI: 10.3390/membranes12070716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The repair of critical bone defects is a hotspot of orthopedic research. With the development of bone tissue engineering (BTE), there is increasing evidence showing that the combined application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes, with hydrogels, scaffolds, and other bioactive materials has made great progress, exhibiting a good potential for bone regeneration. Recent studies have found that miRNAs, proteins, and other cargo loaded in EVs are key factors in promoting osteogenesis and angiogenesis. In BTE, the expression profile of the intrinsic cargo of EVs can be changed by modifying the gene expression of MSCs to obtain EVs with enhanced osteogenic activity and ultimately enhance the osteoinductive ability of bone graft materials. However, the current research on MSC-EVs for repairing bone defects is still in its infancy, and the underlying mechanism remains unclear. Therefore, in this review, the effect of bioactive materials such as hydrogels and scaffolds combined with MSC-EVs in repairing bone defects is summarized, and the mechanism of MSC-EVs promoting bone defect repair by delivering active molecules such as internal miRNAs is further elucidated, which provides a theoretical basis and reference for the clinical application of MSC-EVs in repairing bone defects.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Lu Gao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
47
|
Jiang X, Xue Y, Mustafa M, Xing Z. An updated review of the effects of eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins on bone preservation. Prostaglandins Other Lipid Mediat 2022; 160:106630. [PMID: 35263670 DOI: 10.1016/j.prostaglandins.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Resolvins are biosynthesized from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in vivo by means of enzymatic activities, and these factors can attenuate inflammation and promote tissue regeneration. Inflammatory bone disorders can lead to bone loss and thereby be harmful to human health. The link between bone preservation and resolvins has been discussed in some experimental studies. Significant evidence has shown that resolvins benefit bone health and bone preservation by promoting the resolution of inflammation and directly regulating osteoclasts and osteoblasts. Therefore, this review highlights the role and beneficial impact of resolvins derived from EPA and DHA on inflammatory bone disorders, such as rheumatoid arthritis and periodontitis. In addition, the mechanisms by which resolvins exert their beneficial effects on bone preservation have also been summarized based on the available literature.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, 5009 Bergen, Norway
| | - Zhe Xing
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
48
|
Ansari MAA, Golebiowska AA, Dash M, Kumar P, Jain PK, Nukavarapu SP, Ramakrishna S, Nanda HS. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci 2022; 10:2789-2816. [PMID: 35510605 DOI: 10.1039/d2bm00035k] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There are more than 2 million bone grafting procedures performed annually in the US alone. Despite significant efforts, the repair of large segmental bone defects is a substantial clinical challenge which requires bone substitute materials or a bone graft. The available biomaterials lack the adequate mechanical strength to withstand the static and dynamic loads while maintaining sufficient porosity to facilitate cell in-growth and vascularization during bone tissue regeneration. A wide range of advanced biomaterials are being currently designed to mimic the physical as well as the chemical composition of a bone by forming polymer blends, polymer-ceramic and polymer-degradable metal composites. Transforming these novel biomaterials into porous and load-bearing structures via three-dimensional printing (3DP) has emerged as a popular manufacturing technique to develop engineered bone grafts. 3DP has been adopted as a versatile tool to design and develop bone grafts that satisfy porosity and mechanical requirements while having the ability to form grafts of varied shapes and sizes to meet the physiological requirements. In addition to providing surfaces for cell attachment and eventual bone formation, these bone grafts also have to provide physical support during the repair process. Hence, the mechanical competence of the 3D-printed scaffold plays a key role in the success of the implant. In this review, we present various recent strategies that have been utilized to design and develop robust biomaterials that can be deployed for 3D-printing bone substitutes. The article also reviews some of the practical, theoretical and biological considerations adopted in the 3D-structure design and development for bone tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Aleksandra A Golebiowska
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Arugul, Khurdha 752050, Odisha, India
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Prashant Kumar Jain
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
| | - Syam P Nukavarapu
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Engineering Drive 3, Singapore 117587, Singapore
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| |
Collapse
|
49
|
Qi D, Su J, Li S, Zhu H, Cheng L, Hua S, Yuan X, Jiang J, Shu Z, Shi Y, Xiao J. 3D printed magnesium-doped β-TCP gyroid scaffold with osteogenesis, angiogenesis, immunomodulation properties and bone regeneration capability in vivo. BIOMATERIALS ADVANCES 2022; 136:212759. [PMID: 35929304 DOI: 10.1016/j.bioadv.2022.212759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Bioceramics have been used in orthopedic surgery for several years. Magnesium (Mg) is an essential element in bone tissue and plays an important role in bone metabolism. Mg-doped bioceramics has attracted the attention of researchers recently. However, the optimal doping amount of Mg in β-TCP and the immunomodulatory property of Mg-doped β-TCP (Mg-TCP) have not been determined yet. In this study, β-TCP scaffolds doped with different contents of magnesium oxide (0 wt%, 1 wt%, 3 wt%, and 5 wt%) with gyroid structure were printed by digital light processing (DLP) method, and the physicochemical and biological functions were then investigated. Mg-doping improved the physicochemical properties of the β-TCP scaffolds. In vitro experiments confirmed that the doping of Mg in β-TCP scaffolds promoted the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenic differentiation of endothelial progenitor cells (EPCs), where the 5Mg-TCP has the optimal properties when using the "one cell type" method. It was also found that all Mg-TCP facilitated the polarization of RAW264.7 cells to the M2 phenotype, especially the 3Mg-TCP. However, 3Mg-TCP displayed the optimal osteogenic and angiogenic potential when using a "multiple cell type" method, which referred to culturing the BMSCs or EPCs in the macrophage-conditioned medium. Finally, the in vivo experiments were conducted and the results confirmed that the 3Mg-TCP scaffolds possessed the satisfying bone defect repair capability both after 6 and 12 weeks of implantation. This study suggests that 3Mg-TCP scaffolds provide the optimal biological performance and thus have the potential for clinical translation.
Collapse
Affiliation(s)
- Dahu Qi
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Song Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hao Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lijin Cheng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuaibin Hua
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Yuan
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jiawei Jiang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zixing Shu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
50
|
Shang L, Shao J, Ge S. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration. Tissue Eng Part C Methods 2022; 28:377-392. [PMID: 35196904 DOI: 10.1089/ten.tec.2022.00111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunoinflammatory response is the prerequisite step for wound healing and tissue regeneration, and the immunomodulatory effects of biomaterials have attracted increasing attention. Hydroxyapatite [Ca10(PO4)6(OH)2] (HAp), a common calcium phosphate ceramic, due to its structural and functional similarity to the inorganic constituent of natural bones, has been developed for different application purposes such as bone substitutes, tissue engineering scaffolds, and implant coatings. Recently, the interaction between HAp-based materials and the immune system (various immune cells), and the immunomodulatory effects of HAp-based materials on bone tissue regeneration have been explored extensively. Macrophages-mediated regenerative effect by HAp stimulation occupies the mainstream status of immunomodulatory strategies. The immunomodulation of HAp can be manipulated by tuning the physical, chemical, and biological cues such as surface functionalization (physical or chemical modifications), structural and textural characteristics (size, shape, and surface topography), and the incorporation of bioactive substances (cytokines, rare-earth elements, and bioactive ions). Therefore, HAp ceramic materials can contribute to bone regeneration by creating a favorable osteoimmune microenvironment, which would provide a more comprehensive theoretical basis for their further clinical applications. Considering the rapidly developed HAp-based materials as well as their excellent biological performances in the field of regenerative medicine, this review discusses the recent advances concerning the immunomodulatory methods for HAp-based biomaterials and their roles in bone tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|